Skip to main content

Quantum Equivalence Principle

  • Chapter
Functional Integration

Part of the book series: NATO ASI Series ((NSSB,volume 361))

Abstract

A simple mapping procedure is presented by which classical orbits and path integrals for the motion of a point particle in flat space can be transformed directly into those in curved space with torsion. Our procedure evolved from well-established methods in the theory of plastic deformations, where crystals with defects are described mathematically as images of ideal crystals under active nonholonomic coordinate transformations.

Our mapping procedure may be viewed as a natural extension of Einstein’s famous equivalence principle. When applied to time-sliced path integrals, it gives rise to a new quantum equivalence principle which determines short-time action and measure of fluctuating orbits in spaces with curvature and torsion. The nonholonomic transformations possess a nontrivial Jacobian in the path integral measure which produces in a curved space an additional term proportional to the curvature scalar R, thus canceling a similar term found earlier by DeWitt. This cancellation is important for correctly describing semiclassically and quantum mechanically various systems such as the hydrogen atom, a particle on the surface of a sphere, and a spinning top. It is also indispensable for the process of bosonization, by which Fermi particles are redescribed by those fields.

Source and postscript available from eprint archive (quant-ph/9612040)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. S. DeWitt, Rev. Mod. Phys. 29, 377 (1957).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. B. Podolsky, Phys. Rev. 32, 812 (1928).

    Article  ADS  MATH  Google Scholar 

  3. K. S. Cheng, J. Math. Phys. 13, 1723 (1972)

    Article  ADS  Google Scholar 

  4. H. Kamo and T. Kawai, Prog. Theor. Phys. 50, 680 (1973)

    Article  ADS  Google Scholar 

  5. T. Kawai, Found. Phys. 5, 143 (1975)

    Article  MathSciNet  ADS  Google Scholar 

  6. H. Dekker, Physica A 103, 586 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  7. G. M. Gavazzi, Nuovo Cimento A 101, 241 (1981).

    Article  ADS  Google Scholar 

  8. A good survey over similar attempts is given by M. S. Marinov, Phys. Rep. 60, 1 (1980).

    Article  MathSciNet  ADS  Google Scholar 

  9. Among the most widely discussed procedures was a postpoint discretization due to Ito and a midpoint discretization due to Stratonovich, with different mathematical advantages. For a detailed discussion see the textbooks H. Risken, The Fokker-Planck Equation, second edition, Springer, 1983, Vol. 18

    Google Scholar 

  10. R. Kubo, M. Toda, and N. Hashitsume, Statistical Physics II, Springer, Berlin 1985.

    Book  Google Scholar 

  11. A recent description of the relation between time slicing and Ito versus Stratonovich calculus can be found in H. Nakazato, K. Okano, L. Schülke, and Y. Yamanaka, Nucl. Phys. B 346, 611 (1990).

    Article  ADS  Google Scholar 

  12. Stochastic differential equations in curved spaces are developed in K. D. Elworthy, Stochastic differential equations on manifolds, Cambridge Univ. Press, 1982

    Google Scholar 

  13. M. Emery, Stochastic calculus in manifolds, Springer, Berlin 1989.

    Book  MATH  Google Scholar 

  14. R. Graham, Z. Phys. B 26, 397 (1977).

    Article  MathSciNet  ADS  Google Scholar 

  15. K. D. Elworthy, Path Integration on Manifolds, in Mathematical Aspects of Superspace, eds. H.-J. Seifert, C. Clarke, and A. Rosenblum, Reidei, 1984.

    Google Scholar 

  16. L. D. Landau and E. M. Lifshitz, Quantum Mechanics, Pergamon, New York, 1965.

    MATH  Google Scholar 

  17. D. J. Simms and N. M. J. Woodhouse, lectures on geometric quantization, Springer, Berlin 1976

    MATH  Google Scholar 

  18. J. Sniatycki, Geometric quantization and quantum mechanics, Springer, Berlin 1980

    Book  MATH  Google Scholar 

  19. P. L. Robinson and J. H. Rawnsley, The metaplectic representation, Mpc structures, and geometric quantization, publ. by the American Mathematical Society in the series Memoirs of the American Mathematical Society no. 410 0065-9266, Providence, R. I., 1989.

    Google Scholar 

  20. For details and more references see H. Kleinert, Gauge Fields in Condensed Matter, Vol. I Superflow and Vortex Lines, pp. 1-744, and Vol. II Stresses and Defects, World Scientific, Singapore 1989, pp. 744-1443.

    Google Scholar 

  21. K. Kondo, in: Proc. 2nd Japan Nat. Congr. Applied Mechanics, Tokio, 1952

    Google Scholar 

  22. B. A. Bilby, R. Bullough and E. Smith, Proc. R. Soc. London A 231, 263 (1955)

    Article  MathSciNet  ADS  Google Scholar 

  23. E. Kröner, in: Physics of defects, Les Houches summer school XXXV, North-Holland, Amsterdam 1981.

    Google Scholar 

  24. H. Duru and H. Kleinert, Phys. Lett. B 84, 185 (1979)

    Article  MathSciNet  ADS  Google Scholar 

  25. Fortschr. d. Phys. 30, 401 (1982).

    Google Scholar 

  26. H. Kleinert, Path Integrals in Quantum Mechanics, Statistics and Polymer Physics, second edition, World Scientific, Singapore 1995.

    MATH  Google Scholar 

  27. H. Kleinert, Mod. Phys. Lett. A 4, 2329 (1989).

    Article  MathSciNet  ADS  Google Scholar 

  28. H. Kleinert, Phys. Lett. B 236, 315 (1990).

    Article  MathSciNet  ADS  Google Scholar 

  29. P. Fiziev and H. Kleinert, New Action Principle for Classical Particle Trajectories In Spaces with Torsion, Europh. Lett. 35, 241 1996 (hep-th/9503074 and http://www.physik.fu-berlin.de/~kleinert/kleiner_re219/newvar.html/~kleinert/kleiner_re219/newvar.html).

  30. A. Pelster and H. Kleinert, FU-Berlin preprint, May 1996 (gr-qc/9605028 and http://www.physik.fu-berlin.de/~kleinert/kleiner_re243/preprint.html/~kleinert/kleiner_re243/preprint.html).

  31. Our notation for the geometric quantities in spaces with curvature and torsion is the same as in J. A. Schouten, Ricci Calculus, Springer, Berlin 1954.

    Google Scholar 

  32. P. Fiziev and H. Kleinert, Euler Equations for Rigid-Body — A Case for Autoparallel Trajectories in Spaces with Torsion, Berlin preprint 1995 (hep-th/9503075 and http://www.physik.fu-berlin.de/~kleinert/kleiner_re224/euler.html/~kleinert/kleiner_re224/euler.html).

  33. H. Kleinert, Collective Quantum Fields, Lectures presented at the First Erice Summer School on Low-Temperature Physics, 1977, Fortschr. Physik 26, 565-671 (1978).

    Google Scholar 

  34. See also the predecessors

    Google Scholar 

  35. H. Kleinert, Field Theory of Collective Excitations—A Soluble Model, Phys. Lett. B 69, 9 (1977), as well as the derivation of an SU (3)×SU (3) chirally invariant field theory of mesons from a quark theory in.

    Article  MathSciNet  ADS  Google Scholar 

  36. H. Kleinert, Hadronization of Quark Theories and a Bilocal form of QED, Phys. Lett. B 62, 429 (1976)

    Article  ADS  Google Scholar 

  37. H. Kleinert, On the Hadronization of Quark Theories, Lectures presented at the Erice Summer Institute 1976, in Understanding the Fundamental Constituents of Matter, Plenum Press, New York, 1978, A. Zichichi ed., pp. 289-390.

    Google Scholar 

  38. L. P. Gorkov, Sov. Phys. JETP 9, 1364 (1959).

    MathSciNet  Google Scholar 

  39. V. L. Ginzburg and L. D. Landau, Eksp. Teor. Fiz. 20, 1064 (1950).

    Google Scholar 

  40. A. L. Leggett, Rev. Mod. Phys. 47, 331 (1975).

    Article  ADS  Google Scholar 

  41. K. D. Schotte and U. Schotte, Phys. Rev. 182, 479 (1969); see also

    Article  MathSciNet  ADS  Google Scholar 

  42. S. Tomonaga, Progr. Theor. Phys. 5, 63 (1950).

    Google Scholar 

  43. For a review see: D. R. Bes, R. A. Broglia, Lectures delivered at “E. Fermi” Varenna Summer School, Varenna, Como Italy, 1976. For recent studies: D. R. Bes, R. A. Broglia, R. Liotta, B. R. Mottelson, Phys. Letters B 52, 253 (1974); B 56, 109 (1975), Nuclear Phys. A 260, 127 (1976).

    Article  ADS  Google Scholar 

  44. See also: R. W. Richardson, J. Math. Phys. 9, 1329 (1968).

    Article  ADS  Google Scholar 

  45. R. W. Richardson, Ann. Phys. (N. Y.) 65, 249 (1971) and N. Y. U. Preprint 1977, as well as references therein.

    Article  ADS  Google Scholar 

  46. J. Hubbard, Phys. Rev. Letters 3, 77 (1959)

    Article  ADS  Google Scholar 

  47. B. Mühlschlegel, J. Math. Phys., 3, 522 (1962)

    Article  ADS  MATH  Google Scholar 

  48. J. Langer, Phys. Rev. A 134, 553 (1964)

    ADS  Google Scholar 

  49. T. M. Rice, Phys. Rev. A 140 1889 (1965); J. Math. Phys. 8, 1581 (1967).

    MathSciNet  ADS  Google Scholar 

  50. A. V. Svidzinskij, Teor. Mat. Fiz. 9, 273 (1971)

    Google Scholar 

  51. D. Sherrington, J. Phys. C 4, 401 (1971).

    Article  ADS  Google Scholar 

  52. E. Witten, Commun. Math. Phys. 92, 455 (1984)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  53. P. DiVecchia and P. Rossi, Phys. Lett. B 140, 344 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  54. P. DiVecchia, B. Durhuus and J. L. Petersen, Phys. Lett. B 144, 245 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  55. Y. Frishman, Phys. Lett. B 146, 204 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  56. E. Abdalla and M. C. B. Abdalla, Nucl. Phys. B 225, 392 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  57. D. Gonzales and A. N. Redlich, Phys. Lett. B 147, 150 (1984)

    Article  ADS  Google Scholar 

  58. C. M. Naón, Phys. Rev. D 31, 2035 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  59. See also the recent development by P. H. Damgaard, H. B. Nielsen, and R. Sollacher, Nuclear Phys. B 385, 227 (1992) (hep-th/9407022)

    Article  MathSciNet  ADS  Google Scholar 

  60. P. H. Damgaard and R. Sollacher, Cern preprint (hep-th/9407022);A. N. Theron; F. A. Schaposnik, F. G. Scholtz and H. B. Geyer, Nucl. Phys. B 437, 187 (1995) (hep-th/9410035)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  61. C. P. Burgess and F. Quevedo, Phys. Lett. B 329 (1994) 457; Nucl. Phys. B 421, 373 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  62. C. P. Burgess, A. Lutkin, and F. Quevedo, Phys. Lett. B 336, 18 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  63. J. Fröhlich, R. Götschmann and P. A. Marchetti, preprint (hep-th/9406154).

    Google Scholar 

  64. S. Coleman, Phys. Rev. D 11, 2088 (1975)

    Article  ADS  Google Scholar 

  65. S. Mandelstam, Phys. Rev. D 11, 3026 (1975)

    Article  MathSciNet  ADS  Google Scholar 

  66. B. Schroer and T. T. Truong, Phys. Rev. D 15, 1684 (1977).

    Article  ADS  Google Scholar 

  67. For a semiclassical study of the model at finite times see H. Kleinen and H. Reinhardt, Nucl. Phys. A 332, 33 (1979).

    Google Scholar 

  68. H. Kleinert, Nonabelian Bosonization as a Nonholonomic Transformations from Flat to Curved Field Space. FU-Berlin preprint 1996

    Google Scholar 

  69. (http://www.physik.fuberlin.de/~kleinert/kleiner_re239/preprint.html/~kleinert/kleiner_re239/preprint.html).

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kleinert, H. (1997). Quantum Equivalence Principle. In: DeWitt-Morette, C., Cartier, P., Folacci, A. (eds) Functional Integration. NATO ASI Series, vol 361. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0319-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0319-8_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0321-1

  • Online ISBN: 978-1-4899-0319-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics