Skip to main content

Basal Concentration and Evoked Changes of Extracellular Taurine in the Rat Hippocampus in Vivo

  • Chapter
The Biology of Taurine

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 217))

Abstract

The brain extracellular fluid constitutes the microenvironment on which specific nervous tissue functions are highly dependent (27). Thus its composition should be strictly maintained. Cellular processes of secretion and uptake as well as the homeostatic mechanisms of blood and cerebrospinal fluid (CSF) probably contribute to buffering changes in the extracellular fluid composition evoked by cellular activities. The extracellular space is also the main medium of communication between nerve cells through which their chemical signals are transmitted. For these reasons, many studies have been performed to determine the “in vivo” extracellular fluid concentrations of neuroactive substances such as catecholamines, their metabolites (5) and ions (9), during basal and altered cellular activities, since such information will improve significantly our understanding of CNS physiology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baudry, M., and Lynch, G., 1979, Two glutamate binding sites in rat hippocampal membranes, Eur. J. Pharmacol., 57:283–285.

    Article  PubMed  CAS  Google Scholar 

  2. Baylor, D.A. and Nicholls, J.G., 1969, Aftereffects of nerve impulse on signalling in the central nervous system of the leech, J. Physiol. (Lond.), 203:571–589.

    CAS  Google Scholar 

  3. Delgado, J.M.R., DeFeudis, F.V., Roth, R.H., Ryugo, D.K., and Mitruka, B.M., 1972, Dialytrode for long-term intracerebral perfusion in the awake monkeys, Arch. Int. Pharmacodyn. Therm., 198:9–21.

    CAS  Google Scholar 

  4. Delgado, J.M.R., Lerma, J., Martin del Rio, R., and Solis, J.M., 1984, Dialytrode technology and local profile of amino acids in the awake cat brain, J. Neurochem., 42:1218–1228.

    Article  PubMed  CAS  Google Scholar 

  5. Gonon, F., Buda, M., and Pujol, J.F., 1984, Treated carbon fibre electrodes for measuring catechols and ascorbic acid., in: “Measurements of Neurotransmitter Release In Vivo”, C.A. Marsden ed., Wiley, New York, pp. 153–172.

    Google Scholar 

  6. Hablitz, J.J., and Lundervold, A., 1981, Hippocampal excitability and changes in extracellular potassium, Exp. Neurol., 71:410–420.

    Article  PubMed  CAS  Google Scholar 

  7. Hamberger, A., Berthold, C.H., Jacobson, I., Karlsson, B., Lehmann, A., Nystrom, B., and Sandberg, N., 1985, In vivo brain dialysis of extracellular non transmitter and putative transmitter amino acids, in: “In Vivo Perfusion and Release of Neuroactive Substances”, A. Baydn and R. Drucher-Colin eds., Academic Press, Orlando, Florida, pp. 119–139.

    Chapter  Google Scholar 

  8. Hamberger, A., and Nystrom, B., 1984, Extra-and intracellular amino acids in the hippocampus during development of hepatic encephalopathy, Neurochem. Res., 9:1181–1192.

    Article  PubMed  CAS  Google Scholar 

  9. Heinemann, U., Lux, H.D., and Gutnlch, M.J., 1978, Changes in extracellular free calcium and potassium activity in the somatosensory cortex of cats, in: “Abnormal Neuronal Discharges”, N. Chalazonitis and M. Boisson eds., Raven Press, New York, pp. 329–345.

    Google Scholar 

  10. Herranz, A.S., Cristin, J.L.R., Lerma, J., and Martin del Rio, R., 1985, Incremento de sensibilidad en los analisis por CLAE de los OPA-amino-acidos uBando como reactivo de derivacion el àcido 3-mercaptopropionico, Resumenes de la Reunion Cientifica Anual del Grupo de Cromatografla y Tecnicas Afines, R.S.E.Q., Sevilla, pp. 58–59.

    Google Scholar 

  11. Hertz, L., and Schousboe, A., 1980, Interactions between neurons and astrocytes in the turnover of GABA and glutamate, Brain Res. Bull., 5, Suppl. 2:389–395.

    Article  CAS  Google Scholar 

  12. Jacobson, I., Sandberg, M., and Hamberger, A., 1985, Mass transfer in brain dialysis devices-a new method for the estimation of the extracellular amino acids concentration, J. Neurosci. Meth., 15:262–268.

    Article  Google Scholar 

  13. Johnston, G.A.R., Kennedy, S.M.E., and Twitchin, B., 1979, Action of the neurotoxin kainic acid on high affinity uptake of L-glutamic acid in rat brain slices, J. Neurochem., 32:121–127.

    Article  PubMed  CAS  Google Scholar 

  14. Johnston, G.A.R., Krogsgaard-Larsen, P., Stephanson, A.L., and Twitchin B., 1976, Inhibition of the uptake of GABA and related amino acids in the rat brain slices by the optical isomers of nipecotic acid, J. Neurochem., 26:1029–1032.

    Article  PubMed  CAS  Google Scholar 

  15. Kontro, P., and Oja, S.S., 1981, Hypotaurine transport in brain slices: comparison with taurine and GABA, Neurochem. Res., 6:1179–1191.

    Article  PubMed  CAS  Google Scholar 

  16. Kontro, P., and Oja, S.S., 1983, Mutual interaction in the transport of taurine, hypotaurine and GABA in brain slices, Neurochem. Res., 8:1377–1387.

    Article  PubMed  CAS  Google Scholar 

  17. Lahdesmaki, P., and Oja, S.S., 1973, On the mechanism of taurine transport at brain cell membranes, J. Neurochem., 20:1411–1417.

    Article  PubMed  CAS  Google Scholar 

  18. Lerma, J., Herranz, A.S., Herreras, O., Abraira, V., and Martin del Rio, R., 1986, In vivo determination of extracellular concentration of amino acids in the rat hippocampus. A method based on brain dialysis and computerized analysis, Brain Research, In Press.

    Google Scholar 

  19. Lerma, J., Herranz, A.S., Herreras, O., Munoz, D., Solis, J.M., del Rio, R.M., and Delgado, J.M.R., 1985, γ-aminobutyric acid greatly increases the in vivo extracellular taurine in the rat hippocampus, J. Neurochem., 44:983–986.

    Article  PubMed  CAS  Google Scholar 

  20. Lerma, J., Herreras, O., Herranz, A.S., Munoz, D., and del Rio, R.M., 1984, In vivo effects of nipecotic acid on levels of extracellular GABA and taurine, and hippocampal excitability, Neuropharmacology, 23:595–598.

    Article  PubMed  CAS  Google Scholar 

  21. Lerma, J., Herreras, O., and Martin del Rio, R., 1985, Electrophysiological evidence that nipecotic acid can be used in vivo as a false transmitter, Brain Research, 335:377–380.

    Article  PubMed  CAS  Google Scholar 

  22. Lombardini, J.B., 1976, Regional and subcellular studies in taurine in the central nervous system, in: “Taurine”, R. Huxtable and A. Barbeau eds., Raven Press, New York, pp. 311–326.

    Google Scholar 

  23. Madtes, P., Jr., 1984, Chloride ions preferentially mask high-affinity GABA binding sites, J. Neurochem., 43:1434–1437.

    Article  PubMed  CAS  Google Scholar 

  24. McBride, W.J., and Frederickson, R.C.A., 1978, Neurochemical and neurophysiological evidence for a role of taurine as an inhibitor neurotransmitter in the cerebellum of the rat, in: “Taurine and Neurological Disorders”, A. Barbeau and R.J. Huxtable, eds., Raven Press, New York, pp. 415–527.

    Google Scholar 

  25. Moroni, F. Mulas, A., Moneti, G., and Pepeu, G., 1982, In vivo changes in GABA output from the cerebral cortex Induced by inhibitors of GABA uptake and metabolism, J. Neurochem., 39:582–585.

    Article  PubMed  CAS  Google Scholar 

  26. Munoz, M.D., Herreras, O., Herranz, A.S., Solis, J.M., Martin del Rio, R., and Lerma, J., 1986, Effects of dihydrokainic acid on extracellular amino acids and neuronal excitability in the in vivo rat hippocampus, Neuropharmacology, In Press.

    Google Scholar 

  27. Nicholson, C., 1980, Dynamics of the Brain Cells Microenvironment Neurosci. Res. Prog. Bull., MIT Press, Cambridge, Massachusettes, 18:322.

    Google Scholar 

  28. Oja, S., and Kontro, P., 1978, Neurotransmitter actions of taurine in the central nervous system, in: “Taurine and Neurological Disorders”, A. Barbeau and R.J. Huxtable eds., Raven Press, New York, pp. 181–200.

    Google Scholar 

  29. Oja, S.S., Korpi, E.R., Holopainen, I., and Kontro, P., 1985, Mechanisms of stimulated taurine release from nervous tissue, in: “Taurine, Biological Actions and Clinical Perspectives”, S.S. Oja, L. Ahtee, P. Kontro, and M.K. Paasonen eds, Alan R. Liss, New York, pp. 237–247.

    Google Scholar 

  30. Philippu, A., 1985, The use of push-pull cannula for superfusing various hypothalamic areas in anaesthetized and conscious, freely moving animals, in: “In Vivo Perfusion and Release of Neuroactives Substances”, A. Bayón and R. Drucker-Colin eds., Academic Press, Orlando, Florida, pp. 221–232.

    Chapter  Google Scholar 

  31. Sandberg, M., and Lindstrom, S., 1983, Amino acids in the dorsal lateral geniculate nucleus of the cat — collection in vivo, J. Neurosci, Meth., 9:65–74.

    Article  CAS  Google Scholar 

  32. Seilstrom, A., and Hamberger, A., 1977, Potassium-stimulated γ-aminobutyric acid release from neurons and glia, Brain Research, 119:189–198.

    Article  Google Scholar 

  33. Snedecor, G.W., and Cochran, W.G. 1980, Metodos Estadisticos, CECSA, Mexico, pp. 703.

    Google Scholar 

  34. Soils, J. M., Herranz, A.S., Herreras, O., Hǔnoz, M.D., Martín del Río, R., and Lerma, J., 1986, Variation of potassium ion concentrations in the rat hippocampus specifically affects extracellular taurine levels, Neurosci. Lett., 66:263–268.

    Article  Google Scholar 

  35. Storm-Mathisen, J., 1978, Localization of putative transmitter in the hippocampal formation, in: “CIBA Foundation Symposium, Functions of the Septo-Hippocampal System’, Elsevier, Amsterdam, pp. 49–79.

    Google Scholar 

  36. Tossman, U., Eriksson, S., Delin, A., Hagenfeldt, L., Law, D., and Ungerstedt, U., 1983, Brain amino acids measured by intracerebral dialysis in portacaval shunted rats, J. Neurochem., 41:1046–1051.

    Article  PubMed  CAS  Google Scholar 

  37. van der Heyden, J.A.M., Venema, K., and Korf, J., 1985, Push-pull perfusion studies on the in vivo release of endogenous transmitter and non-transmitter amino acids in the rat brain, in: “In vivo Perfusion and Release of Neuroactive Substances”, A. Bayón and R. Drucker-Colín eds., Academic Press, Orlando, Florida, pp. 51–68.

    Chapter  Google Scholar 

  38. Werling, L.L., and Nadler, J.V., 1982, Complex binding of L-[3H] glutamate to hippocampal synaptic membranes in the absence of sodium, J. Neurochem., 38:1050–1062.

    Article  PubMed  CAS  Google Scholar 

  39. Wolfensberger, M., 1984, Gas-Chromatographic and mass-fragmentographic measurement of amino acid released into brain perfusate collected in vivo by push-pull cannula techniques, in: “Measurement of Neurotransmitter Release In Vivo”, CA. Marsden ed., Wiley, New York, pp. 39–62.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer Science+Business Media New York

About this chapter

Cite this chapter

del Rio, R.M., Herranz, A.S., Solis, J.M., Herreras, O., Lerma, J. (1987). Basal Concentration and Evoked Changes of Extracellular Taurine in the Rat Hippocampus in Vivo. In: Huxtable, R.J., Franconi, F., Giotti, A. (eds) The Biology of Taurine. Advances in Experimental Medicine and Biology, vol 217. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0405-8_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0405-8_31

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0407-2

  • Online ISBN: 978-1-4899-0405-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics