Skip to main content

Aqueous Two-Phase Partitioning on an Industrial Scale

  • Chapter
Poly(Ethylene Glycol) Chemistry

Part of the book series: Topics in Applied Chemistry ((TAPP))

Abstract

Aqueous polymer two-phase systems are increasingly being used in biochemistry and cell biology for the separation of macromolecules, membranes, cell organelles, and cells.1,2 The great interest in aqueous phase partitioning is due to the unique separation properties of the systems and the mild conditions during the separation process. The unique properties of the systems make them also very interesting for large-scale industrial applications. In the biotechnical industry this technique is starting to be used for large-scale enzyme extractions.3,4 Many applications of aqueous polymer two-phase systems in biotechnology are currently being explored, both for separations of biomolecules, cell organelles, and cells, and for bioconversions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.-A. Albertsson, Partition of Cell Particles and Macromolecules, 3rd ed., Wiley, New York (1986).

    Google Scholar 

  2. H. Walter, D. E. Brooks, and D. Fisher (eds.), Partitioning in Aqueous Two-Phase Systems: Theory, Methods, Uses, and Applications to Biotechnology, Academic Press, New York (1985).

    Google Scholar 

  3. M.-R. Kula, K. H. Kroner, and H. Hustedt, in: Advances in Biochemical Engineering (A. Fiechter, ed.), Vol. 24, p. 73, Springer, Berlin (1982).

    Google Scholar 

  4. H. Hustedt, K. H. Kroner, and M.-R. Kula, in: Partitioning in Aqueous Two-Phase Systems: Theory, Methods, Uses, and Applications to Biotechnology (H. Walter, D. E. Brooks, and D. Fisher, eds.), p. 529, Academic Press, New York (1985).

    Google Scholar 

  5. K. H. Kroner, H. Hustedt, and M.-R. Kula, Process Biochem. 19, 170 (1984).

    Google Scholar 

  6. D. E. Brooks, K. A. Sharp, and D. Fisher, in: Partitioning in Aqueous Two-Phase Systems: Theory, Methods, Uses, and Applications to Biotechnology (H. Walter, D E. Brooks, and D. Fisher, eds.), p. 11, Academic Press, New York (1985).

    Google Scholar 

  7. Å. Gustafsson, H. Wennerström, and F. Tjerneld, Polymer 27, 1768 (1986).

    Article  CAS  Google Scholar 

  8. Å. Sjöberg, G. Karlström, and F. Tjerneld, Macromolecules 22, 4512 (1989).

    Article  Google Scholar 

  9. J. N. Baskir, T. A. Hatton, and U. W. Suter, J. Phys. Chem. 93, 2111 (1989).

    Article  CAS  Google Scholar 

  10. J. N. Baskir, T. A. Hatton, and U. W. Suter, Biotechnol. Bioeng. 34, 541 (1989).

    Article  PubMed  CAS  Google Scholar 

  11. C. A. Haynes, R. A. Beynon, R. S. King, H. W. Blanch, and J. M. Prausnitz, J. Phys. Chem. 93, 5612 (1989).

    Article  CAS  Google Scholar 

  12. P. J. Flory, Principles of Polymer Chemistry, Cornell University Press, Ithaca, NY (1953).

    Google Scholar 

  13. G. Karlström, J. Phys. Chem. 89, 4962 (1985).

    Article  Google Scholar 

  14. S. Saeki, N. Kuwahara, M. Nakata, and M. Kaneko, Polymer 17, 685 (1976).

    Article  CAS  Google Scholar 

  15. Å. Sjöberg and G. Karlström, Macromolecules 22, 1325 (1989).

    Article  Google Scholar 

  16. K. H. Kroner, H. Hustedt, and M.-R. Kula, Biotechnol. Bioeng. 24, 1015 (1982).

    Article  PubMed  CAS  Google Scholar 

  17. F. Tjerneld, I. Persson, P-Å. Albertsson, and B. Hahn-Hägerdal, Biotechnol. Bioeng. 27, 1036 (1985).

    Article  PubMed  CAS  Google Scholar 

  18. F. Tjerneld, I. Persson, P.-Å. Albertsson, and B. Hahn-Hägerdal, Biotechnol. Bioeng. 27, 1044 (1985).

    Article  PubMed  CAS  Google Scholar 

  19. F. Tjerneld, S. Berner, A. Cajarville, and G. Johansson, Enzyme Microbiol. Technol. 8, 417 (1986).

    Article  CAS  Google Scholar 

  20. H. Walter and E. J. Krob, J. Chromatogr. 441, 261 (1988).

    Article  PubMed  CAS  Google Scholar 

  21. S. Sturesson, F. Tjerneld, and G. Johansson, Appl. Biochem. Biotechnol. 26, 281 (1990).

    Article  PubMed  CAS  Google Scholar 

  22. R. Kaul and B. Mattiasson, Appl. Microbiol. Biotechnol. 24, 259 (1986).

    Article  CAS  Google Scholar 

  23. D. C. Szlag and K. A. Giuliano, Biotechnol. Techniques 2, 277 (1988).

    Article  CAS  Google Scholar 

  24. E. Tjerneld, in: Separations Using Aqueous Phase Systems (D. Fisher and I. A. Sutherland, eds.), p. 429, Plenum Press, New York (1989).

    Chapter  Google Scholar 

  25. A. L. Nguyen, S. Grothe, and J. Luong, Appl. Microbiol. Biotechnol. 27, 341 (1988).

    Article  Google Scholar 

  26. A. Kokkoris, J. B. Blair, and J. A. Shaeiwitz, Biochim. Biophys. Acta 966, 176 (1988).

    Article  PubMed  CAS  Google Scholar 

  27. P. Hughes and C. R. Lowe, Enzyme Microbiol. Technol. 10, 115 (1988).

    Article  CAS  Google Scholar 

  28. G. Johansson, Biochim. Biophys. Acta 221, 387 (1970).

    Article  PubMed  CAS  Google Scholar 

  29. P.-Ã…. Albertsson, A. Cajarville, D. E. Brooks, and F. Tjerneld, Biochim. Biophys. Acta 926, 87 (1987).

    Article  PubMed  CAS  Google Scholar 

  30. G. Johansson, A. Hartman, and P.-Ã…. Albertsson, Eur. J. Biochem. 33, 379 (1973).

    Article  PubMed  CAS  Google Scholar 

  31. G. Johansson, in: Methods in Enzymology (W B. Jakoby, ed.), Vol. 104, p. 356, Academic Press, New York (1984).

    Google Scholar 

  32. H. Hustedt, K. H. Kroner, H. Schütte, and M.-R. Kula, in: Enzyme Technology, 3rd Rothenburger Fermentation Symposium (R. M. Lafferty, ed.), p. 135, Springer, Berlin (1983).

    Google Scholar 

  33. H. Hustedt, K. H. Kroner, U. Menge, and M.-R. Kula, Trends Biotechnol. 3, 139 (1985).

    Article  CAS  Google Scholar 

  34. K. H. Kroner, H. Hustedt, S. Granda, and M.-R. Kula, Biotechnol. Bioeng. 20, 1967 (1978).

    Article  PubMed  CAS  Google Scholar 

  35. H. Hustedt, K. H. Kroner, and M.-R. Kula, in: Proc. 3rd Eur. Congr. Biotechnol., Vol. 1, p. 597, Verlag Chemie, Weinheim (1984).

    Google Scholar 

  36. A. Veide, T. Lindbäck, and S.-O. Enfors, Enzyme Microbiol. Technol. 6, 325 (1984).

    Article  CAS  Google Scholar 

  37. H. Hustedt, B. Börner, K. H. Kroner, and N. Papamichael, Biotechnol. Techniques 1, 49 (1987).

    Article  CAS  Google Scholar 

  38. K. H. Kroner, H. Schütte, W. Stach, and M.-R. Kula, J. Chem. Technol. Biotechnol. 32, 130 (1982).

    Article  CAS  Google Scholar 

  39. H. Hustedt, Biotechnol. Lett. 8, 791 (1986).

    Article  CAS  Google Scholar 

  40. J. Vernau and M.-R. Kula, Biotechnol. Appl. Biochem. 12, 397 (1990).

    CAS  Google Scholar 

  41. H. Hustedt, unpublished results.

    Google Scholar 

  42. W. Hummel, H. Schütte, and M.-R. Kula, in: Enzyme Engineering VII (A. J. Laskin, G. T. Tsao, and L. B. Wingard, eds.), Ann. N.Y. Acad. Sci. 434, 194 (1984).

    Article  CAS  Google Scholar 

  43. U. Menge, M. Morr, U. Mayr, and M.-R. Kula, J. Appl. Biochem. 5, 75 (1983).

    PubMed  CAS  Google Scholar 

  44. F. Tjerneld, G. Johansson, and M. Joelsson, Biotechnol. Bioeng. 30, 809 (1987).

    Article  PubMed  CAS  Google Scholar 

  45. G. Johansson and E. Tjerneld, J. Biotechnol. 11, 135 (1989).

    Article  CAS  Google Scholar 

  46. A. Cordes and M.-R. Kula, J. Chromatogr. 376, 375 (1986).

    CAS  Google Scholar 

  47. A. Veide, L. Strandberg, and S.-O. Enfors, Enzyme Microbiol. Technol. 9, 730 (1987).

    Article  CAS  Google Scholar 

  48. K. Köhler, L. von Bonsdorff-Lindeberg, and S.-O. Enfors, Enzyme Microbiol. Technol. 11, 730 (1989).

    Article  Google Scholar 

  49. K. Köhler, A. Veide, and S.-O. Enfors, Enzyme Microbiol. Technol. 13, 204 (1991).

    Article  Google Scholar 

  50. S.-O. Enfors, K. Köhler, and A. Veide, Bioseparation 1, 305 (1990).

    PubMed  CAS  Google Scholar 

  51. B. Mattiasson and B. Hahn-Hägerdal, in: Immobilized Cells and Organelles (B. Mattiasson, ed.), CRC-Press, Boca Raton, FL (1983).

    Google Scholar 

  52. E. Andersson and B. Hahn-Hägerdal, Enzyme Microbiol. Technol. 12, 242 (1990).

    Article  CAS  Google Scholar 

  53. R. Wennersten, F. Tjerneld, M. Larsson, and B. Mattiasson, in: Proc. Int. Solvent Extraction Conf. ISEC’83, Denver, p. 506 (1983).

    Google Scholar 

  54. M. Larsson, V. Arasaratnam, and B. Mattiasson, Biotechnol. Bioeng. 33, 758 (1989).

    Article  PubMed  CAS  Google Scholar 

  55. F. Tjerneld, I. Persson, P-Å. Albertsson, and B. Hahn-Hägerdal, Biotechnol. Bioeng. Symp. 15, 419 (1985).

    Google Scholar 

  56. E. Andersson, B. Mattiasson, and B. Hahn-Hägerdal, Enzyme Microbiol. Technol. 6, 301 (1984).

    Article  Google Scholar 

  57. Y. L. Yang, H. Hustedt, and M.-R. Kula, Biotechnol. Appl. Biochem. 10, 173 (1988).

    CAS  Google Scholar 

  58. I. Kühn, Biotechnol. Bioeng. 22, 2393 (1980).

    Article  Google Scholar 

  59. B. Hahn-Hägerdal, B. Mattiasson, and P-Å. Albertsson, Biotechnol. Lett. 3, 53 (1981).

    Article  Google Scholar 

  60. B. Mattiasson, M. Souminen, E. Andersson, L. Häggström, R-Å. Albertsson, and B. Hahn-Hägerdal, in: Enzyme Engineering 6 (I. Chibata, S. Fukui, and L. B. Wingard, eds.), p. 153, Plenum Press, New York (1982).

    Chapter  Google Scholar 

  61. E. Andersson, A.-C. Johansson, and B. Hahn-Hägerdal, Enzyme Microbiol. Technol. 7, 333 (1985).

    Article  CAS  Google Scholar 

  62. E. Andersson and B. Hahn-Hägerdal, Appl. Microbiol. Biotechnol. 29, 329 (1988).

    Article  CAS  Google Scholar 

  63. I. Persson, F. Tjerneld, and B. Hahn-Hägerdal, Enzyme Microbiol. Technol. 6, 415 (1984).

    Article  CAS  Google Scholar 

  64. I. Persson, F. Tjerneld, and B. Hahn-Hägerdal, Appl. Biochem. Biotechnol. 27, 9 (1991).

    Article  Google Scholar 

  65. I. Persson, H. Stålbrand, F. Tjerneld, and B. Hahn-Hägerdal, Appl. Biochem. Biotechnol. 27, 27 (1991).

    Article  Google Scholar 

  66. I. Persson, F. Tjerneld, and B. Hahn-Hägerdal, Biotechnol. Techniques 3, 265 (1989).

    Article  CAS  Google Scholar 

  67. S. Flygare and P.-O. Larsson, Enzyme Microbiol. Technol. 11, 752 (1989).

    Article  CAS  Google Scholar 

  68. R. E. Goldstein, J. Chem. Phys. 80, 5340 (1984).

    Article  CAS  Google Scholar 

  69. R. Kjellander and E. Florin-Robertsson, J. Chem. Soc, Faraday Trans. 77, 2053 (1981).

    Article  CAS  Google Scholar 

  70. M. Andersson and G. Karlström, J. Phys. Chem. 89, 4957 (1985).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tjerneld, F. (1992). Aqueous Two-Phase Partitioning on an Industrial Scale. In: Harris, J.M. (eds) Poly(Ethylene Glycol) Chemistry. Topics in Applied Chemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0703-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0703-5_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0705-9

  • Online ISBN: 978-1-4899-0703-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics