Skip to main content

The P53 Tumor Suppressor Protein

Biophysical Characterization of the Carboxy-Terminal Oligomerization Domain

  • Chapter
Methods in Protein Structure Analysis

Abstract

In response to damaged DNA, mammalian cell growth is arrested at cell cycle checkpoints in Gl, near the border of S phase, or in G2, before mitosis (Murray, 1992; Hunter, 1993; Weinert and Lydall, 1993). In some circumstances, DNA damage initiates apoptosis, a program that results in cell death. Recent studies have shown that the p53 tumor suppressor protein is an essential component of the G1 checkpoint pathway (Kastan et al., 1991); it also modulates the initiation of apoptosis (Oren, 1994). The arrest of cell cycle progression provides time for DNA damage to be repaired, whereas apoptosis may insure the death of more severely damaged cells that are at risk of loss of growth control through genome rearrangements. Thus, these functions account, at least in part, for the importance of p53 in suppressing or eliminating preneoplastic or neoplastic cells in the human and other vertebrate species. In turn, p53 function is mediated through its physical characteristics, and these may be modulated by post-translational mechanisms (Ullrich et al., 1992; Meek, 1994). Thus, biophysical studies of p53 and its functional domains are fundamental to an understanding of those properties that are important for normal p53 function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Addison, C., Jenkins, J. R. and Sturzbecher, H.-W., 1990. The p53 nuclear-localization signal is structurally linked to a p34cdc2 kinase motif. Oncogene 5: 423.

    PubMed  CAS  Google Scholar 

  • Bakalkin, G., Yakovleva, T., Selivanova, G., Magnusson, K. P., Szekely, L.. Kiseleva, E., Klein, G., Terenius, L. and Wiman, K. G., 1994. p53 binds single-stranded DNA ends and catalyzes DNA renaturation and strand transfer. Proc. Natl. Acad. Sci. USA 91: 413.

    Google Scholar 

  • Bargonetti, J., Friedman, P. N., Kern, S. E., Vogelstein, B. and Prives, C., 1991. Wild-type but not mutant p53 immunopurified proteins bind to sequences adjacent to the SV40 origin of replication. Cell 65: 1083.

    Article  PubMed  CAS  Google Scholar 

  • Bargonetti, J., Manfredi, J. J., Chen, X., Marshak, D. R. and Prives, C., 1993. A proteolytic fragment from the central region of p53 has marked sequence-specific DNA-binding activity when generated from wild-type but not from oncogenic mutant p53 protein. Genes Dey. 7: 2565.

    Article  CAS  Google Scholar 

  • Bax, A. and Grzesiek, S., 1993. Methodological advances in protein NMR. Acc. Chem. Res. 26: 131. Bischoff, J. R., Friedman, P. N., Marshak, D. R., Prives, C., and Beach, D., 1990 Human p53 is phosphorylated by p60-cdc2 and cyclin B-cdc2. Proc. Natl. Acad. Sci. USA 87: 4766.

    Google Scholar 

  • Cho, Y., Gorina, S., Jeffrey, P. D. and Pavletich, N. P., 1994. Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science 265: 346.

    Article  PubMed  CAS  Google Scholar 

  • Clarke, E. C. W. and Glew, D. N., 1966. Evaluation of thermodynamic function from equilibrium constants. Trans. Farady Soc. 62: 539.

    Article  CAS  Google Scholar 

  • Clore, G. M. and Gronenborn, A. M., 1994. Multidimensional heteronuclear magnetic resonance of proteins. Methods Enzymol. 239: 349.

    Article  PubMed  CAS  Google Scholar 

  • Clore, G. M., Omichinski, J. G., Sakaguchi, K., Zambrano, N., Sakamoto, H., Appella, E. and Gronenborn, A. M., 1994. High-resolution structure of the oligomerization domain of p53 by multidimensional NMR. Science 265: 386.

    Article  PubMed  CAS  Google Scholar 

  • De’rijard, B., Hibi, M., Wu, I.-H., Barrett, T., Su, B., Deng, T., Karin, M. and Davis, R. J., 1994. JNK1: a protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Cell 76: 1025.

    Article  Google Scholar 

  • El-Deiry, W. S., Tokino, T., Velculescu, V. E., Levy, D. B., Parsons, R., Trent, J. M., Lin, D., Mercer, W. E., Kinzler, K. W. and Vogelstein, B., 1993. WAF1, a potential mediator of p53 tumor suppression. Cell 75: 817.

    CAS  Google Scholar 

  • El-Deiry, W. S., Harper, J. W., O’Connor, P. M., Velculescu, V. E., Carman, C. E., Jackman, J., Pietenpol, J. A., Burrell, M., Hill, D. E., Wang, Y., Wiman, K. G., Mercer, W. E., Kastan, M. B., Kohn, K. W., Elledge, S. J., Kinzler, K. W. and Vogelstain B., 1994. WAF1/CIPI is induced in p53-mediated G1 arrest and apoptosis. Cancer Res. 54: 1169.

    Google Scholar 

  • Farmer, G., Bargonetti, J., Zhu, H., Friedman, P., Prywes, R. and Prives, C., 1992 Wild-type p53 activates transcription in vitro. Nature 358: 83.

    Article  CAS  Google Scholar 

  • Fields, S. and Jang, S. K., 1990. Presence of a potent transcription activating sequence in the p53 protein. Science 249: 1046.

    Article  PubMed  CAS  Google Scholar 

  • Fiscella, M., Zambrano, N., Ullrich, S. J., Ungar, T., Lin, D., Cho, B., Mercer, W. E., Anderson, C. W. and Appella, E., 1994. The carboxy-terminal serine 392 phosphorylation site of human p53 is not required for wild-type activities. Oncogene 9: 3249.

    PubMed  CAS  Google Scholar 

  • Funk, W. D., Pak, D. T., Karas, R. H., Wright, W. E. and Shay, J. W., 1992. A transcriptionally active DNA-binding site for human p53 protein complexes. Mol. Cell. Biol. 12: 2866.

    PubMed  CAS  Google Scholar 

  • Greenblatt, M. S., Bennett, W. P., Hollstein, M. and Harris, C. C., 1994. Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res. 54: 4855.

    PubMed  CAS  Google Scholar 

  • Halazonetis, T. D., Davis, L. J. and Kandil, A. N., 1993. Wild-type p53 adopts a ‘mutant’-like conformation when bound to DNA. EMBO J. 12: 1021.

    CAS  Google Scholar 

  • Halazonetis, T. D. and Kandil, A. N., 1993. Conformational shifts propagate from the oligomerization domain of p53 to its tetrameric DNA binding domain and restore DNA binding to select p53 mutants. EMBO J. 12: 5057.

    CAS  Google Scholar 

  • Harrington, R. E. and Winicov, I., 1994. New concepts in protein-DNA recognition: sequence-directed DNA bending and flexibility. Prog.Nucleic Acid Res. Mol. Biol. 47: 195.

    Article  PubMed  CAS  Google Scholar 

  • Hojo, H. and Aimoto, S., 1992. Protein synthesis using S-alkyl thioester of partially protected peptide segments. synthesis of DNA-binding protein of Bacillus sterothermophilus. Bull. Chem. Soc. Jpn. 65: 3055.

    Article  CAS  Google Scholar 

  • Hollstein, M., Sidransky, D., Vogelstein, B. and Harris, C. C. 1991. p53 mutations in human cancers. Science 253: 49.

    Google Scholar 

  • Hunter, T., 1993. Braking the cycle. Cell 75: 839.

    Article  PubMed  CAS  Google Scholar 

  • Hunter, T., and Karin, M., 1992. The regulation of transcription by phosphorylation. Cell 70: 375.

    Article  PubMed  CAS  Google Scholar 

  • Hupp, T. R., Meek, D. W., Midgley, C. A. and Lane, D. P., 1992. Regulation of the specific DNA binding function of p53. Cell 71: 875.

    Article  PubMed  CAS  Google Scholar 

  • Jackson, S. P., 1992. Regulating transcription factor activity by phosphorylation. Trends Cell Biol. 2: 104. Johnson, Jr., W. C., 1988. Secondary structure of proteins through circular dichroism spectroscopy. Annu. Rev. Biophys. Biochem. 17: 145.

    Google Scholar 

  • Kastan, M. B., Onyekwere, O., Sidransky, D., Vogelstein, B. and Craig, R. W., 1991. Participation of p53 protein in cellular response to DNA damage. Cancer Res. 51: 6304.

    PubMed  CAS  Google Scholar 

  • Kastan, M. B., Zhan, Q., El-Deiry, W. S., Camer, F., Jacks, T., Walsh, W. V., Plunkett, B. S., Vogelstein, B. and Fornace, Jr., A. J., 1992. A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell 71: 587.

    Article  PubMed  CAS  Google Scholar 

  • Kern, S. E., Pietenpol, J. A., Thiagalingam, S., Seymour, A., Kinzler, K. W. and Vogelstein, B., 1992. Oncogenic forms of p53 inhibit p53-regulated gene expression. Science 256: 827.

    Article  PubMed  CAS  Google Scholar 

  • Kuerbitz, S. J., Plunkett, B. S., Walsh, W. V. and Kastan, M. B., 1992. Wild-type p53 is a cell cycle checkpoint determinant following irradiation. Proc. Natl. Acad. Sci. USA 89: 7491.

    Article  PubMed  CAS  Google Scholar 

  • Lamb, P. and Crawford, L., 1986. Characterization of the human p53 gene. Mol Cell Biol 6: 1379.

    PubMed  CAS  Google Scholar 

  • Lees-Miller, S. P., Sakaguchi, K., Ullrich, S. J., Appella, E. and Anderson, C. W., 1992. Human DNA-activated protein kinase phosphorylates serines 15 and 37 in the amino-terminal transactivation domain of human p53. Mol Cell Biol 12: 5041.

    PubMed  CAS  Google Scholar 

  • Levine, A. J., 1993. The tumor suppressor genes. Annu. Rev. Biochem, 62: 623.

    Article  PubMed  CAS  Google Scholar 

  • Lu, X. and Lane, D. P., 1993. Differential induction of transcriptionally active p53 following UV or ionizing radiation: defects in chromosome instability syndromes? Cell 75: 765.

    Article  PubMed  CAS  Google Scholar 

  • Maltzman, W. and Czyzyk, L., 1984. UV irradiation stimulates levels of p53 cellular tumor antigen in nontransformed mouse cells. Mol. Cell. Biol. 4: 1689.

    PubMed  CAS  Google Scholar 

  • Meek, D., 1994. Post-translational modification of p53. Semin. Cancer Biol. 5: 203.

    PubMed  CAS  Google Scholar 

  • Meek, D. W., Simon, S., Kikkawa, U. and Eckhart, W., 1990. The p53 tumor suppressor protein is phosphorylated at serine 389 by casein kinase II. EMBO J. 9: 3253.

    CAS  Google Scholar 

  • Mercer, W. E., Shields, M. T., Amin, M., Sauve, G. J., Appella, E., Romano, J. W. and Ullrich, S. J., 1990. Negative growth regulation in a glioblastoma tumor cell line that conditionally expresses human wild-type p53. Proc. Natl. Acad. Sci. USA 87: 6166.

    Article  PubMed  CAS  Google Scholar 

  • Milne, D. M., Palmer, R. H., Campbell, D. G. and Meek, D. W., 1992. Phosphorylation of the p53 tumor-sup-pressor protein at 3 N-terminal sites by a novel casein kinase I-like enzyme. Oncogene 7: 1361.

    PubMed  CAS  Google Scholar 

  • Milne, D. M., Campbell, D. G., Caudwell, F. B. and Meek, D. W., 1994. Phosphorylation of the tumor suppressor protein p53 by mitogen-activated protein kinases. J. Biol. Chem. 269: 9253.

    PubMed  CAS  Google Scholar 

  • Milner, J., and Medcalf, E. A., 1991. Cotranslation of activated mutant p53 with wild-type drives the wild-type 53 protein into the mutant p53 conformation. Cell 65: 765.

    Article  PubMed  CAS  Google Scholar 

  • Murray, A. W., 1992. Creative blocks: cell-cycle checkpoints and feedback controls. Nature 359: 599. Nelson, W. G. and Kastan, M. B., 1994. DNA strand breaks: the DNA template alterations that trigger p53-dependent DNA damage response pathways. Mol. Cell. Biol. 14: 1815.

    Google Scholar 

  • Oberosler, P., Hloch, P., Ramsperger, U. and Stahl, H., 1993. p53-catalyzed annealing of complementary single-stranded nucleic acids. EMBO J. 12: 2389.

    Google Scholar 

  • Oren, M., 1994. Relationship of p53 to the control of apoptotic cell death. Semin. Cancer Biol. 5: 221. Pavletich, N. P., Chambers, K. A. and Pabo, C. 0., 1993. The DNA-binding domain of p53 contains the four conserved regions and the major mutation hot spots. Genes Dey. 7: 2556.

    Google Scholar 

  • Pietenpol, J. A., Tokino, T., Thiagalingam, S., El-Deity, W. S., Kinzler, K. W. and Vogelstein, B., 1994. Sequence-specific transcriptional activation is essential for growth suppression by p53. Proc. Natl. Acad. Sci. USA 91: 1998.

    Google Scholar 

  • Raycroft, L., Wu, H. and Lozano, G., 1990. Transcriptional activation by wild-type but not transforming mutants of the p53 anti-oncogene. Science 249: 1049.

    Article  PubMed  CAS  Google Scholar 

  • Reed, M., Wang, Y., Mayr, G., Anderson, M. E., Schwedes, J. F., and Tegtmeyer, E, 1993. p53 domains: suppression, transformation, and transactivation. Gene Expression 3: 95.

    Google Scholar 

  • Sakamoto, H., Lewis, M. S., Kodama, H, Appella, E., and Sakaguchi, K., 1994. Specific sequences from the carboxy-terminus of human p53 form anti-parallel tetramers in solution. Proc. Natl. Acad. Sci. USA 91: 8974.

    Article  PubMed  CAS  Google Scholar 

  • Soussi, T., Caron de Fromentel, C. and May, P., 1990 Structural aspects of the p53 protein in relation to gene evolution. Oncogene 5: 945.

    PubMed  CAS  Google Scholar 

  • Stenger, J. E., Mayr, G. A., Mann, K. and Tegtmeyer, P., 1992. p53 forms stable homotetramers and multiples of tetramers. Mol. Carcinog. 5: 102.

    Google Scholar 

  • Ullrich, S. J., Anderson, C. W., Mercer, W. E. and Appella, E., 1992. The p53 tumor suppressor protein, a modulator of cell proliferation. J. Biol. Chem. 267: 15259.

    PubMed  CAS  Google Scholar 

  • Ullrich, S. J., Sakaguchi, K., Lees-Miller, S. P., Fiscella, M., Mercer, W. E., Anderson, C. W. and Appella, E., 1993. Phosphorylation at serine 15 and 392 in mutant p53s from human tumors is altered compared to wild-type p53. Proc. Natl. Acad. Sci. USA 90: 5954.

    Article  PubMed  CAS  Google Scholar 

  • Unger, T., Nau, M. M., Segal, S. & Minna, J.D., 1992. p53: a transdominant regulator of transcription whose function is ablated by mutations occurring in human cancer. EMBO J. 11: 1383.

    Google Scholar 

  • Wang, Y., and Eckhart, W., 1992. Phosphorylation sites in the amino-terminal region of mouse p53. Proc. Natl. Acad. Sci. USA 89: 4231.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Y., Reed, M., Wang, P., Stenger, J. E., Mayr, G., Anderson, M. E., Schwedes, J. F. and Tegtmeyer,P., 1993. p53 domains: identification and characterization of two autonomous DNA-binding regions. Genes Dey. 7: 2575.

    Google Scholar 

  • Wang, Y., Reed, M., Wang, Y., Mayr, G., Stenger, J. E., Anderson, M. E., Schwedes, J. F. and Tegtmeyer, P., 994. p53 domains. structure, oligomerization, and transformation. Mol. Cell. Biol. 14: 5182.

    Google Scholar 

  • Weinert, T. and Lydall, D., 1993. Cell cycle checkpoints, genetic instability and cancer. Semin. Cancer Biol. 4: 129.

    PubMed  CAS  Google Scholar 

  • Xiong, Y., Hannon, G. J., Zhang, H., Casso, D., Kobayashi, R. and Beach, D., 1993. p21 is a universal inhibitor of cyclin kinases. Nature 366: 701.

    Google Scholar 

  • Zambetti, G. P., Bargonetti, J., Walker, K., Prives, C. and Levine, A. J., 1992. Wild-type p53 mediates positive regulation of gene expression through a specific DNA sequence element. Genes Dey. 6: 1143.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Appella, E. et al. (1995). The P53 Tumor Suppressor Protein. In: Atassi, M.Z., Appella, E. (eds) Methods in Protein Structure Analysis. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1031-8_36

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1031-8_36

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1033-2

  • Online ISBN: 978-1-4899-1031-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics