Skip to main content

Hydrodynamics in the Thomas-Fermi-Dirac-von Weizsäcker Approximation

  • Chapter
Electronic Density Functional Theory
  • 1232 Accesses

Abstract

The use of hydrodynamics in the description of quantum systems has a long and diverse history. Perhaps one of the earliest applications [1] was to the stopping power problem which concerns the excitation phenomena taking place when a charged particle passes through matter. At an atomistic level, the moving ion suffers a loss of energy as a result of collisions with atomic electrons. However, individual Rutherford scattering events cannot in fact take place due to the long-range nature of the Coulomb potential which implies that the ion interacts at once with many electrons. Furthermore, the electrons which respond to the passage of the ion, interact with each other, so that the field experienced by a given electron is comprised of the total field due to the ion and the dynamic screening charge of all other electrons. This situation is exceedingly complex and indicates that a quantitative understanding can only be achieved by a consideration of the collective response of the electrons. Presumably this is what Bohr [2] had in mind when he imagined electrons as forming a trailing wake behind the ion. This picture has a natural realization in Bloch’s hydrodynamic theory [1] which treats the electrons as a charged fluid, analogous to an ordinary fluid, whose dynamical state is specified in terms of local variables such as density, velocity and pressure. What is far from obvious is the extent to which this picture is meaningful for a degenerate quantum system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Bloch, Z. Phys. 81, 363 (1933).

    Article  ADS  MATH  Google Scholar 

  2. N. Bohr, K. Dan. Vidensk. Selsk. Mat.-Fys. Medd. 18, no. 8 (1948).

    Google Scholar 

  3. S. A. Rice and P. Gray, Statistical Mechanics of Simple Fluids (Interscience, New York, 1965).

    Google Scholar 

  4. L. P. Kadanoff and G. Baym, Quantum Statistical Mechanics (Benjamin, New York, 1962).

    MATH  Google Scholar 

  5. R. H. Ritchie, Progr. Theor. Phys. (Kyoto) 29, 607 (1963).

    Article  ADS  Google Scholar 

  6. A. J. Bennett, Phys. Rev. B 1, 203 (1970).

    Article  ADS  Google Scholar 

  7. J. Harris, Phys. Rev. B 4, 1022 (1971).

    Article  ADS  Google Scholar 

  8. F. Forstmann and R. R. Gerhardts, Metal Optics Near the Plasma Frequency (Springer-Verlag, Berlin, 1986).

    Book  Google Scholar 

  9. C. Schwartz and W.L. Schaich, Phys. Rev. B 26, 7008 (1982).

    Article  ADS  Google Scholar 

  10. S. C. Ying, Nuovo Cimento B 23, 270 (1974).

    Article  ADS  Google Scholar 

  11. A. Eguiluz, S. C. Ying, and J. J. Quinn, Phys. Rev. B 11, 2118 (1975).

    Article  ADS  Google Scholar 

  12. E. Zaremba and H. C. Tso, Phys. Rev. B 49, 8147 (1994).

    Article  ADS  Google Scholar 

  13. E. K. U. Gross, J. F. Dobson and M. Petersilka, in Density Functional Theory II edited by R. F. Nalewajski, Springer Series on Topics in Current Chemistry (Springer, Berlin, 1996), p.81.

    Google Scholar 

  14. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).

    Article  MathSciNet  ADS  Google Scholar 

  15. R.M. Dreizler and E. K. U. Gross, Density Functional Theory (Springer-Verlag, Berlin, 1990).

    Book  MATH  Google Scholar 

  16. W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).

    Article  MathSciNet  ADS  Google Scholar 

  17. M. J. Stott and E. Zaremba, Phys. Rev. A 21, 12 (1980); 22, 2293 (1980).

    Article  ADS  Google Scholar 

  18. T. Ando, Solid State Commun. 21, 133 (1977).

    Article  MathSciNet  ADS  Google Scholar 

  19. A. Zangwill and P. Soven, Phys. Rev. A 21, 1561 (1980).

    Article  ADS  Google Scholar 

  20. E. K. U. Gross and W. Kohn, Phys. Rev. Lett. 55, 2850 (1980).

    Article  ADS  Google Scholar 

  21. E. K. U. Gross and W. Kohn, Adv. Quantum Chem. 21, 255 (1990).

    Article  ADS  Google Scholar 

  22. K. Nuroh, M. J. Stott and E. Zaremba, Phys. Rev. Lett. 49, 862 (1982).

    Article  ADS  Google Scholar 

  23. W. Ekardt, Phys. Rev. B 31, 6360 (1985).

    Article  ADS  Google Scholar 

  24. K. Sturm, E. Zaremba and K. Nuroh, Phys. Rev. B 42, 6973 (1990).

    Article  ADS  Google Scholar 

  25. A. Liebsch, Phys. Rev. B 36, 7378 (1987).

    Article  ADS  Google Scholar 

  26. J. F. Dobson and G. H. Harris, J. Phys. C21, L729 (1988).

    ADS  Google Scholar 

  27. D. A. Broido, K. Kempa and P. Bakshi, Phys. Rev. B 42, 11400 (1990)

    Article  ADS  Google Scholar 

  28. V. Gudmundsson and R. Gerhardts, Phys. Rev. B 43, 12098 (1991).

    Article  ADS  Google Scholar 

  29. J. F. Dobson, Phys. Rev. B 46, 11163 (1992)

    Article  Google Scholar 

  30. J. Dempsey and B. I. Halperin, Phys. Rev. B 47, 4662 (1993).

    Article  ADS  Google Scholar 

  31. D. E. Beck, Phys. Rev. B 35, 7325 (1987).

    Article  ADS  Google Scholar 

  32. W. L. Schaich and J. F. Dobson, Phys. Rev. B 49, 14700 (1994).

    Article  ADS  Google Scholar 

  33. E. Zaremba, Phys. Rev. B 53, 10512 (1996).

    Article  ADS  Google Scholar 

  34. A. V. Chaplik, Sov. Phys. JETP 33, 947 (1971).

    ADS  Google Scholar 

  35. F. Stern, Phys. Rev. Lett. 30, 278 (1973).

    Article  ADS  Google Scholar 

  36. C. F. von Weizsäcker, Z. Phys. 96, 431 (1935).

    Article  ADS  MATH  Google Scholar 

  37. Y. Tomishima and K. Yonei, J. Phys. Soc. Jpn., 21, 142 (1966).

    Article  ADS  Google Scholar 

  38. W. Stich et al, Z. Phys. A 309, 5 (1982).

    Article  ADS  Google Scholar 

  39. A. Chizmeshya and E. Zaremba, Phys. Rev. B 37, 2805 (1988).

    Article  ADS  Google Scholar 

  40. P. Nozières and D. Pines, Theory of Quantum Fluids, Vol. II (Addison-Wesley, Redwood City, 1990).

    Google Scholar 

  41. M. Sundaram, A. C. Gossard, J. H. English and R. M. Westervelt, Superlatt. Microstruct. 4, 683 (1988).

    Article  ADS  Google Scholar 

  42. M. Shayegan, T. Sajoto, M. Santos and C. Silvestre, Appl. Phys. Lett. 53, 791 (1988).

    Article  ADS  Google Scholar 

  43. H. C. Tso and E. Zaremba, to be published.

    Google Scholar 

  44. L. Brey, N.F. Johnson and B.I. Halperin, Phys. Rev. B 40, 10647 (1989).

    Article  ADS  Google Scholar 

  45. S. K. Yip, Phys. Rev. B 43, 1707 (1991).

    Article  ADS  Google Scholar 

  46. J. F. Dobson, Phys. Rev. Lett. 73, 2244 (1994).

    Article  ADS  Google Scholar 

  47. K. D. Tsuei, et al, Surf. Sci. 247, 302 (1991).

    Article  ADS  Google Scholar 

  48. A. E. DePristo and J. D. Kress, Phys. Rev. A 35, 438 (1987).

    Article  ADS  Google Scholar 

  49. M. Levy, J. P. Perdew and V. Sahni, Phys. Rev. A 30, 2745 (1984).

    Article  ADS  Google Scholar 

  50. P. M. Echenique, F. Flores and R. H. Ritchie, Solid State Physics 41, 229 (1990).

    Article  Google Scholar 

  51. R. Kronig and J. Korringa, Physica 10, 406 (1943).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  52. A. Arnau and E. Zaremba, Nucl. Instr. and Meth. in Phys. Res. B 90, 32 (1994).

    Article  ADS  Google Scholar 

  53. P. Nozières and D. Pines, Theory of Quantum Fluids, Vol. I (Addison-Wesley, Redwood City, 1989).

    Google Scholar 

  54. G. Vignale and W. Kohn, Phys. Rev. Lett. 77, 2037 (1996): see also the chapter by Vignale and Kohn in the present volume.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zaremba, E., Tso, H.C. (1998). Hydrodynamics in the Thomas-Fermi-Dirac-von Weizsäcker Approximation. In: Dobson, J.F., Vignale, G., Das, M.P. (eds) Electronic Density Functional Theory. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0316-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0316-7_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0318-1

  • Online ISBN: 978-1-4899-0316-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics