Skip to main content

Pólya frequency functions and sequences

  • Chapter
I. J. Schoenberg Selected Papers

Part of the book series: Contemporary Mathematicians ((CM))

  • 694 Accesses

Abstract

The highly important totally positive kernels of the form K(x, y) = f(x−y) where x, y traverse the real line (or the integers), Schoenberg called Pólya frequency (PF) functions (sequences). The two prime examples of PF functions are the normal function

$$ f\left( u \right) = {e^{ - \gamma {u^2}}} $$
(1)

where γ is a positive parameter, and the (truncated) exponential function

$$ \begin{array}{*{20}{c}} {f\left( u \right) = \left\{ {\begin{array}{*{20}{c}} {{e^{ - \lambda {\text{u}}}}}&{amp;u0} \\ 0&{amp;u < 0} \end{array}} \right.}&{amp;{\text{or}}}&{amp;f\left( v \right) = } \end{array}\left\{ {\begin{array}{*{20}{c}} {{e^{\lambda \nu }}}&{amp;\nu 0} \\ 0&{amp;\nu > 0} \end{array}} \right. $$
(2)

where λ is a free positive parameter. In a remarkable series of papers, Schoenberg (see his review paper (1953) [48*]) set the basis of the theory of Pólya frequency functions, and established the fundamental representation theorems. Earlier works of Pólya, Laguerre and Schur aided these developments; their concern was the approximation of functions by polynomials with only real zeros.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arrow, K.J., S. Karlin, and H.E. Scarf (1958). Studies in the Mathematical Theory of Inventory and Production, Stanford University Press, Stanford, California.

    Google Scholar 

  • Barlow, R.E. and F. Proschan (1975). Statistical Theory of Reliability and Life Testing, Holt, Rinehart & Winston, New York.

    Google Scholar 

  • Brascamp, H. and E.H. Lieb (1976). “On extensions of the Brunn-Minkowski and Prékopa Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation,” J. Funct. Anal. 22, 366–389.

    Article  Google Scholar 

  • Cholewinski, F. (1965). “A Hankel convolution complex inversion theory,” Mem. Amer. Math. Soc. 58.

    Google Scholar 

  • Curry, H.B. and I.J. Schoenberg (1966). “On Pólya frequency functions. IV. The fundamental spline functions and their limits,” J. Analyse Math. 18, 71–107.

    Article  Google Scholar 

  • Dahmen, W. and C. Micchelli (1981). “On limits of multivariate B-splines,” J. Analyse Math. 39, 256–278.

    Article  Google Scholar 

  • Edrei, A. (1953a). “On the generating function of a doubly infinite totally positive sequence,” Trans. Amer. Math. Soc. 74, 367–83.

    Google Scholar 

  • Edrei, A. (1953b). “Proof of a conjecture of Schoenberg on the generating function of a totally positive sequence,” Canad. J. Math. 5, 86–94.

    Article  Google Scholar 

  • Edrei, A. and W. Fuchs (1962). “Bounds for the number of deficient values of certain classes of meromorphic functions,” Proc. London Math. Soc. (3) 12, 315–344.

    Article  Google Scholar 

  • Fan, K. and G.G. Lorentz (1954). “An integral inequality,” Amer. Math. Monthly 61, 626–631.

    Article  Google Scholar 

  • Haimo, Deborah Tepper (1965). “Integral equations associated with Hankel convolutions,” Trans. Amer. Math. Soc. 116, 330–75.

    Article  Google Scholar 

  • Hirschman, I.I. (1961). “Variation diminishing transformations and Sturm-Liouville systems,” Comment. Math. Helv. 36, 214–33.

    Article  Google Scholar 

  • Hirschman, I.I. (1961/1962). “Variation diminishing transformations and orthogonal polynomials,” J. Analyse Math. 9, 177–93.

    Article  Google Scholar 

  • Hirschman, I.I. and D.V. Widder (1955). The Convolution Transform, Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  • Karlin, S. (1968). Total Positivity, Volume I, Stanford University Press, Stanford, California.

    Google Scholar 

  • Karlin, S. and H. Rubin (1956). “The theory of decision procedures for distributions with monotone likelihood ratio,” Ann. Math. Statist. 27, 272–99.

    Article  Google Scholar 

  • Karlin, S. and Y. Rinott (1983). “Comparison of measures, multivariate majorizations and applications to statistics,” Studies in Econometrics, Time Series and Multivariate Statistics (S. Karlin, T. Amemiya, and L.A. Goodman, Eds.), Academic Press, New York.

    Google Scholar 

  • Karlin, S., C.A. Micchelli, and Y. Rinott (1986). “Multivariate Splines: A Probabilistic Perspective,” J. Multivariate Anal. 20, 69–90.

    Article  Google Scholar 

  • Marshall and Olkin (1979). Inequalities: Theory of Majorization and Its Applications, Academic Press, New York.

    Google Scholar 

  • Mairhuber, J.C., I.J. Schoenberg, and R.E. Williamson (1959). “On variation diminishing transformations of the circle,” Rend. Circ. Mat. Palermo (2) 8, 241–70. [63]

    Article  Google Scholar 

  • Pólya, G. and I. J. Schoenberg (1958). “Remarks on de la Vallée Poussin means and convex conformai maps of the circle,” Pacific J. Math. 8, 295–334. [58*]

    Article  Google Scholar 

  • Prekopa, A. (1971). “On logarithmic concave measures and functions,” Acta Sci. Math. (Szeged) 34, 335–343.

    Google Scholar 

  • Rinott, Y. (1973). “Multivariate majorization and rearrangement inequalities with some applications to probability and statistics,” Israel J. Math. 15, 60–77.

    Article  Google Scholar 

  • Rinott, Y. (1976). “On convexity of measures,” Ann. Probab. 4, 1020–1026.

    Article  Google Scholar 

  • Schoenberg, I.J. (1946). “Contributions to the problems of approximation of equidistant data by analytic functions,” Part A in Quant. Appl. Math. 4, 45–99. Part B in ibid 4, 112-41. [31*], [32*]

    Google Scholar 

  • Schoenberg, I.J. (1951). “On Pólya frequency functions, I: The totally positive functions and their Laplace transforms,” J. Analyse Math. 1, 331–74. [43*]

    Article  Google Scholar 

  • Schoenberg, I.J. (1953). “On smoothing operations and their generating functions,” Bull. Amer. Math. Soc. 59, 199–230. [48*]

    Article  Google Scholar 

  • Schoenberg, I.J. (1954). “On multiply positive sequences and functions,” Bull. Amer. Math. Soc. 60, 160. cf. [52]

    Google Scholar 

  • Schoenberg, I.J. and A. Whitney (1951). “A theorem on polygons in n dimensions with applications to variation-diminishing and cyclic variation-diminishing linear transforms,” Compositio Math. 9, 141–60. [42]

    Google Scholar 

  • Simon, B. (1979). Functional Integration and Quantum Physics, Academic Press, New York.

    Google Scholar 

  • Tong, Y.L. (1980). Probability Inequalities in Multivariate Distributions, Academic Press, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer Science+Business Media New York

About this chapter

Cite this chapter

Karlin, S. (1988). Pólya frequency functions and sequences. In: de Boor, C. (eds) I. J. Schoenberg Selected Papers. Contemporary Mathematicians. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4899-0433-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0433-1_18

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4899-0435-5

  • Online ISBN: 978-1-4899-0433-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics