Skip to main content

Effects of Polyunsaturated Fatty Acids in Endothelium

  • Chapter
Endothelial Cell Dysfunctions

Abstract

The omega-6 polyunsaturated fatty acids are necessary for proper bodily function and health. This class consists of a series of six fatty acids that can be interconverted through elongation, desaturation, and retroconversion.1 The metabolic pathway and the structures of the major components, linoleic acid (18:2) and arachidonic acid (20:4), are illustrated in Fig. 1. Linoleic acid, the main dietary component, can be converted to the other members of the omega-6 series. Prostaglandins and lipoxygenase products are formed from arachidonic acid in animal tissues, including the endothelium. These eicosanoids are especially important for endothelial function. PGI2, the main eicosanoid produced by arterial endothelium, inhibits platelet aggregation and causes relaxation of vascular smooth muscle.2 Several other eicosanoids produced by endothelium, including PGE2,3,4 hydroxy-eicosatetraenoic acids (HETEs),3 and dihydroxyeicosatetraenoic acids (diHETEs),5,6 probably also play a role in endothelial function. Furthermore, linoleic acid can be converted to a hydroxylated metabolite, hydroxyoctadecadienoic acid (HODE),7–9 which can influence the antithrombogenic properties of the endothelial surface as well as modulate eicosanoid formation and degradation.7,9

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sprecher, H., 1981, Biochemistry of essential fatty acids, Prog. Lipid Res. 20:13–22.

    Article  PubMed  CAS  Google Scholar 

  2. Moncada, S., 1982, Prostacyclin and arterial wall biology, Arteriosclerosis 2:193–207.

    Article  PubMed  CAS  Google Scholar 

  3. Mayer, B., Moser, R., Gleispach, H., and Kukovetz, W. R., 1986, Possible inhibitory function of endogenous 15-hydroxyeicosatetraenoic acid on prostacyclin formation in bovine aortic endothelial cells, Biochim. Biophys. Acta 875:641–653.

    Article  PubMed  CAS  Google Scholar 

  4. Moore, S. A., Spector, A. A., and Hart, M. N., 1988, Eicosanoid metabolism in cerebromicrovascular endothelium, Am. J. Physiol. 254:C37–C44.

    Google Scholar 

  5. Hopkins, N. K., Oglesby, T. D., Bundy, G. L., and Gorman, R. R., 1984, Biosynthesis and metabolism of 15-hydroperoxy-5,8,11,13-eicosatetraenoic acid by human umbilical vein endothelial cells, J. Biol. Chem. 259: 14048–14053.

    PubMed  CAS  Google Scholar 

  6. Johnson, A. R., Revtyak, G., and Campbell, W. B., 1985, Arachidonic acid metabolites and endothelial injury: Studies with cultures of human endothelial cells, Fed. Proc. 44:19–24.

    PubMed  CAS  Google Scholar 

  7. Buchanan, M. R., Haas, T. A., Lagarde, M., and Guichardant, M., 1985, 13-Hydroxyoctadecadienoic acid is the vessel wall chemorepellant factor, LOX, J. Biol. Chem. 260:16056–16059.

    PubMed  CAS  Google Scholar 

  8. Takayama, H., Gimbrone, M. A., Jr., and Schaefer, A. I., 1987, Vascular lipoxygenase activity. Synthesis of 15-hydroxyeicosatetraenoic acid from arachidonic acid by blood vessel and cultured vascular endothelial cells, Thromb. Res. 45:803–816.

    Article  PubMed  CAS  Google Scholar 

  9. Kaduce, T. L., Figard, P. H., Leifur, R., and Spector, A. A., 1989, Formation of 9-hydroxyoctadecadienoic acid from linoleic acid in endothelial cells, J. Biol. Chem. 264:6823–6830.

    PubMed  CAS  Google Scholar 

  10. Spector, A. A., Kaduce, T. L., Figard, P. H., Norton, K. C., Hoak, J. C., and Czervionke, R. L., 1983, Eicosapentaenoic acid and prostacyclin production by cultured human endothelial cells, J. Lipid Res. 24: 1595–1604.

    PubMed  CAS  Google Scholar 

  11. Hadjiagapiou, C., Kaduce, T. L., and Spector, A. A., 1986, Eicosapentaenoic acid utilization by bovine aortic endothelial cells: Effects on prostacyclin production, Biochim. Biophys. Acta 875:369–381.

    Article  PubMed  CAS  Google Scholar 

  12. Hadjiagapiou, C., and Spector, A. A., 1987, Docosahexaenoic acid metabolism and effect on prostacyclin production in endothelial cells, Arch. Biochem. Biophys. 253:1–12.

    Article  PubMed  CAS  Google Scholar 

  13. Yerram, N. R., Moore, S. A., and Spector, A. A., 1989, Eicosapentaenoic acid metabolism in brain microvessel endothelium: Effect on prostaglandin formation, J. Lipid Res. 30:1747–1757.

    PubMed  CAS  Google Scholar 

  14. Spector, A. A., Hoak, J. C., Fry, G. L., Denning, G. M., Stoll, L. L., and Smith, J. B., 1980, Effect of fatty acid modification on prostacyclin production by cultured human endothelial cells, J. Clin. Invest. 65:1003–1012.

    Article  PubMed  CAS  Google Scholar 

  15. Spector, A. A., Kaduce, T. L., Hoak, J. C., and Fry, G. L., 1981, Utilization of arachidonic and linoleic acids by cultured human endothelial cells, J. Clin. Invest. 68:1003–1011.

    Article  PubMed  CAS  Google Scholar 

  16. Spector, A. A., Kaduce, T. L., Hoak, J. C., and Czervionke, R. L., 1983, Arachidonic acid availability and prostacyclin production by cultured human endothelial cells, Arteriosclerosis 3:323–331.

    Article  PubMed  CAS  Google Scholar 

  17. Kaduce, T. L., Spector, A. A., and Bar, R. S., 1982, Linoleic acid metabolism and prostaglandin production by cultured bovine pulmonary artery endothelial cells, Arteriosclerosis 2:380–389.

    Article  PubMed  CAS  Google Scholar 

  18. Denning, G. M., Figard, P. H., Kaduce, T. L., and Spector, A. A., 1983, Role of triglycerides in endothelial arachidonic acid metabolism, J. Lipid Res. 24:993–1001.

    PubMed  CAS  Google Scholar 

  19. Figard, P. H., Hejlik, D. P., Kaduce, T. L., Stoll, L. L., and Spector, A. A., 1986, Free fatty acid release from endothelial cells, J. Lipid Res. 27:771–780.

    PubMed  CAS  Google Scholar 

  20. Mann, C. J., Kaduce, T. L., Figard, P. H., and Spector, A. A., 1986, Docosatetraenoic acid in endothelial cells: Formation, retroconversion to arachidonic acid, and effect on prostacyclin production, Arch. Biochem. Biophys. 244:813–823.

    Article  PubMed  CAS  Google Scholar 

  21. Spector, A. A., 1986, Plasma albumin as a lipoprotein, in: Biochemistry and Biology of Plasma Lipoproteins (A. M. Scanu and A. A. Spector, eds.), Dekker, New York, pp. 247–279.

    Google Scholar 

  22. Ghinea N., Eskenasy, M., Simionescu, M., and Simionescu, N., 1989, Endothelial albumin binding proteins are membrane-associated components exposed on the cell surface, J. Biol. Chem. 264:4755–4758.

    PubMed  CAS  Google Scholar 

  23. Wey, H. E., Jakubowski, J. A., and Deykin, D., 1986, Incorporation and redistribution of arachidonic acid in diacyl and ether phospholipids of bovine aortic endothelial cells, Biochim. Biophys. Acta 878:380–386.

    Article  PubMed  CAS  Google Scholar 

  24. Hennig, B., Shasby, D. M., Fulton, A. B., and Spector, A. A., 1984, Exposure to free fatty acid increases the transfer of albumin across cultured endothelial monolayers, Arteriosclerosis 4:489–497.

    Article  PubMed  CAS  Google Scholar 

  25. Stoll, L. L., and Spector, A. A., 1987, Lipid transfer between endothelial and smooth muscle cells in coculture, J. Cell. Physiol. 133:103–110.

    Article  PubMed  CAS  Google Scholar 

  26. Shasby, D. M., Stoll, L. L., and Spector, A. A., 1987, Polarity of arachidonic acid metabolism by bovine aortic endothelial cell monolayers, Am. J. Physiol. 253:H1177–H1183.

    Google Scholar 

  27. Blank, M. L., Spector, A. A., Kaduce, T. L., and Snyder, F., 1986, Composition and incorporation of [3H]arachidonic acid into molecular species of phospholipid classes by cultured human endothelial cells, Biochim. Biophys. Acta 877:211–215.

    Article  PubMed  CAS  Google Scholar 

  28. Rosenthal, M. D., and Whitehurst, C., 1983, Fatty acyl A6 desaturation activity of cultured human endothelial cells. Modulation by fetal bovine serum, Biochim. Biophys. Acta 750:490–496.

    Article  PubMed  CAS  Google Scholar 

  29. Rosenthal, M. D., and Hill, J. R., 1984, Human vascular endothelial cells synthesize and release 24- and 26-carbon polyunsaturated fatty acids, Biochim. Biophys. Acta 795:171–178.

    Article  PubMed  CAS  Google Scholar 

  30. Spector, A. A., Hoak, J. C., Fry, G. L., Stoll, L. L., Tanke, C. T., and Kaduce, T. L., 1981, Essential fatty acid availability and prostacyclin production by cultured human endothelial cells, Prog. Lipid Res. 20:471–477.

    Article  PubMed  CAS  Google Scholar 

  31. Charo, I. F., Shak, M. A., Karasek, P. M., Davison, P. M., and Goldstein, I. M., 1984, Prostaglandin I2 is not a major metabolite of arachidonic acid in cultured endothelial cells from human foreskin microvessels, J. Clin. Invest. 74:914–919.

    Article  PubMed  CAS  Google Scholar 

  32. Gerritsen, M. D., and Cheli, C.D., 1983, Arachidonic acid and prostaglandin endoperoxide metabolism in isolated rabbit coronary microvessels and cultivated coronary microvessel endothelial cells, J. Clin. Invest. 72:1658–1671.

    Article  PubMed  CAS  Google Scholar 

  33. Moore, S. A., Prokuski, L. J., Figard, P. H., Spector, A. A., and Hart, M. N., 1988, Murine cultured microvascular endothelium incorporate and metabolize 12-hydroxyeicosatetraenoic acid, J. Cell. Physiol. 254:C37–C44.

    Google Scholar 

  34. Moore, S. A., Figard, P.H., and Spector, A. A., 1989, Brain microvessels produce 12-hydroxyeicosatetraenoic acid, J. Neurochem. 53:376–382.

    Article  PubMed  CAS  Google Scholar 

  35. Moore, S. A., Yoder, E., and Spector, A. A., 1989, Human microvascular endothelium produce arachidonate (20:4ω-6), eicosapentaenoate (20:5(o-3), and docosahexaenoate (22:6(0–3) from essential fatty acid precursors, FASEB J. 3:A705.

    Google Scholar 

  36. Moore, S. A., Yoder, E., and Spector, A. A., 1990, Role of the blood-brain barrier in the formation of long-chain ω-3 and ω-6 fatty acids from essential fatty acid precursors, J. Neurochem. 55:391–402.

    Article  PubMed  CAS  Google Scholar 

  37. Naughton, J. M., 1981, Supply of polyenoic fatty acids to the mammalian brain: The ease of conversion of the short-chain essential fatty acids to their longer chain polyunsaturates in liver, brain, placenta and blood, Int. J. Biochem. 13:21–32.

    Article  PubMed  CAS  Google Scholar 

  38. Neuringer, M., Anderson, G. J., and Connor, W. E., 1988, The essentiality of N-3 fatty acids for the development and function of the retina and brain, Annu. Rev. Nutr. 8:517–541.

    Article  PubMed  CAS  Google Scholar 

  39. Salem, N., Jr., Kim, H.-Y., and Yergey, J. A., 1986, Docosahexaenoic acid: Membrane function and metabolism, in: Health Effects of Polyunsaturated Fatty Acids in Seafoods (A. P. Simopoulos, ed.), Academic Press, New York, pp. 263–317.

    Google Scholar 

  40. Holman, R. T., 1986, Nutritional and biochemical evidence of acyl interaction with respect to essential polyunsaturated fatty acids, Prog. Lipid Res. 25:29–39.

    Article  PubMed  CAS  Google Scholar 

  41. Spector, A. A., Mathur, S. N., Kaduce, T. L., and Hyman, B. T., 1981, Lipid nutrition and metabolism of cultured mammalian cells, Prog. Lipid Res. 19:155–186.

    Article  Google Scholar 

  42. Hyman, B. T., and Spector, A. A., 1981, Accumulation of N-3 polyunsaturated fatty acids by cultured human Y79 retinoblastoma cells, J. Neurochem. 37:60–69.

    Article  PubMed  CAS  Google Scholar 

  43. Smith, W. L., 1986, Prostaglandin biosynthesis and its compartmentation in vascular smooth muscle and endothelial cells, Annu. Rev. Physiol. 48:251–262.

    Article  PubMed  CAS  Google Scholar 

  44. Kuhn, H., Ponicke, K., Halle, W., Weisner, R., Schewe, T., and Forster, W., 1985, Metabolism of [l-14C]-arachidonic acid by cultured calf aortic endothelial cells: Evidence for the presence of a lipoxygenase pathway, Prostaglandins Leukotrienes Med. 17:291–303.

    Article  CAS  Google Scholar 

  45. Revtyak, G. E., Johnson, A. R., and Campbell, W. B., 1988, Cultured bovine coronary artery endothelial cells synthesize HETEs and prostacyclin, Am. J. Physiol. 254:C8–C19.

    Google Scholar 

  46. Campbell, W. B., Falck, J. R., Okita, J. R., Johnson, A. R., and Callahan, K. S., 1985, Synthesis of dihomoprostaglandins from adrenic acid (7,10,13,16-docosatetraenoic acid) by human endothelial cells, Biochim. Biophys. Acta 837:67–76.

    Article  PubMed  CAS  Google Scholar 

  47. Hong, S. L., and Deykin, D., 1982, Activation of phospholipases A2 and C in pig aortic endothelial cells synthesizing prostacyclin, J. Biol. Chem. 257:7151–7154.

    PubMed  CAS  Google Scholar 

  48. Kaya, H., Patton, G. M., and Hong, S. L., 1989, Bradykinin-induced activation of phospholipase A2 is independent of activation of polyphosphoinositide-hydrolyzing phospholipase C., J. Biol. Chem. 264:4972–4977.

    PubMed  CAS  Google Scholar 

  49. Spector, A. A., 1988, Lipid and lipoprotein effects on endothelial eicosanoid formation, Semin. Thromb. Hemostasis 14:196–201.

    Article  CAS  Google Scholar 

  50. Fleisher, L. N., Tall, A. R., Witte, L. D., Miller, R. W., and Cannon, P. J., 1982, Stimulation of arterial endothelial cell prostacyclin synthesis by high density lipoproteins, J. Biol. Chem. 257:6653–6655.

    PubMed  CAS  Google Scholar 

  51. Spector, A. A., Scanu, A. M., Kaduce, T. L., Figard, P. H., Fless, G. M., and Czervionke, R. L., 1985, Effect of human plasma lipoproteins on prostacyclin production by cultured endothelial cells, J. Lipid Res. 26: 288–297.

    PubMed  CAS  Google Scholar 

  52. Holland, J. A., Pritchard, K. A., Rogers, N. J., and Stemerman, M. B., 1988, Perturbation of human endothelial cells by atherogenic levels of low density lipoprotein, Am. J. Pathol. 132:474–478.

    PubMed  CAS  Google Scholar 

  53. Bordet, J.-C., Guichardant, M., and Lagarde, M., 1988, Hydroperoxides produced by n-6 lipoxygenation of arachidonic and linoleic acids potentiate synthesis of prostacyclin related compounds, Biochim. Biophys. Acta 958:460–468.

    Article  PubMed  CAS  Google Scholar 

  54. Fisher, S., and Weber, P. C., 1984, Prostaglandin I3 is formed in vivo in man after dietary eicosapentaenoic acid, Nature 307:165–168.

    Article  Google Scholar 

  55. Knapp, H. R., Reilly, I. A. G., Alessandrini, P., and Fitzgerald, G. A., 1986, In vivo indexes of platelet and vascular function during fish-oil administration in patients with atherosclerosis, N. Engl. J. Med. 314: 937–942.

    Article  PubMed  CAS  Google Scholar 

  56. Brox, J. H., and Nordoy, A., 1983, The effect of polyunsaturated fatty acids on endothelial cells and their production of prostacyclin, thromboxane and platelet inhibitory activity, Thromb. Hemostasis 50:762–767.

    CAS  Google Scholar 

  57. Black, K. L., Hoff, J. T., Radin, N. S., and Deshmukh, G. D., 1984, Eicosapentaenoic acid: Effect on brain prostaglandins, cerebral blood flow and edema in ischemic gerbils, Stroke 15:65–69.

    Article  PubMed  CAS  Google Scholar 

  58. DiCorleto, P. E., and Bowen-Pope, D. F., 1983, Cultured endothelial cells produce a platelet-derived growth factor-like protein, Proc. Natl. Acad. Sci. USA 80:1919–1923.

    Article  Google Scholar 

  59. Fox, P. L., and DiCorleto, P. E., 1988, Fish oils inhibit endothelial cell production of platelet-derived growth factor-like protein, Science 241:453–456.

    Article  PubMed  CAS  Google Scholar 

  60. Yamaja Setty, B. N., Stuart, M. J., and Walenga, R. W., 1985, Formation of 11-hydroxyeicosatetraenoic acid and 15-hydroxyeicosatetraenoic acid in human umbilical arteries is catalyzed by cyclooxygenäse, Biochim. Biophys. Acta 833:484–494.

    Article  Google Scholar 

  61. Pinto, A., Abraham, N. G., and Mullane, K. M., 1986, Cytochrome P-450-dependentmonoxygenase activity and endothelial-dependent relaxations induced by arachidonic acid, J. Pharmacol. Exp. Ther. 236:445–451.

    PubMed  CAS  Google Scholar 

  62. Falck, J. R., Schueler, V. J., Jacobson, H. R., Siddhanta, A. K., Pramanik, B., and Capdevila, J., 1987, Arachidonate epoxygenase: Identification of epoxyeicosatrienoic acids in rabbit kidney, J. Lipid Res. 28: 840–846.

    PubMed  CAS  Google Scholar 

  63. Hambrecht, G. S., Adesuyi, S. A., Holt, S., and Ellis, E. F., 1987, Brain 12-HETE formation in different species, brain regions, and in brain microvessels, Neurochem. Res. 12:1029–1033.

    Article  PubMed  CAS  Google Scholar 

  64. Feinmark, S. J., and Cannon, P. J., 1986, Endothelial cell leukotriene C4 synthesis results from intercellular transfer of leukotriene A4 synthesized by polymorphonuclear leukocytes, J. Biol. Chem. 261:16466–16472.

    PubMed  CAS  Google Scholar 

  65. Richards, C. F., Johnson, A. R., and Campbell, W. B., 1986, Specific incorporation of 5-hydroxy-6,8,11,14-eicosatetraenoic acid into phosphatidylcholine in human endothelial cells, Biochim. Biophys. Acta 875: 569–581.

    Article  PubMed  CAS  Google Scholar 

  66. Schafer, A. I., Takayama, H., Farrell, S., and Gimbrone, M. A., Jr., 1986, Incorporation of platelet and leukocyte lipoxygenase metabolites by cultured vascular cells, Blood 67:373–378.

    PubMed  CAS  Google Scholar 

  67. Shen, X.-Y., Figard, P. H., Kaduce, T. L., and Spector, A. A., 1988, Conversion of 15-hydroxyeicosatetra-enoic acid to 11-hydroxyhexadecatrienoic acid by endothelial cells, Biochemistry 27:996–1004.

    Article  PubMed  CAS  Google Scholar 

  68. Spector, A. A., Gordon, J. A., and Moore, S. A., 1988, Hydroxyeicosatetraenoic acids (HETEs), Prog. Lipid Res. 27:271–323.

    Article  PubMed  CAS  Google Scholar 

  69. Hadjiagapiou, C., and Spector, A. A., 1986, 12-Hydroxyeicosatetraenoic acid reduces prostacyclin production by endothelial cells, Prostaglandins 31:1135–1144.

    PubMed  CAS  Google Scholar 

  70. Honn, K. V., Grossi, I. M., Diglio, C. A., Wojtukiewicz, M., and Taylor, J. D., 1989, Enhanced tumor cell adhesion to the subendothelial matrix resulting from 12(S)-HETE-induced endothelial cell retraction, FASEB J. 3:2285–2293.

    PubMed  CAS  Google Scholar 

  71. Gordon, J. A., Figard, P. H., and Spector, A. A., 1990, HETE metabolism in cultured human skin fibroblasts: Evidence for peroxisomal β-oxidation, J. Clin. Invest. 85:1173–1181.

    Article  PubMed  CAS  Google Scholar 

  72. Nakao, J., Ito, H., Koshihara, Y., and Murota, S., 1984, Age-related increase in the migration of aortic smooth muscle cells induced by 12L-hydroxy-5,8,10,14-eicosatetraenoic acid, Atherosclerosis 51:179–187.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Spector, A.A., Moore, S.A. (1992). Effects of Polyunsaturated Fatty Acids in Endothelium. In: Simionescu, N., Simionescu, M. (eds) Endothelial Cell Dysfunctions. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0721-9_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0721-9_29

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0723-3

  • Online ISBN: 978-1-4899-0721-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics