Skip to main content

Abstract

In this chapter we shall discuss techniques for designing recursive digital filters, with the restriction that the designed filter be realizable and stable. Part One of this chapter deals with different approaches for the design of one-dimensional (1-D) recursive filters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. R. Rabiner, N. Y. Graham, and M. D. Helms, Linear programming design of IIR digital filters with arbitrary magnitude function, IEEE Trans. Acoust., Speech, Signal Process. ASSP-22, 117–123 (1974).

    Article  Google Scholar 

  2. L. R. Rabiner and B. Gold, Theory and Application of Digital Signal Processing, Prentice-Hall, Englewood Cliffs, NJ (1975).

    Google Scholar 

  3. A. Chottera and G. A. Jullien, Designing Near Linear Phase Recursive Filters Using Linear Programming, Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing, 88-92 (May 1977).

    Google Scholar 

  4. E. I. Jury, Theory and Application of the z-Transform Method, John Wiley and Sons, New York (1964).

    Google Scholar 

  5. E. Robinson, Statistical Communication and Detection, Hafner, New York (1967).

    Google Scholar 

  6. F. H. Borphy and A. C. Salazar, Two design techniques for digital phase networks, Bell Syst. Tech. J. 54, 767–781 (1975).

    Google Scholar 

  7. V. Ramachandran and C. S. Gargour, Implementation of a stability test of 1-D discrete system based on Schussler’s theorem and some consequent coefficient conditions, J. Franklin Inst. 317, 341–358 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  8. V. Ramachandran, C. S. Gargour, M. Ahmadi, and M. T. Boraie, Direct design of recursive digital filters based on a new stability test, J. Franklin Inst. 318, 407–413 (1984).

    Article  MATH  Google Scholar 

  9. Lonnie C. Ludeman, Fundamentals of Digital Signal Processing, Harper and Row, New York (1986).

    Google Scholar 

  10. A. Antoniou, Digital Filters: Analysis and Design, McGraw-Hill, New York (1979).

    Google Scholar 

  11. A. Antoniou, M. Ahmadi, and C. Charalambous, Design of factorable lowpass 2-dimensional digital filters satisfying prescribed specifications, IEE Proc. 128, Part G, No. 2, 53–60 (1981).

    Google Scholar 

  12. C. Charalambous, Design of 2-dimensional circularly-symmetric digital filters, IEE Proc. 129, Part G, No. 2, 47–54 (1982).

    Google Scholar 

  13. K. Rajan and M. N. S. Swamy, Design of separable denominator 2-dimensional digital filters possessing real circularly symmetric frequency responses, IEE Proc. 129, Part G, No. 5, 235–240 (1982).

    Google Scholar 

  14. M. Ahmadi, M. T. Boraie, V. Ramachandran, and C. S. Gargour, Design of 2-D recursive digital filters with constant group delay characteristics using separable denominator transfer function and a new stability test, IEEE Trans. Acoust., Speech, Signal Process. ASSP-33, 1316–1318 (1985).

    Article  MathSciNet  Google Scholar 

  15. T. S. Huang, J. W. Burnett, and A. G. Deczky, The importance of phase in image processing filters, IEEE Trans. Acoust, Speech, Signal Process. ASSP-23, 529–542 (1975).

    Article  Google Scholar 

  16. J. L. Shanks, S. Treitel, and J. M. Justice, Stability and synthesis of two-dimensional recursive filters, IEEE Trans. Audio Electroacoust. AU-20, 115–128 (1982).

    Google Scholar 

  17. J. M. Costa and A. N. Venetsanopoulos, Design of circularly symmetric two-dimensional recursive filters, IEEE Trans. Acoust, Speech, Signal Process. ASSP-22, 432–443 (1974).

    Article  Google Scholar 

  18. M. Ahmadi, A. G. Constantinides, and R. A. King, Design Technique for a Class of Stable 2-Dimensional Recursive Digital Filters, Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing, Philadelphia, USA, 145-147 (April 1976).

    Google Scholar 

  19. R. A. King and A. H. Kayran, A New Transformation Technique for the Design of 2-Dimensional Stable Recursive Digital Filters, Proc. IEEE Int. Symp. on Circuits and Systems, Chicago, 196-199 (April 1981).

    Google Scholar 

  20. A. H. Kayran and R. A. King, Design of recursive and nonrecursive fan filters with complex transformations, IEEE Trans. Circuits Syst. CAS-30, 849–857 (1983).

    Article  Google Scholar 

  21. A. Chottera and G. A. Jullien, Design of 2-dimensional recursive digital filters using linear programming, IEEE Trans. Circuits Syst. CAS-29, 817–826 (1982).

    Article  MathSciNet  Google Scholar 

  22. R. Fletcher and M. J. D. Powell, A Rapid descent method for minimization, Comput. J. 6, 163–168 (1963).

    Article  MathSciNet  MATH  Google Scholar 

  23. S. A. H. Aly and M. M. Fahmy, Design of two-dimensional recursive digital filters with specified magnitude and group delay characteristics, IEEE Trans. Circuits Syst. CAS-25, 908–916 (1978).

    Article  Google Scholar 

  24. P. A. Ramamoorthy and L. T. Bruton, Design of stable two-dimensional analogue and digital filters with applications in image processing, Int. J. Circuit Theory Appl. 7, 229–245 (1979).

    Article  MATH  Google Scholar 

  25. S. Golikeri, M. Ahmadi, and V. Ramachandran, Design of 2-D recursive digital filters satisfying prescribed magnitude and constant group delay response, Electron. Lett. 19, 9–11 (1983).

    Article  Google Scholar 

  26. V. Ramachandran and M. Ahmadi, Design of 2-D stable analog and recursive digital filters using properties of the derivative of even or odd parts of Hurwitz polynomials, J. Franklin Inst. 315, 259–267 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  27. M. Ahmadi and V. Ramachandran, New method for generating two-variable VSHPs and its application in the design of two-dimensional recursive digital filters with prescribed magnitude and constant group delay responses, IEE Proc. 131, Part G, No. 4, 151–155 (1984).

    Article  Google Scholar 

  28. M. Ahmadi, M. O. Ahmad, and V. Ramachandran, Transfer function realization of a class of doubly-terminated two-variable lossless networks and their application in linear phase 2-dimensional filter design, J. Franklin Inst. 321, 147–153 (1986).

    Article  MATH  Google Scholar 

  29. G. W. Bordner, Time Domain Design of Stable Recursive Digital Filters, Ph.D. Dissertation, State University of New York at Buffalo (1974).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

King, R., Ahmadi, M., Gorgui-Naguib, R., Kwabwe, A., Azimi-Sadjadi, M. (1989). Recursive Filters. In: Digital Filtering in One and Two Dimensions. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0918-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0918-3_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0920-6

  • Online ISBN: 978-1-4899-0918-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics