Skip to main content

Organotypic Endothelial Cell Surface Molecules Mediate Organ Preference of Metastasis

  • Chapter
Endothelial Cell Dysfunctions

Abstract

Metastases are tumor colonies that develop in distant, often multiple organ sites by dissemination from a malignant primary tumor. Although the most frequent organ sites of distant metastases are the first organs encountered by blood-borne tumor cells, many cancers metastasize to sites which are unrelated to the initial organ entered by circulating tumor cells and, thus, display unique organ colonization patterns that do not fit simple, anatomical-mechanical trapping theories of tumor cell dissemination.1–7 For example, breast adenocarcinomas metastasize frequently to liver, bone, brain, and adrenals, in addition to the expected, high incidence of metastasis to the lungs, and carcinomas of the prostate metastasize most often to bone. This nonrandom pattern of metastasis was first described by Paget,8 who championed the “seed and soil” hypothesis of the metastatic spread. He postulated that gross tumor development was a consequence of the provision of a fertile environment (the soil) in which compatible tumor cells (the seeds) could proliferate.4 Numerous studies on the mechanisms of preferential metastasis have since shown that tumor cell implantation, invasion, survival, and growth at secondary organ sites depend upon a number of tumor cell and host characteristics that provide the proper cellular and stromal environment for metastasis to develop.9–16

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kinsey, D. L., 1960, An experimental study of preferential metastasis, Cancer 13:674–676.

    Article  PubMed  CAS  Google Scholar 

  2. Patel, J. K., Didolkar, M. S., Pickren, J. W., and Moore, R. H., 1978, Metastatic pattern of malignant melanoma: A study of 216 autopsy cases, Am. J. Surg. 135:807–810.

    Article  PubMed  CAS  Google Scholar 

  3. Sugarbaker, E. V., 1981, Patterns of metastasis in human malignancies, Cancer Biol. Rev. 2:235–303.

    Google Scholar 

  4. Hart, I. R., 1982, “Seed and soil” revisited: Mechanisms of site-specific metastasis, Cancer Metastasis Rev. 1:5–16.

    Article  PubMed  CAS  Google Scholar 

  5. Tarin, D., 1985, Clinical and experimental studies on the biology of metastasis, Biochim. Biophys. Acta 780: 227–235.

    PubMed  CAS  Google Scholar 

  6. Graf, A. H., Buchberger, W., Langmayr, H., and Schmid, K. W., 1988, Site preference of metastatic tumors of the brain, Virchows Arch. A 412:493–498.

    Article  CAS  Google Scholar 

  7. Nicolson, G. L., 1988, Organ specificity of tumor metastasis: Role of preferential adhesion, invasion and growth of malignant cells at specific secondary sites, Cancer Metastasis Rev. 7:143–188.

    Article  PubMed  CAS  Google Scholar 

  8. Paget, S., 1889, The distribution of secondary growths in cancer of the breast, Lancet 1:571–573.

    Article  Google Scholar 

  9. Netland, P. A., and Zetter, B. R., 1984, Organ-specific adhesion of metastatic tumor cells in vitro, Science 224:1113–1115.

    Article  CAS  Google Scholar 

  10. Schirrmacher, V., 1985, Cancer metastasis: Experimental approaches, theoretical concepts and impacts for treatment strategies, Adv. Cancer Res. 43:1–73.

    Article  PubMed  CAS  Google Scholar 

  11. Weiss, L., 1985, Principles of Metastasis, Academic Press, New York.

    Google Scholar 

  12. Nicolson, G. L., 1986, Organ preference of metastasis, Prog. Clin. Biol. Res. 212:25–43.

    PubMed  CAS  Google Scholar 

  13. Auerbach, R., 1988, Patterns of tumor metastasis: Organ selectivity in the spread of cancer cells, Lab. Invest. 58:361–364.

    PubMed  CAS  Google Scholar 

  14. Nicolson, G. L., 1988, Cancer metastasis: Tumor cell and host organ properties important in metastasis to specific secondary sites, Biochim. Biophys. Acta 948:175–224.

    PubMed  CAS  Google Scholar 

  15. Sher, B. T., Bargatze, R., Holzmann, B., Gallatin, W. M., Mathews, D., Wu, N., Picker, L., Butcher, E. C., and Weissman, I. L., 1988, Homing receptors and metastasis, Adv. Cancer Res. 51:361–390.

    Article  PubMed  CAS  Google Scholar 

  16. Zetter, B. R., 1990, The cellular basis of site-specific tumor metastasis, N. Engl. J. Med. 322:605–612.

    Article  PubMed  CAS  Google Scholar 

  17. Alby, L., and Auerbach, R., 1984, Differential adhesion of tumor cells to capillary endothelial cells in vitro, Proc. Natl. Acad. Sci. USA 81:5739–5743.

    Article  PubMed  CAS  Google Scholar 

  18. Auerbach, R., Lu, W. C., Pardon, E., Gumkowski, F., Kaminska, G., and Kaminski, M., 1987, Specificity of adhesion between murine tumor cells and capillary endothelium: An in vitro correlate of preferential metastasis in vivo, Cancer Res. 47:1492–1496.

    CAS  Google Scholar 

  19. Roos, E., Tulp, A., Middelkoop, O. P., and van de Pavert, I. V., 1984, Interactions between lymphoid tumor cells and isolated liver endothelial cells, J. Natl. Cancer Inst. 72:1173–1180.

    PubMed  CAS  Google Scholar 

  20. Bowman, P. D., Betz, A. L., Ar, D., Wolinsky, J. S., Penney, J. B., Shivers, R. R., and Goldstein, G. W., 1981, Primary culture of capillary endothelium from rat brain, In Vitro 17:353–362.

    Article  PubMed  CAS  Google Scholar 

  21. Carson, M. P., and Haudenschild, C. C., 1986, Microvascular endothelium and pericytes: High yield, low passage cultures, In Vitro Cell Dev. Biol. 22:344–354.

    Article  PubMed  CAS  Google Scholar 

  22. Folkman, J., Haudenschild, C. C., and Zetter, B. R., 1979, Long-term culture of capillary endothelial cells, Proc. Natl. Acad. Sci. USA 76:5217–5221.

    Article  PubMed  CAS  Google Scholar 

  23. Borsum, T., Hagen, T., Henrickson, T., Hagen, I., Henriksen, T., and Carlander, B., 1982, Alterations in the protein composition and surface structure of human endothelial cells during growth in primary culture, Atherosclerosis 44:367–378.

    Article  PubMed  CAS  Google Scholar 

  24. McAuslan, B. R., Hannan, G. N., and Reilly, W., 1982, Signals causing change in morphological phenotype, growth mode, and gene expression of vascular endothelial cells, J. Cell Physiol. 112:96–106.

    Article  PubMed  CAS  Google Scholar 

  25. Rogers, K. A., and Kalnmus, V. I., 1983, Comparison of the cytoskeleton in aortic endothelial cells in situ and in vitro, Lab. Invest. 49:650–654.

    PubMed  CAS  Google Scholar 

  26. deBono, D. P., and Green, C., 1984, The adhesion of different cell types to vascular endothelium: Effects of culture density and age, Br. J. Exp. Pathol. 65:145–154.

    CAS  Google Scholar 

  27. Bartlet, C. P., Heale, G., and Levene, C. I., 1985, Some factors regulating collagen polymorphism in cultured porcine and bovine aortic endothelium, Atherosclerosis 54:301–309.

    Article  PubMed  CAS  Google Scholar 

  28. Belloni, P. N., and Nicolson, G. L., 1988, Differential expression of cell surface glycoproteins on various organ-derived microvascular endothelia and endothelial cell cultures, J. Cell. Physiol. 136:398–410.

    Article  PubMed  CAS  Google Scholar 

  29. Reid, L., Morrow, B., Jubinsky, P., Schwartz, E., and Gatmaitan, Z., 1981, Regulation of growth and differentiation of epithelial cells by hormones, growth factors, and substrates of extracellular matrix, Ann. N.Y. Acad. Sci. 372:354–370.

    Article  PubMed  CAS  Google Scholar 

  30. Wicha, M. S., Lowrie, G., Kohn, E., Bagavandass, P., and Mahn, T., 1982, Extracellular matrix promotes mammary epithelial growth and differentiation in vitro, Proc. Natl. Acad. Sci. USA 79:3213–3217.

    Article  CAS  Google Scholar 

  31. Gatmaitan, Z., Jefferson, D. M., Ruiz-Opazo, N., Biempica, L., Arias, I. M., Dudas, G., Leinwand, L. A., and Reid, L. M., 1983, Regulation of growth and differentiation of a rat hepatoma cell line by the synergistic interaction of hormones and collagenous substrate, J. Cell Biol. 97:1179–1190.

    Article  PubMed  CAS  Google Scholar 

  32. Madri, J. A., and Williams, S. K., 1983, Capillary endothelial cell cultures: Phenotypic modulation by matrix components, J. Cell Biol. 97:153–165.

    Article  PubMed  CAS  Google Scholar 

  33. Edelman, G. M., 1985, Cell adhesion and the molecular process of morphogenesis, Annu. Rev. Biochem. 54: 135–169.

    Article  PubMed  CAS  Google Scholar 

  34. Montesano, R., 1986, Cell-extracellular matrix interactions in morphogenesis: An in vitro approach, Experientia 42:977–985.

    Article  PubMed  CAS  Google Scholar 

  35. Carley, W. W., Milici, A. J., and Madri, J. A., 1988, Extracellular matrix specificity for the differentiation of capillary endothelial cells, Exp. Cell Res. 178:426–434.

    Article  PubMed  CAS  Google Scholar 

  36. Pauli, B. U., and Lee, C. L., 1988, Organ preference of metastasis: The role of organ-specifically modulated endothelial cells, Lab. Invest. 58:379–387.

    PubMed  CAS  Google Scholar 

  37. Jaffe, E. A., Nachman, R. L., Becker, C. G., and Minick, C. R., 1973, Culture of human endothelial cells derived from umbilical veins: Identification of morphological and immunological criteria, J. Clin. Invest. 52:2745–2758.

    Article  PubMed  CAS  Google Scholar 

  38. Fidler, I. J., 1973, Selection of successive tumor lines for metastasis, Nature 242:148–149.

    CAS  Google Scholar 

  39. Pauli, B. U., Kellen, J. A., and Ng, R., 1987, Correlation of fibrinolytic activity with invasion and metastasis of R3230AC rat mammary carcinoma cell lines, Invasion Metastasis 7:158–171.

    PubMed  CAS  Google Scholar 

  40. Hart, I. R., Talmadge, J. E., and Fidler, I. J., 1981, Metastatic behavior of a murine reticulum cell sarcoma exhibiting organ-specific growth, Cancer Res. 41:1281–1287.

    PubMed  CAS  Google Scholar 

  41. Brunson, K. W., and Nicolson, G. L., 1978, Selection and biological properties of malignant variants of a murine lymphosarcoma, J. Natl. Cancer Inst. 61:1499–1502.

    PubMed  CAS  Google Scholar 

  42. Kieler, J. F., 1984, Invasiveness of transformed bladder epithelial cells, Cancer Metastasis Rev. 3:265–296.

    Article  PubMed  CAS  Google Scholar 

  43. Pauli, B. U., Anderson, S. N., Memoli, V. A., and Kuettner, K. E., 1980, Development of an in vitro and in vivo epithelial tumor model for the study of invasion, Cancer Res. 40:4571–4580.

    PubMed  CAS  Google Scholar 

  44. Rojkind, M., Gatmaitan, Z., Mackensen, S., Gimbrone, M. A., Ponce, P., and Reid, L. M., 1980, Connective tissue biomatrix: Its isolation and utilization for long-term cultures of normal rat hepatocytes, J. Cell Biol. 87:255–263.

    Article  PubMed  CAS  Google Scholar 

  45. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J., 1951, Protein measurement with the folin phenol reagent, J. Biol. Chem. 193:265–275.

    PubMed  CAS  Google Scholar 

  46. Glass, W. F., Briggs, R. C., and Hnilica, L. S., 1981, Use of lectins for detection of electrophoretically separated glycoproteins transferred onto nitrocellulose sheets, Anal. Biochem. 115:219–224.

    Article  PubMed  CAS  Google Scholar 

  47. Heimark, R. L., and Schwartz, S. M., 1985, The role of membrane-membrane interactions in the regulation of endothelial cell growth, J. Cell Biol. 100:1934–1940.

    Article  PubMed  CAS  Google Scholar 

  48. O’Farrell, P. H., 1975, High resolution two-dimensional electrophoresis of proteins, J. Biol. Chem. 250: 4007–4021.

    PubMed  Google Scholar 

  49. Scott, R. E., 1976, Plasma membrane vesiculation: A new technique for isolation of plasma membranes, Science 194:743–745.

    Article  PubMed  CAS  Google Scholar 

  50. Soule, H. R., Lanford, R. E., and Butel, J. S., 1982, Detection of simian virus 40 surface-associated large tumor antigen by enzyme-catalyzed radioiodination, Int. J. Cancer 29:337–344.

    Article  PubMed  CAS  Google Scholar 

  51. Gallatin, W. M., Weissman, I. L., and Butcher, E. C., 1983, A cell surface molecule involved in organ specific homing of lymphocytes, Nature 304:30–34.

    Article  PubMed  CAS  Google Scholar 

  52. Lasky, L. A., Singer, M. S., Yednock, T. A., Dowbenko, D., Fennie, C., Rodriguez, H., Nguyen, T., Stachel, S., and Roscu, S. D., 1989, Cloning of a lymphocyte homing receptor reveals a lectin domain, Cell 56:1045–1055.

    Article  PubMed  CAS  Google Scholar 

  53. Siegelman, M. H., van de Rijn, M., and Weissman, I. L., 1989, Mouse lymph node homing receptor cDNA clone encodes a glycoprotein revealing tandem interaction domains, Science 243:1165–1172.

    Article  PubMed  CAS  Google Scholar 

  54. Stoolman, L. M., 1989, Adhesion molecules controlling lymphocyte migration, Cell 56:907–910.

    Article  PubMed  CAS  Google Scholar 

  55. Butcher, E. C., 1990, Cellular and molecular mechanisms that direct leukocyte traffic, Am. J. Pathol. 136:3–11.

    PubMed  CAS  Google Scholar 

  56. Stamper, H. B., Jr., and Woodruff, J. J., 1976, Lymphocyte homing into lymph nodes: In vitro demonstration of the selective affinity of recirculating lymphocytes to high-endothelial venules, J. Exp. Med. 144:828–833.

    Article  PubMed  Google Scholar 

  57. Korach, S., Poupon, M. F., Du Villard, J. A., and Becker, M., 1986, Differential adhesiveness of rhabdomyosarcoma-derived cloned metastatic cell lines to vascular endothelial monolayers, Cancer Res. 46:3624–3629.

    PubMed  CAS  Google Scholar 

  58. Kramer, R. H., and Nicolson, G. L., 1979, Interaction of tumor cells with vascular endothelial monolayers: A model for metastatic invasion, Proc. Natl. Acad. Sci. USA 76:5704–5708.

    Article  PubMed  CAS  Google Scholar 

  59. Nicolson, G. L., Irimura, T., Nakajima, M., Irimura, T., Nakajima, M., and Estrada, J., 1984, Metastatic cell attachment to and invasion of vascular endothelium and its underlying basal lamina using endothelial cell monolayers, in: Cancer Invasion and Metastasis: Biological and Therapeutic Aspects (G. L. Nicolson and L. Milas, eds.), Raven Press, New York, p. 145.

    Google Scholar 

  60. Pressman, D., and Yagi, Y., 1964, Chemical differences in vascular beds, in: Small Blood Vessel Involvement in Diabetes Mellitus (A. R. Cowell and K. Meyer, eds.), Am. Inst. Biol. Sci., Washington, D.C., p. 177.

    Google Scholar 

  61. Simionescu, M., Simionescu, N., and Palade, G. E., 1982, Differentiated microdomains on the luminal surface of the capillary endothelium: Distribution of lectin receptors, J. Cell Biol. 94:406–413.

    Article  PubMed  CAS  Google Scholar 

  62. Joseph, J., Miao, T., Alby, L., Grieves, J., Hauser, B., Kubai, I., Morrisey, L., Sidky, Y. A., Watt, S. A., and Auerbach, R., 1983, Immunological probes for the study of endothelial cell diversity, in: The Endothelial Cell—A Pluripotent Control Cell of the Vessel Wall (D. G. S. Thio-Korner and R. I. Fredshney, eds.), Karger, Basel, p. 55.

    Google Scholar 

  63. Auerbach, R., Alby, L., Morrisey, L. W., Tu, M., and Joseph, J., 1985, Expression of organ specific antigens on capillary endothelial cells, Microvasc. Res. 29:401–411.

    Article  PubMed  CAS  Google Scholar 

  64. Mills, A. N., and Haworth, S. G., 1986, Changes in lectin binding patterns in the developing pulmonary vasculature of the pig, J. Pathol. 149:191–199.

    Article  PubMed  CAS  Google Scholar 

  65. Irie, S., and Tavassoli, M., 1986, Mapping of the rat liver endothelial membrane with lectins and glycosylated ferritins, Am. J. Anat. 177:403–413.

    Article  PubMed  CAS  Google Scholar 

  66. Johnson, R., Augustin-Voss, H., Zhu, D., and Pauli, B. U., 1991, Endothelial cell membrane vesicles in the study of organ preference of metastasis, Cancer Res. 51:394–399.

    PubMed  CAS  Google Scholar 

  67. Rice, G. E., and Bevilacqua, M. P., 1989, An inducible endothelial cell surface glycoprotein mediates melanoma adhesion, Science 246:1303–1306.

    Article  PubMed  CAS  Google Scholar 

  68. Bevilacqua, M. P., Pober, J. S., Mendrick, D. L., Cotran, R. S., and Gimbrone, M. A., Jr., 1987, Identification of an inducible endothelial-leukocyte adhesion molecule, Proc. Natl. Acad. Sci. USA 84:9238–9242.

    Article  PubMed  CAS  Google Scholar 

  69. Dustin, M. L., and Springer, T. A., 1988, Lymphocyte function-associated antigen-1 (LFA-1) interaction with intercellular adhesion molecule-1 (ICAM-1) is one of at least three mechanisms for lymphocyte adhesion to cultured endothelial cells, J. Cell Biol. 107:321–331.

    Article  PubMed  CAS  Google Scholar 

  70. Kaminski, M., and Auerbach, R., 1988, Tumor cells are protected from NK-cell mediated lysis by adhesion to endothelial cells, Int. J. Cancer 41:847–849.

    Article  PubMed  CAS  Google Scholar 

  71. Orr, F. W., Adamson, I. Y., and Young, L., 1985, Pulmonary inflammation generates chemotactic activity for tumor cells and promotes lung metastasis, Am. Rev. Respir. Dis. 131:607–611.

    PubMed  CAS  Google Scholar 

  72. Van den Brenk, H. A. S., Stone, M., Kelly, H., Orton, C., and Sharpington, C., 1974, Promotion of growth of tumor cells in acutely inflamed tissues, Br. J. Cancer 30:246–260.

    Article  Google Scholar 

  73. Weiss, L., Orr, F. W., and Honn, K. V., 1989, Interactions between cancer cells and the microvasculature: A rate-regulator for metastasis, Clin. Exp. Metastasis 7:127–167.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pauli, B.U., Johnson, R.C., El-Sabban, M.E. (1992). Organotypic Endothelial Cell Surface Molecules Mediate Organ Preference of Metastasis. In: Simionescu, N., Simionescu, M. (eds) Endothelial Cell Dysfunctions. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0721-9_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0721-9_26

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0723-3

  • Online ISBN: 978-1-4899-0721-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics