Skip to main content

Capsaicin as a Tool for Studying Sensory Neuron Functions

  • Chapter
Sensory Nerves and Neuropeptides in Gastroenterology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 298))

Abstract

It was only by the middle of this century that the extent of the sensory innervation of visceral organs including the gastrointestinal tract was revealed. Quantitative analysis showed that as much as 90% of the fibers in the vagus nerve are of afferent nature and that also in the splanchnic and pelvic nerves the afferent-to-efferent fiber ratio is 3: 1 and 1: 1, respectively (see Leek, 1977). These sensory neurons are primary afferent neurons, the vagal afferents having their cell bodies in the nodose ganglion and the splanchnic and pelvic afferents arising from the dorsal root (spinal) ganglia. The sensory nervous system is thought of as a receptive and afferent system that re-flexly activates efferent pathways and thereby enables the organism to react to changes in the external and internal environment and to maintain homeostasis. In addition, there is evidence that a population of peptide-containing afferent neurons can act as an effector system by itself (see Szolcsányi, 1984b; Holzer, 1988; Maggi and Meli 1988).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahlstedt, S., Alving, K., Hesselmar, B., Olaisson, E., 1986, Enhancement of the bronchial reactivity in immunized rats by neonatal treatment with capsaicin, Int. Arch. Allergy Appl. Immunol., 80: 262.

    Article  PubMed  CAS  Google Scholar 

  • Amann, R., Donnerer, J., Lembeck, F., 1989, Capsaicin-induced stimulation of polymodal nociceptors is antagonized by ruthenium red independently of extracellular calcium, Neuroscience, 32: 255.

    Article  PubMed  CAS  Google Scholar 

  • Arvidsson, J., Ygge, J., 1986, A quantitative study of the effects of neonatal capsaicin treatment and of subsequent peripheral nerve transection in the adult rat, Brain Res., 397: 130.

    Article  PubMed  CAS  Google Scholar 

  • Ault, B., Evans, H., 1980, Depolarizing action of capsaicin on isolated dorsal root fibres of the rat, J. Physiol. (London), 306: 22P.

    Google Scholar 

  • Baranowski, R., Lynn, B., Pini, A., 1986, The effects of locally applied capsaicin on conduction in cutaneous nerves of four mammalian species, Br. J. Pharmacol., 89: 267.

    Article  PubMed  CAS  Google Scholar 

  • BarthĂł, L., Holzer, P., 1985, Search for a physiological role of substance P in gastrointestinal motility, Neuroscience, 16: 1.

    Article  PubMed  Google Scholar 

  • BarthĂł, L. Pethö, G., Antal, A., Holzer, P., Szolcsányi J., 1987, Two types of relaxation due to capsaicin in the guinea-pig isolated ileum, Neurosci. Lett., 81: 146.

    Article  PubMed  Google Scholar 

  • BarthĂł, L., Szolcsányi, J., 1978, The site of action of capsaicin on the guinea-pig isolated ileum, Naunyn-Schmiedeberg’s Arch. Pharmacol., 305: 75.

    Article  Google Scholar 

  • Bevan, S.J., James, I.F., Rang, H.P., Winter, J. Wood, J.N., 1987, The mechanism of action of capsaicin — a sensory neurotoxin, in: “Neurotoxins and Their Pharmacological Implications”, P. Jenner, ed., Raven Press, New York.

    Google Scholar 

  • Bevan, S., Yeats, J.C., 1989, Protons activate a sustained inward current in a subpopulation of rat isolated dorsal root ganglion (DRG) neurones, J. Physiol. (London), 417: 81P.

    Google Scholar 

  • Buck, S.H. Burks, T.F., 1986, The neuropharmacology of capsaicin — review of some recent observations, Pharmacol. Rev., 38: 179.

    PubMed  CAS  Google Scholar 

  • Buck, S.H., Walsh, J.H., Davis T.P., Brown, M.R., Yamamura, H.I., Burks, T.F., 1983, Characterization of the peptide and sensory neurotoxic effects of capsaicin in the guinea pig, J. Neurosci., 3: 2064.

    PubMed  CAS  Google Scholar 

  • Carpenter, S.E., Lynn, B., 1981, Vascular and sensory response of human skin to mild injury after topical treatment with capsaicin, Br. J. Pharmacol., 73: 755.

    Article  PubMed  CAS  Google Scholar 

  • Cervero, F., McRitchie, H.A., 1982, Neonatal capsaicin does not affect unmyelinated efferent fibers of the autonomic nervous system: functional evidence, Brain Res., 239: 283.

    Article  PubMed  CAS  Google Scholar 

  • Chahl, L.A., 1988, Antidromic vasodilation and neurogenic inflammation, Pharmacol. Ther., 37: 275.

    Article  PubMed  CAS  Google Scholar 

  • Chiba, T., Masuko, S., Kawano, H., 1986, Correlation of mitochondrial swelling after capsaicin treatment and substance P and somatostatin immunoreactivity in small neurons of dorsal root ganglion in the rat, Neurosci. Lett., 64: 311.

    Article  PubMed  CAS  Google Scholar 

  • Chung, K., Schwen, R.J., Coggeshall, R.E., 1985, Ureteral axon damage following subcutaneous administration of capsaicin in adult rats, Neurosci. Lett., 53: 221.

    Article  PubMed  CAS  Google Scholar 

  • Donnerer, J., Lembeck, F., 1982, Analysis of the effects of intravenously injected capsaicin in the rat, Naunyn-Schmiedeberg’s Arch. Pharmacol., 320: 54.

    Article  CAS  Google Scholar 

  • Duckies, S.P., 1986, Effects of capsaicin on vascular smooth muscle, Naunyn-Schmiedeberg’s Arch. Pharmacol., 333: 59.

    Article  Google Scholar 

  • FehĂ©r, E., Vajda, J., 1982, Effect of capsaicin on the nerve elements of the small intestine, Acta Morphol. Acad. Sci. Hung., 30: 57.

    PubMed  Google Scholar 

  • Fitzgerald, M., 1983, Capsaicin and sensory neurones — a review, Pain, 15: 109.

    Article  PubMed  CAS  Google Scholar 

  • Foster, R.W., Ramage, A.G., 1981, The action of some chemical irritants on somatosensory receptors of the cat, Neuropharmacology, 20: 191.

    Article  PubMed  CAS  Google Scholar 

  • Gamse, R., 1982, Capsaicin and nociception in the rat and mouse. Possible role of substance P, Naunyn-Schmiedeberg’s Arch. Pharmacol., 320.205.

    Article  CAS  Google Scholar 

  • Gamse, R., Holzer, P., and Lembeck, F., 1980, Decrease of substance P in primary sensory neurones and impairment of neurogenic plasma extravasation by capsaicin, Br. J. Pharmacol., 68: 207.

    Article  PubMed  CAS  Google Scholar 

  • Gamse, R., Petsche, U., Lembeck, F., JancsĂł, G., 1982, Capsaicin applied to peripheral nerve inhibits axoplasmic transport of substance P and somatostatin, Brain Res., 239: 447.

    Article  PubMed  CAS  Google Scholar 

  • Hajos, M., Svensson, K., Nissbrandt, H., Obál, F., Carlsson, A., 1986, Effects of capsaicin on central monoaminergic mechanisms in the rat, J. Neural. Transm., 66: 221.

    Article  PubMed  CAS  Google Scholar 

  • Handwerker, H.O., Holzer-Petsche, U., Heym, C., Welk, E., 1984, C-fibre functions after topical application of capsaicin to a peripheral nerve and after neonatal capsaicin treatment, in: “Antidromic Vasodilatation and Neurogenic Inflammation”, L.A. Chahl, J. Szolcsányi, F. Lembeck, eds., AkadĂ©miai KiadĂł, Budapest.

    Google Scholar 

  • Hayes, A.G., Tyers, M.B., 1980, Effects of capsaicin on nociceptive heat, pressure and chemical thresholds and on substance P levels in the rat, Brain Res., 189: 561.

    Article  PubMed  CAS  Google Scholar 

  • Heyman, I., Rang, H.P., 1985, Depolarizing responses to capsaicin in a subpopulation of rat dorsal root ganglion cells, Neurosci. Lett., 56: 69.

    Article  PubMed  CAS  Google Scholar 

  • Hiura, A., Sakamoto, Y., 1987, Quantitative estimation of the effect of capsaicin on the mouse primary sensory neurons, Neurosci. Lett., 76: 101.

    Article  PubMed  CAS  Google Scholar 

  • Holzer, P., 1988, Local effector functions of capsaicin-sensitive nerve endings: involvement of tachykinins, calcitonin gene-related peptide and other neuropeptides, Neuroscience, 24: 739.

    Article  PubMed  CAS  Google Scholar 

  • Hoyes, A.D., Barber, P., 1981, Degeneration of axons in the ureteric and duodenal nerve plexuses of the adult rat following in vivo treatment with capsaicin, Neurosci. Lett., 25: 19.

    Article  PubMed  CAS  Google Scholar 

  • JancsĂł, G., Hökfelt, T., Lundberg, J.M., Király, E., Halász, N., Nilsson, G., Terenius, L., Rehfeld, J. Steinbusch, H., Verhofstad, A.E.R., Said, S., Brown, M., 1981a, Immunohistochemical studies on the effect of capsaicin on spinal and medullary peptide and monoamine neurons using antisera to substance P, gastrin/CCK, somatostatin, VIP, enkephalin, neurotensin and 5-hydroxytryptamine, J. Neurocytol., 10: 963.

    Article  PubMed  Google Scholar 

  • JancsĂł, G., Király, E., JancsĂł-Gábor, A., 1977, Pharmacologically induced selective degeneration of chemosensitive primary sensory neurones, Nature, 270: 741.

    Article  PubMed  Google Scholar 

  • JancsĂł, G., Király, E., JancsĂł-Gábor, A., 1981b, Direct evidence for an axonal site of action of capsaicin, Naunyn-Schmiedeberg’s Arch. Pharmacol., 313: 91.

    Article  Google Scholar 

  • JancsĂł, G., Király, E., JoĂł, F., Such, G., Nagy, A., 1985, Selective degeneration by capsaicin of a subpopulation of primary sensory neurones in the adult rat, Neurosci. Lett., 59: 209.

    Article  PubMed  Google Scholar 

  • JancsĂł, G., Such, G., 1983, Effects of capsaicin applied perineurally to the vagus nerve on cardiovascular and respiratory functions in the cat, J. Physiol. (London), 341: 359.

    Google Scholar 

  • JancsĂł, N., JancsĂł-Gábor, A., Szolcsányi, J., 1967, Direct evidence for neurogenic inflammation and its prevention by denervation and by pretreatment with capsaicin, Br. J. Pharmacol., 31: 138.

    Google Scholar 

  • JancsĂł, N., JancsĂł-Gábor, A., Szolcsányi, J., 1968, The role of sensory nerve endings in neurogenic inflammation induced in human skin and in the eye and paw of the rat, Br. J. Pharmacol., 32: 32.

    Google Scholar 

  • Jessell, T.M., Iversen, L.L., Cuello, A.C., 1978, Capsaicininduced depletion of substance P from primary sensory neurones, Brain Res., 152: 183.

    Article  PubMed  CAS  Google Scholar 

  • Kai-Kai, M.A., Anderton, B.H., Keen, P., 1986, A quantitative analysis of the interrelationships between subpopulations of rat sensory neurons containing arginine vasopressin or oxytocin and those containing substance P, fluoride-resistant acid phosphatase or neurofilament protein, Neuroscience, 18: 475.

    Article  PubMed  CAS  Google Scholar 

  • Kenins, P., 1982, Responses of single nerve fibres to capsaicin applied to the skin, Neurosci. Lett., 29: 83.

    Article  PubMed  CAS  Google Scholar 

  • Kirchgessner, A.L., Dodd, J., Gershon, M.D., 1988, Markers shared between dorsal root and enteric ganglia, J. Comp. Neurol., 276: 607.

    Article  PubMed  CAS  Google Scholar 

  • Lawson, S.N., Harper, A.A., 1984, Neonatal capsaicin is not a specific neurotoxin for sensory C-fibres or small dark cells of rat dorsal root ganglia, in: “Antidromic Vasodilatation and Neurogenic Inflammation”, L.A. Chahl, J. Szolcsányi, F. Lembeck, eds., AkadĂ©miai KiadĂł, Budapest.

    Google Scholar 

  • Leek, B.F., 1977, Abdominal and pelvic visceral receptors, Br. Med. Bull., 33: 163.

    PubMed  CAS  Google Scholar 

  • Lembeck, F., Donnerer, J., 1981, Time course of capsaicin-induced functional impairments in comparison with changes in neuronal substance P content, Naunyn-Schiedeberg’s Arch. Pharmacol., 316: 240.

    Article  CAS  Google Scholar 

  • Longhurst, J.C., Ashton, J.W., Iwamoto, G.A., 1980, Cardiovascular reflexes resulting from capsaicin-stimulated gastric receptors in anesthetized dogs, Circ. Res., 46: 780.

    Article  PubMed  CAS  Google Scholar 

  • Lundberg, J.M., Franco-Cereceda A., Hua, X.-Y., Hökfelt, T., Fischer, J., 1985, Co-existence of substance P and calcitonin gene-related peptide immunoreactivities in sensory nerves in relation to cardiovascular and bronchoconstrictor effects of capsaicin, Eur. J. Pharmacol., 108: 315.

    Article  PubMed  CAS  Google Scholar 

  • Lundberg, J.M., Saria, A., 1983, Capsaicin-induced desensitization of the airway mucosa to cigarette smoke, mechanical and chemical irritants, Nature, 302: 251.

    Article  PubMed  CAS  Google Scholar 

  • Lundberg, J.M., Saria, A., 1987, Polypeptide-containing neurons in airway smooth muscle, Ann. Rev. Physiol., 49: 557.

    Article  CAS  Google Scholar 

  • Lynn, B., Carpenter, S.E., Pini, A., 1984, Capsaicin and cutaneous afferents, in: “Antidromic Vasodilatation and Neurogenic Inflammation”, L.A. Chahl, J. Szolcsányi, F. Lembeck, eds., AkadĂ©miai KiadĂł, Budapest.

    Google Scholar 

  • Lynn, B., Pini, A., Baranowski, R., 1987, Injury of somatosensory afferents by capsaicin: selectivity and failure to regenerate, in: “Effects of Injury on Trigeminal and Spinal Somatosensory Systems”, L.M. Pubols, B. Sessle, eds., Alan R. Liss, New York.

    Google Scholar 

  • Lynn, B., Shakhanbeh, J., 1988, Substance P content of the skin, neurogenic inflammation and numbers of C-fibres following capsaicin application to a cutaneous nerve in the rabbit, Neuroscience, 24: 769.

    Article  PubMed  CAS  Google Scholar 

  • Maggi, C.A., Meli, A., 1988, The role of neuropeptides in the regulation of the micturition reflex, J. Auton. Pharmacol., 6: 133.

    Google Scholar 

  • Maggi, C.A., Meli, A., 1988, The sensory-efferent function of capsaicin-sensitive sensory neurons, Gen. Pharmacol., 19: 1.

    Article  PubMed  CAS  Google Scholar 

  • Maggi, C.A., Meli, A., Santicioli, P., 1987, Four motor effects of capsaicin on guinea-pig distal colon, Br. J. Pharmacol., 90: 651.

    Article  PubMed  CAS  Google Scholar 

  • Maggi, C.A., Patacchini, R., Santicioli, P., Giuliani, S., Geppetti, P., Meli, A., 1988, Protective action of ruthenium red toward capsaicin desensitization of sensory fibers, Neurosci. Lett., 88: 201.

    Article  PubMed  CAS  Google Scholar 

  • Marley, P., Livett, B.G., 1985, Neuropeptides in the autonomic nervous system, CRC Crit. Rev. Clin. Neurobiol., 1: 201.

    PubMed  CAS  Google Scholar 

  • Marsh, S.J., Stansfeld, C.E., Brown, D.A., Davey, R., McCarthy, D., 1987, The mechanism of action of capsaicin on sensory C-type neurons and their axons in vitro, Neuroscience, 23: 275.

    Article  PubMed  CAS  Google Scholar 

  • Nagy, J.I., 1982, Capsaicin: a chemical probe for sensory neuron mechanisms, in: “Handbook of Psychopharmacology”, Vol. 15, L.L. Iversen, S.D. Iversen, S.H. Snyder, eds., Plenum, New York.

    Google Scholar 

  • Nagy, J.I., Hunt, S.P., Iversen, L.L., Emson, P.C., 1981, Biochemical and anatomical observations on the degeneration of peptide containing primary afferent neurons after neonatal capsaicin, Neuroscience, 6: 1923.

    Article  PubMed  CAS  Google Scholar 

  • Nagy, J.I., Iversen, L.L., Goedert, M., Chapman, D., Hunt, S.P., 1983, Dose-dependent effects of capsaicin on primary sensory neurons in the neonatal rat, J. Neurosci., 3: 399.

    PubMed  CAS  Google Scholar 

  • Panerai, A.E., Martini, A., Locatelli, V., Mantegazza, P., 1983, Capsaicin decreases b-endorphin hypothalamic concentrations in the rat, Pharmacol. Res. Commun., 15: 825.

    Article  PubMed  CAS  Google Scholar 

  • Petersen, M., Wagner, G., Pierau, F.-K., 1989, Modulation of calcium-currents by capsaicin in a subpopulation of sensory neurons of guinea pig, Naunyn-Schmiedeberg’s Arch. Pharmacol., 339: 184.

    CAS  Google Scholar 

  • Petsche, U., Fleischer, E., Lembeck, F., Handwerker, H.O., 1983, The effect of capsaicin application to a peripheral nerve on impulse conduction in functionally identified afferent nerve fibres, Brain Res., 265: 233.

    Article  PubMed  CAS  Google Scholar 

  • Raybould, H.E., TachĂ©, Y., 1988, Cholecystokinin inhibits gastric motility and emptying via a capsaicin-sensitive vagal pathway in rats, Am. J. Physiol., 255: G242.

    Google Scholar 

  • RĂ©thelyi, M., Salim, M.Z., JancsĂł, G., 1986, Altered distribution of dorsal root fibers in the rat following neonatal capsaicin treatment, Neuroscience, 18: 749.

    Article  PubMed  Google Scholar 

  • Ritter, S., Dinh, T.T., 1988, Capsaicin-induced neuronal degeneration: silver impregnation of cell bodies, axons, and terminals in the central nervous system of the adult rat, J. Comp. Neurol., 271: 79.

    Article  PubMed  CAS  Google Scholar 

  • RĂłzsa, Z., Jacobson, E.D., 1989, Capsaicin-sensitive nerves are involved in bile-oleate induced intestinal hyperemia, Am. J. Physiol., 256: G476.

    Google Scholar 

  • Russell, L.C., Burchiel, K.J., 1984, Neurophysiological effects of capsaicin, Brain Res. Rev., 8: 165.

    Article  CAS  Google Scholar 

  • Saporta, S., 1986, Loss of spinothalamic tract neurons following neonatal treatment of rats with the neurotoxin capsaicin, Somatosens. Res., 4: 153.

    Article  PubMed  CAS  Google Scholar 

  • Saria, A., Martling, C.-R., Yan, Z., Theodorsson-Norheim, E., Gamse, R., Lundberg, J.M. 1988, Release of multiple tachykinins from capsaicin-sensitive sensory nerves in the lung by bradykinin, histamine, dimethylphenyl piperazinium, and vagal nerve stimulation, Am. Rev. Respir. Dis., 137: 1330.

    Article  PubMed  CAS  Google Scholar 

  • Scadding, J.W., 1980, The permanent anatomical effects of neonatal capsaicin on somatosensory nerves, J. Anat., 131: 473.

    Google Scholar 

  • Shimizu, T., Izumi, K., Fujita, S., Koya, T., Sorimachi, M., Ohba, N., Fukuda, T., 1987, Capsaicin-induced corneal lesions in mice and the effects of chemical sympathectomy, J. Pharmacol. Exp. Ther., 243: 690.

    PubMed  CAS  Google Scholar 

  • Skofitsch, G., Jacobowitz, D.M., 1985, Galanin-like immuno-reactivity in capsaicin-sensitive sensory neurons and ganglia, Brain Res. Bull., 15: 191.

    Article  PubMed  CAS  Google Scholar 

  • South, E.H., Ritter, R.C., 1988, Capsaicin application to central or peripheral vagal fibers attenuates CCK satiety, Peptides, 9: 601.

    Article  PubMed  CAS  Google Scholar 

  • Stein, R.D., Genovesi, S., Demarest, K.T., Weaver, L.C., 1986, Capsaicin treatment attenuates the reflex excitation of sympathetic activity caused by chemical stimulation of intestinal afferent nerves, Brain Res., 397: 145.

    Article  PubMed  CAS  Google Scholar 

  • Such, G., JancsĂł, G., 1986, Axonal effects of capsaicin: an electrophysiological study, Acta Physiol. Hung., 67: 53.

    PubMed  CAS  Google Scholar 

  • Szallasi, A., Blumberg, P.M., 1989a, Resiniferatoxin, a phorbolrelated diterpene, acts as an ultrapotent analog of capsaicin, the irritant constituent in red pepper, Neuroscience, 30: 515.

    Article  PubMed  CAS  Google Scholar 

  • Szallasi, A., Blumberg, P.M., 1989b, Specific binding of resiniferatoxin, an ultrapotent capsaicin analog, to dorsal root ganglia membranes, Pharmacologist, 31: P353.

    Google Scholar 

  • Szolcsányi, J., 1977, A pharmacological approach to elucidation of the role of different nerve fibres and receptor endings in mediation of pain, J. Physiol. (Paris), 73: 251.

    Google Scholar 

  • Szolcsányi, J., 1982, Capsaicin type pungent agents producing pyrexia, in: “Pyretics and Antipyretics”, Handbook of Experimental Pharmacology, Vol. 60, A.S. Milton, ed., Springer, Berlin.

    Google Scholar 

  • Szolcsányi, J., 1984a, Capsaicin and neurogenic inflammation: history and early findings, in: “Antidromic Vasodilatation and Neurogenic Inflammation”, L.A. Chahl, J. Szolcsányi, F. Lembeck, eds., AkadĂ©miai KiadĂł, Budapest.

    Google Scholar 

  • Szolcsányi, J., 1984b, Capsaicin-sensitive chemoceptive neural system with dual sensory-efferent function, in: “Antidromic Vasodilatation and Neurogenic Inflammation”, L.A. Chahl, J. Szolcsányi, F. Lembeck, eds., AkadĂ©miai KiadĂł, Budapest.

    Google Scholar 

  • Szolcsányi, J., 1987, Selective responsiveness of polymodal nociceptors of the rabbit ear to capsaicin, bradykinin and ultraviolet irradiation, J. Physiol. (London), 388: 9.

    Google Scholar 

  • Szolcsányi, J., Anton, F., Reeh, P.W., Handwerker, H.O., 1988, Selective excitation by capsaicin of mechano-heat sensitive nociceptors in rat skin, Brain Res., 446: 262.

    Article  PubMed  Google Scholar 

  • Szolcsányi, J., JancsĂł-Gábor, A., JoĂł, F., 1975, Functional and fine structural characteristics of the sensory neuron blocking effect of capsaicin, Naunyn-Schmiedeberg’s Arch. Pharmacol., 287: 157.

    Article  Google Scholar 

  • Szolcsányi, J., JoĂł, F., JancsĂł-Gabor, A., 1971, Mitochondrial changes in preoptic neurones after capsaicin desensitization of the hypothalamic thermodetectors in rats, Nature, 229: 116.

    Article  PubMed  Google Scholar 

  • Szolcsányi, J., Sann, H., Pierau, F.-K., 1986, Nociception in pigeons is not impaired by capsaicin, Pain, 27: 247.

    Article  PubMed  Google Scholar 

  • Theodorsson-Norheim, E., Hua, X.-Y., Brodin, E., Lundberg, J.M., 1985, Capsaicin treatment decreases tissue levels of neurokinin A-like immunoreactivity in the guinea-pig, Acta Physiol. Scand., 124: 129.

    Article  PubMed  CAS  Google Scholar 

  • Virus, R.M. McManus D.Q., Gebhart, G.F., 1983, Capsaicin treatment in adult Wistar-Kyoto and spontaneously hypertensive rats: neurochemical effects in the spinal cord, Eur. J. Pharmacol., 92: 1.

    Article  Google Scholar 

  • Wall, P.D., Fitzgerald, M., Nussbaumer, J.C., Van der Loos, H., Devor, M., 1982, Somatotopic maps are disorganized in adult rodents treated neonatally with capsaicin, Nature, 295: 691.

    Article  PubMed  CAS  Google Scholar 

  • Williams, J.T., Zieglgänsberger, W., 1982, The acute effects of capsaicin on rat primary afferent and spinal neurons, Brain Res., 253: 125.

    Article  PubMed  CAS  Google Scholar 

  • Winter, J., 1987, Characterization of capsaicin-sensitive neurones in adult rat dorsal root ganglion cultures, Neurosci. Lett., 80: 134.

    Article  PubMed  CAS  Google Scholar 

  • Wood, J.N., Winter, J., James, I.F., Rang, H.P., Yeats, J., Bevan, S., 1988, Capsaicin-induced ion fluxes in dorsal root ganglion cells in culture, J. Neurosci., 8: 3208.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Holzer, P. (1991). Capsaicin as a Tool for Studying Sensory Neuron Functions. In: Costa, M., Surrenti, C., Gorini, S., Maggi, C.A., Meli, A. (eds) Sensory Nerves and Neuropeptides in Gastroenterology. Advances in Experimental Medicine and Biology, vol 298. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0744-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0744-8_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0746-2

  • Online ISBN: 978-1-4899-0744-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics