Skip to main content

Structural Information on Proteins from Circular Dichroism Spectroscopy Possibilities and Limitations

  • Chapter
Physical Methods to Characterize Pharmaceutical Proteins

Part of the book series: Pharmaceutical Biotechnology ((PBIO,volume 7))

Abstract

In this chapter we give a general survey of the application of circular dichroism (CD) spectroscopy for structural studies of proteins. In addition to the commonly used far-UV and near-UV/visible CD, the less well-known vibrational CD will be discussed. Although magnetic CD (MCD) has a fundamentally different origin and is beyond the scope of this chapter, some theoretical and experimental considerations will be given in Section 2. For a detailed treatise, we refer the reader to Sutherland and Holmqvist (1980), Sharonov (1991), and Cheesman et al. (1991). Time-resolved CD is discussed briefly in Section 6.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Antanaitis, B. C., Strekas, T., and Aisen, P., 1982, Characterization of pink and purple uteroferrin by resonance Raman and CD spectroscopy, J. Biol. Chem. 7:3766–3770.

    Google Scholar 

  • Arakawa, T., Hsy, Y-R., and Yphantis, D. A., 1987, Acid induced unfolding and self-association of recombinant Escherichia coli derived human interferon γ, Biochemistry 26:5428–5432.

    PubMed  CAS  Google Scholar 

  • Bailey, J. C., Martin, S. R., and Bayley, P. M., 1982, A circular dichroism study of epidermolytic toxins A and B from Staphylococcus aureus, Biochem. J. 203:775–778.

    PubMed  CAS  Google Scholar 

  • Baumruk, V., and Keiderling, T. A., 1993, Vibrational circular dichroism of proteins in H2O solution, J. Am. Chem. Soc. 115:6939–6942.

    CAS  Google Scholar 

  • Bayley, P., 1980, Circular dichroism and optical rotation, in: An Introduction to Spectroscopy for Biochemists (S. B. Brown, ed.), Academic Press, London, pp. 148–234.

    Google Scholar 

  • Beltramini, M., Bubacco, L., Salvato, B., Casella, L., Gulotti, M., and Garofani, S., 1992, The aromatic circular dichroism spectrum as a probe for conformational changes in the active site environment of hemocyanins, Biochim. Biophys. Acta 1120:24–32.

    PubMed  CAS  Google Scholar 

  • Björling, S. C., Zhang, C-F., Farrens, D. L., Song, P-S., and Kliger, D. S., 1992, Time-resolved circular dichroism of native oat phytochrome photointermediates, J. Am. Chem. Soc. 114:4581–4588.

    Google Scholar 

  • Bokma, J. T., Johnson, W. C., Jr., and Blok, J., 1987, CD of the Li salt of DNA in ethanol/water mixtures: Evidence for the B-to C-form transition in solution, Biopolymers 26:893–909.

    PubMed  CAS  Google Scholar 

  • Bolotina, T. A., and Lugauskas, V. Y., 1986, Determination of the secondary structure of proteins from the circular dichroism spectra. IV. Consideration of the contribution of aromatic residues to the circular dichroism spectra of proteins in the peptide region, Mol. Biol. (Moscow) 19:1154–1166 (translated from Molek. Biol. 1985, 19:1404-1421).

    Google Scholar 

  • Bormett, R. W., Asher, S. H., Larkin, P. J., Gustafson, W. G., Ragunathan, N., Freedman, T. B., Nafie, L. A., Balasubramanian, S., Boxer, S. G., Yu, N-T., Gersonde, K., Noble, R. W., Springer, B. A., and Sligar, S. G., 1992, Selective examination of haem protein azide ligand-distal globin interactions by vibrational circular dichroism, J. Am. Chem. Soc. 114:6864–6867.

    CAS  Google Scholar 

  • Bradford, M. M., 1976, A rapid and sensitive method for quantification of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem. 72:240–254.

    Google Scholar 

  • Brahms, S., and Brahms J., 1980, Determination of protein secondary structure in solution by vacuum ultraviolet circular dichroism, J. Mol. Biol. 138:149–178.

    PubMed  CAS  Google Scholar 

  • Bree, A., and Lyons, L. E., 1956, The intensity of ultraviolet light absorption by monocrystals. Part I. Measurement of thickness of thin crystals by interferometry, J. Chem. Soc. 1956:2658–2662.

    Google Scholar 

  • Campbell, I. D., and Dwek, R. A. (eds.), 1984, Biological Spectroscopy, Benjamin/ Cummings, Menlo Park, pp. 255–277.

    Google Scholar 

  • Cantor, C. R., and Schimmel, P. R. (eds.), 1980, Biophysical Chemistry, Vol. 2, Freeman, New York, pp. 409–418.

    Google Scholar 

  • Chang, C. T., Wu, C.-S., and Yang, J. T., 1978, Circular dichroism analysis of protein conformation: Inclusion of the β-turns, Anal Biochem. 91:13–31.

    PubMed  CAS  Google Scholar 

  • Charney, E. (ed.), 1979, The Molecular Basis of Optical Activity, Optical Rotatory Dispersion and Circular Dichroism, John Wiley, New York, pp. 1–17, pp. 323-327.

    Google Scholar 

  • Cheesman, M. R., Greenwood, C., and Thomson, A. J., 1991, Magnetic circular dichroism of hemoproteins, Adv. Inorg. Chem. 36:201–255.

    CAS  Google Scholar 

  • Chen, Y-H., and Yang, J. T., 1977, Two point calibration of circular dichrometers with d-10-camphorsulphonic acid, Anal. Lett. 10:1195–1207.

    CAS  Google Scholar 

  • Chen, Y-H., Yang, J. T., and Martinez, H., 1972, Determination of the secondary structures of proteins by circular dichroism and optical rotatory dispersion, Biochemistry 11:4120–4132.

    PubMed  CAS  Google Scholar 

  • Chen, Y-H., Yang, J. T., and Chan, K. H., 1974, Determination of the helix and β-form of proteins in aqueous solution by circular dichroism, Biochemistry 13:3350–3359.

    PubMed  CAS  Google Scholar 

  • Compton, L. A., and Johnson, W. C., Jr., 1986, Analysis of protein circular dichroism spectra for secondary structure using a simple matrix multiplication, Anal. Chem. 155:155–167.

    CAS  Google Scholar 

  • Cotton, M. A., 1896, Recherches sur l’absorption et la dispersion de la lumière par les milieux doués du pouvoir rotatoire, Ann. Chim. Phys. VII 8:347–437.

    CAS  Google Scholar 

  • Delepierre, M., Dobson, C. M., Karplus, M., Poulsen, F. M., States, D. J., and Wedin, R. E., 1987, Electrostatic effects and hydrogen exchange behaviour in proteins: The pH dependence of exchange rates in lysozyme, J. Mol. Biol. 197:111–130.

    PubMed  CAS  Google Scholar 

  • Diem, M., Gotkin, P. J., Kupfer, J. M., and Nafie, L. A., 1978, Vibrational circular dichroism in amino acids and peptides. 2. Simple alanyl peptides, J. Am. Chem. Soc. 100:5644–5650.

    CAS  Google Scholar 

  • Elöve, G. A., Chaffotte, A. F., Roder, H., and Goldberg, M. E., 1992, Early steps in cytochrome c folding probed by time-resolved circular dichroism and fluorescence spectroscopy, Biochemistry 31:6876–6883.

    PubMed  Google Scholar 

  • Elwell, M. L., and Schellman, J. A., 1977, Native properties and thermal stability of wild type and two mutant lysozymes, Biochim. Biophys. Acta 494:367–383.

    PubMed  CAS  Google Scholar 

  • Eglinton, D. G., Johnson, M. K., Thomson, A. J., Gooding, P. E., and Greenwood, C., 1980, Near infra-red magnetic and natural circular dichroism of cytochrome c oxidase, Biochem. J. 191:319–331.

    PubMed  CAS  Google Scholar 

  • Eposti, M. D., Crimi, M., Körtner, C., Kröger, A., and Link, T, 1991, The structure of dihaem cytochrome b of fumarate reductase in Wolinella succinogenes: Circular dichroism and sequence analysis studies, Biochim. Biophys. Acta 1056:243–249.

    Google Scholar 

  • Gans, P., 1980, Vibrational spectroscopy, in: An Introduction to Spectroscopy for Biochemists, (S. B. Brown, ed.), Academic Press, London, pp. 148–234.

    Google Scholar 

  • Goodman, M., Verdini, A. S., Toniolo, C., Phillips, W. D., and Bovey, F. A., 1969, Selective criteria for the critical size for helix formation in oligopeptides, Proc. Natl. Acad. Sci. USA 64:444–450.

    PubMed  CAS  Google Scholar 

  • Goto, Y., Takahashi, N., and Fink, A. L., 1990a, Mechanism of acid-induced folding of proteins, Biochemistry 29:3480–3488.

    PubMed  CAS  Google Scholar 

  • Goto, Y., Calciano, L. J., and Fink, A. L., 1990b, Acid-induced folding of proteins, Proc. Natl. Acad. Sci. USA 87:573–577.

    PubMed  CAS  Google Scholar 

  • Greenfield, N., and Fasman, G. D., 1969, Computed circular dichroism spectra for the evaluation of protein conformation, Biochemistry 8:4108–4116.

    PubMed  CAS  Google Scholar 

  • Gross, K.P, and Schnepp, O., 1977, Improved circular dichroism instrument in the vacuum ultraviolet, Rev. Sci. Instrum. 48:362–363.

    Google Scholar 

  • Grosse, R., Malur, J., Meiske, W., and Repke, K. R. H., 1974, Statistical behaviour and suitability of protein derived circular dichroic basis spectra for the determination of globular protein information, Biochim. Biophys. Acta 359:33–46.

    PubMed  CAS  Google Scholar 

  • Gupta, V. P., and Keiderling, T. A., 1992, Vibrational CD of the amide II band in some model polypeptides and proteins, Biopolymers 32:239–248.

    PubMed  CAS  Google Scholar 

  • Hadden, J. M., Bloemendal, M., Haris, P. I., Srai, S. K. S., and Chapman, D., 1994, Fourier transform infrared spectroscopy and differential scanning calorimetry of transferons: Human serum transferrin, rabbit serum transferrin and human lactoferrin, Biochim. Biophys. Acta 205:59–67.

    Google Scholar 

  • Hasumi, H., 1980, Kinetic studies on isomerization of ferricytochrome c in alkaline and acid pH ranges by the circular dichroism stopped-flow method, Biochim. Biophys. Acta 626:265–276.

    PubMed  CAS  Google Scholar 

  • Hennessey, J. P., Jr., and Johnson, W. C., Jr., 1981, Information content in the circular dichroism of proteins, Biochemistry 20:1085–1094.

    PubMed  CAS  Google Scholar 

  • Hennessey, J. P., Jr., and Johnson, W. C., Jr., 1982, Experimental errors and their effect on analyzing circular dichroism spectra of proteins, Anal. Biochem. 125:177–188.

    PubMed  CAS  Google Scholar 

  • Hirasawa, M., Chang, K. T., Morrow, K. J., and Knaff, D. B., 1989, Biochim. Biophys. Acta 977:150–156.

    CAS  Google Scholar 

  • Hvidt, S., and Lehrer, S. S., 1992, Thermally induced chain exchange of frog αβ-tropomyosins, Biophys. Chem. 45:51–59.

    PubMed  CAS  Google Scholar 

  • Jackson, M., Haris, P. I., and Chapman, D., 1989, Fourier transform infrared spectroscopic studies of lipids, polypeptides and proteins, J. Mol. Struct. 214:329–355.

    CAS  Google Scholar 

  • Jirgensons, B., 1973, Optical activity of proteins and other macromolecules, Mol. Biol. Biochem. 5:1–191.

    Google Scholar 

  • Jiskoot, W., Bloemendal, M., van Haeringen, B., van Grondelle, R., Beuvery, E. C., Herron, J. N., and Crommelin, D. J. A., 1991, Non-random conformation of a mouse IgG2a monoclonal antibody at low pH, Eur. J. Biochem. 201:223–232.

    PubMed  CAS  Google Scholar 

  • Johnson, W. C., Jr., 1971, A circular dichroism spectrometer for the vacuum ultraviolet, Rev. Sci. Instrum. 42:1283–1286.

    PubMed  CAS  Google Scholar 

  • Johnson, W. C., Jr., 1986, Extending circular dichroism spectra into the vacuum UV and its application to proteins, Photochem. Photobiol. 44:307–313.

    PubMed  CAS  Google Scholar 

  • Johnson, W. C., Jr., 1988, Secondary structure of proteins through circular dichroism spectroscopy, Annu. Rev. Biophys. Biophys. Chem. 17:145–166.

    PubMed  CAS  Google Scholar 

  • Johnson, W. C., Jr., 1990, Protein secondary structure and circular dichroism: A practical guide, Proteins 7:205–214.

    PubMed  CAS  Google Scholar 

  • Kahn, P. C., 1979, The interpretation of near-ultraviolet circular dichroism, in: Methods in Enzymology, Vol. 61 (C. H. W. Hirs and S. N. Timasheff, eds.), Academic Press, San Diego, CA, pp. 339–377.

    Google Scholar 

  • Keiderling, T. A., 1981, Vibrational circular dichroism, Appl. Spectrosc. Rev. 17:189–226.

    CAS  Google Scholar 

  • Keiderling, T. A., 1986, Vibrational CD of biopolymers, Nature 322:851–852.

    Google Scholar 

  • Komai, H., Massey, V., and Palmer, G., 1969, The preparation and properties of deflavoxanthineoxidase, J. Biol. Chem. 244:1692–1700.

    PubMed  CAS  Google Scholar 

  • Kuwajima, K., 1989, The molten globule state as a clue for understanding the folding and cooperativity of globular protein structure, Proteins 6:87–103.

    PubMed  CAS  Google Scholar 

  • Kuwajima, K., Yamaya, H., Miwa, S., Sugai, S., and Nagamura, T., 1987, Rapid formation of secondary structure framework in protein folding studied by stopped-flow circular dichroism, FEBS Lett. 221:115–118.

    PubMed  CAS  Google Scholar 

  • Kuwajima, K., Garvey, E. P., Finn, B. E., Matthews, C. R., and Sugai, S., 1991, Transient intermediates in the folding of dihydrofolate reductase as detected by far-ultraviolet circular dichroism spectroscopy, Biochemistry 30:7693–7703.

    PubMed  CAS  Google Scholar 

  • Labhardt, A. M., 1986, Folding intermediates studied by circular dichroism, in: Methods in Enzymology, Vol. 131 (C. H. W. Hirs and S. N. Timasheff, eds.), Academic Press, San Diego, CA, pp. 126–135.

    Google Scholar 

  • Lee, D. C., 1985, Infrared spectroscopic studies of biological and model membranes, Ph.D. thesis, Royal Free Hospital School of Medicine, London, pp. 62, 71.

    Google Scholar 

  • Lee, D. C., Haris, P. I., Chapman, D., and Mitchell, R. C., 1990, Determination of protein secondary structure using factor analysis of infrared spectra, Biochemistry 29:9185–9193.

    PubMed  CAS  Google Scholar 

  • Leichtling, B. H., and Klotz, I. M., 1966, Catalysis of hydrogen-deuterium exchange in polypeptides, Biochemistry 5:4026–4037.

    CAS  Google Scholar 

  • Lewis, J. W., Goldbeck, R. A., Kliger, D. S., Xie, X., Dunn, R. C., and Simon, J. D., 1992, Time-resolved circular dichroism spectroscopy: Experiment, theory, and applications to biological systems, J. Phys. Chem. 96:5243–5254.

    CAS  Google Scholar 

  • Lewis, P. N., Momany, F. A., and Scheraga, H. A., 1973, Chain reversals in proteins, Biochim. Biophys. Acta 303:211–229.

    PubMed  CAS  Google Scholar 

  • Lipp, E. D., and Nafie, L. A., 1984, Fourier transform infrared vibrational circular dichroism: Improvement in methodology and mid-infrared spectral results, Appl. Spectr. 38:20–26.

    CAS  Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J., 1951, Protein measurement with the folin phenol reagent, J. Biol. Chem. 193:265–275.

    PubMed  CAS  Google Scholar 

  • Lowry, T. M., and French, H. S., 1932, The rotatory dispersive power of organic compounds. Part XX. Rotatory dispersion and circular dichroism of camphor-β-sulphonic acid in the region of absorption, J. Chem. Soc. 1932:2655–2658.

    Google Scholar 

  • Madison, V., and Schellman, J., 1972, Optical activity of polypeptides and proteins, Biopolymers 11:1041–1076.

    PubMed  CAS  Google Scholar 

  • Malon, P., and Keiderling, T. A., 1988, A solution to the artifact problem in Fourier transform vibrational circular dichroism, Appl. Spectrosc. 42:32–38.

    CAS  Google Scholar 

  • Manavalan, P., and Johnson, W. C., Jr., 1985, Protein secondary structure from circular dichroism spectra, J. Biosci. 8(Suppl): 141–149.

    CAS  Google Scholar 

  • Manavalan, P., and Johnson, W. C., Jr., 1987, Variable selection method improves the prediction of protein secondary structure from circular dichroism spectra, Anal. Biochem. 67:76–85.

    Google Scholar 

  • Manning, M. C., 1989, Underlying assumptions in the estimation of secondary structure content in proteins by circular dichroism spectroscopy—a critical review, J. Pharmac. Biomed. Anal. 7:1103–1119.

    CAS  Google Scholar 

  • Maune, J. F., Beckingham, K., Martin, S. R., and Bayley, P. M., 1992, Circular dichroism studies on calcium binding in two series of Ca2+ binding site mutants of Drosophila melanogaster calmodulin, Biochemistry 31:7779–7786.

    PubMed  CAS  Google Scholar 

  • Molday, R. S., Englander, S. W., and Kallen, R. G., 1972, Primary structure effects on peptide group hydrogen exchange, Biochemistry 11:150–158.

    PubMed  CAS  Google Scholar 

  • Nölting, B., Jung, C., and Snatzke, G., 1992, Multichannel circular dichroism investigations of the structural stability of bacterial cytochrome p-450, Biochim. Biophys. Acta 1100:171–176.

    PubMed  Google Scholar 

  • Osborne, G. A., Cheng, J. C., and Stephens, P. J., 1973, A near-infrared circular dichroism and magnetic circular dichroism instrument, Rev. Sci. Instrum. 44:10–15.

    CAS  Google Scholar 

  • Palmer, G., and Massey, V., 1969, Electron paramagnetic resonance and circular dichroism studies on milk xanthine oxidase, J. Biol. Chem. 244:2614–2620.

    PubMed  CAS  Google Scholar 

  • Pancoska, P., and Keiderling, T. A., 1991, Systematic comparison of statistical analyses of electronic and vibrational circular dichroism for secondary structure prediction of selected proteins, Biochemistry 30:6885–6895.

    PubMed  CAS  Google Scholar 

  • Pancoska, P., Yasui, S. C., and Keiderling, T. A., 1989, Enhanced sensitivity to conformation in various proteins. Vibrational circular dichroism results, Biochemistry 28:5917–5923.

    PubMed  CAS  Google Scholar 

  • Pancoska, P., Yasui, S. C., and Keiderling, T. A., 1991, Structural analyses of the vibrational circular dichroism of selected proteins and relationship to secondary structure, Biochemistry 30:5089–5103.

    PubMed  CAS  Google Scholar 

  • Pasteur, M. L., 1848, Sur les relations qui peuvent exister entre la forme cristalline, la composition chimique et le sens de la polarisation rotatoire, Ann. Chim. Phys. III 24:442–459.

    Google Scholar 

  • Paterlini, M. G., Freedman, T. B., and Nafie, L. A., 1986, Vibrational circular dichroism spectra of three conformationally distinct states and an unordered state of poly(-L-lysine) in deuterated aqueous solution, Biopolymers 25:1751–1765.

    PubMed  CAS  Google Scholar 

  • Perczel, A., Hollósi, M., Tusnády, G., and Fasman, G. D., 1991, Convex constraint analysis: A natural deconvolution of circular dichroism curves of proteins, Protein Eng. 4: 669–679.

    PubMed  CAS  Google Scholar 

  • Pribic, R., Van Stokkum, I. H. M., Chapman, D., Haris, P. I., and Bloemendal, M., 1993, Protein secondary structure from Fourier transform infrared and/or circular dichroism spectra, Anal. Biochem. 214:336–378.

    Google Scholar 

  • Provencher, S. W., 1982a, A constrained regularization method for inverting data represented by linear algebraic or integral equations, Comput. Phys. Commun. 27: 213–227.

    Google Scholar 

  • Provencher, S. W., 1982b, CONTIN, a general purpose constrained regularization program for inverting noisy linear algebraic and integral equation, Comput. Phys. Commun. 27:229–242.

    Google Scholar 

  • Provencher, S. W., and Glöckner, J., 1981, Estimation of globular protein secondary structure from circular dichroism, Biochemistry 20:33–37.

    PubMed  CAS  Google Scholar 

  • Rendina, A. R., and Orme-Johnson, W. A., 1978, Glutamate synthase: On the kinetic mechanism of the enzyme from Escherichia coli W., Biochemistry 17:5388–5393.

    PubMed  CAS  Google Scholar 

  • Saxena, V. P., and Wetlaufer, D. B., 1971, A new basis for interpreting the circular dichroic spectra of proteins, Proc. Natl. Acad. Sci. USA 68:969–972.

    PubMed  CAS  Google Scholar 

  • Scharnagl, C., and Schneider, S., 1991, UV-visible absorption and circular dichroism spectra of the subunits of c-phycocyanin. II. A quantitative discussion of the chromophore-protein and chromophore-chromophore interactions in the β-subunit, J. Photochem. Photobiol. B 8:129–158.

    CAS  Google Scholar 

  • Schneider, G., Lindqvist, Y., and Lindqvist, T., 1990, Crystallographic refinement and structure of ribulose-l,5-biphosphate carboxylase from Rhodospirillum rubrum at 1.7 Ã… resolution, J. Mol. Biol. 211:989–1008.

    PubMed  CAS  Google Scholar 

  • Sharonov, Yu. A., 1991, Room temperature and low-temperature magnetic circular dichroism of hemoproteins and related compounds, Sov. Sci. Rev. D Physicochem. Biol. 10:1–118.

    Google Scholar 

  • Shindo, Y., and Nakagawa, M., 1985, Circular dichroism measurements. I. Calibration of a circular dichroism spectrometer, Rev. Sci. Instrum. 56:32–39.

    CAS  Google Scholar 

  • Shire, S. J., Holladay, L. A., and Rinderknecht, E., 1991, Self-association of human and porcine relaxin as assessed by analytical ultracentrifugation and circular dichroism, Biochemistry 30:7703–7711.

    PubMed  CAS  Google Scholar 

  • Siegel, J. B., Steinmetz, W. E., and Long, G. L., 1980, A computer-assisted model for estimating protein secondary structure from circular dichroic spectra: Comparison of animal lactate dehydrogenases, Anal. Biochem. 104:160–167.

    PubMed  CAS  Google Scholar 

  • Singh, H. K., and Wilson, M. T., 1990, Characterization of haem disorder in cytochrome b 5 by circular dichroism, Biochem. Soc. Trans. 18:1272–1273.

    PubMed  CAS  Google Scholar 

  • Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M. D., Fujimoto, E. K., Goeke, N. M., Olson, B. J., and Klenk, D. C., 1985, Measurements of protein using bicinchonic acid, Anal. Biochem. 150:76–85.

    PubMed  CAS  Google Scholar 

  • Snir, J., Frankel, R. A., and Schellman, J. A., 1975, Optical activity of polypeptides in the infrared. Predicted CD of the amide I and amide II bands, Biopolymers 14:173–196.

    PubMed  CAS  Google Scholar 

  • Sreerama, N., and Woody, R. W., 1993, A self-consistent method for the analysis of protein secondary structure from circular dichroism, Anal. Biochem., 209:32–44.

    PubMed  CAS  Google Scholar 

  • Stephens, P. J., Jenson, G. M., Devlin, F. J., Morgan, T. V., Stout, C. D., Martin, A. E., and Burgens, B. K., 1991, Circular dichroism and magnetic circular dichroism of Azobacter vinelandii ferredoxin I, Biochemistry 30:3200–3209.

    PubMed  CAS  Google Scholar 

  • Strickland, E. H., 1974, Aromatic contribution to circular dichroism spectra of proteins, CRC Crit. Rev. Biochem. 2:113–175.

    PubMed  CAS  Google Scholar 

  • Sutherland, J. C., and Holmqvist, B., 1980, Magnetic circular dichroism of biological molecules, Annu. Rev. Biophys. Bioeng. 9:293–326.

    PubMed  CAS  Google Scholar 

  • Teraoka, J., Nakamura, K., Nakahara, Y., Kyogoku, Y., and Sugeta, Y., 1992, Extraordinarily intense vibrational circular dichroism of a metmyoglobin cyanide complex, J. Am. Chem. Soc. 114:9211–9213.

    CAS  Google Scholar 

  • Toumadje, A., Alcorn, S. W., and Johnson, W. C., Jr., 1992, Extending CD spectra of proteins to 168 nm improves the analysis for secondary structure, Anal. Biochem. 200: 321–331.

    PubMed  CAS  Google Scholar 

  • Urbanova, M., Dukor, R. K., Pancoska, P., Gupta, V. P., and Keiderling, T. A., 1991, Comparison of α-lactalbumin and lysozyme using vibrational circular dichroism. Evidence for a difference in crystal and solution structures, Biochemistry 30:10479–10485.

    PubMed  CAS  Google Scholar 

  • Van der Vies, S. M., Viitanen, P. V., Gatenby, A. A., Lorimer, G. H., and Jaenicke, R., 1992, Conformational states of ribulosebiphosphate carboxylase and their interaction with chaperonin 60, Biochemistry 31:3635–3644.

    PubMed  Google Scholar 

  • Vanoni, M. A., Nuzzi, L., Rescigno, M., Zanetti, G., and Curti, B., 1991, The kinetic mechanism of the reactions catalyzed by the glutamate synthase from Azospirillum brasilense, Eur. J. Biochem. 202:181–189.

    PubMed  CAS  Google Scholar 

  • Vanoni, M. A., Edmondson, D. E., Zanetti, G., and Curti, B., 1992, Characterization of the flavins and the iron-sulphur centres of glutamate synthase from Azospirillum brasilense by absorption, circular dichroism, and electron paramagnetic resonance spectroscopy, Biochemistry. 314:4613–4623.

    Google Scholar 

  • Van Stokkum, I. H. M., Spoelder, H. J. W., Bloemendal, M., Van Grondelle, R., and Groen, F. C. A., 1990, Estimation of protein secondary structure and error analysis from circular dichroism spectra, Anal. Biochem. 191:110–118.

    PubMed  Google Scholar 

  • Wu, Y., Huang, H. W., and Olah, G. A., 1990, Method of oriented circular dichroism, Biophys. J. 57:796–806.

    Google Scholar 

  • Yang, J. T., Wu C-S. C., and Martinez, H. B., 1986, Calculation of protein conformation from circular dichroism, in: Methods in Enzymology, Vol. 130 (C. H. W. Hirs and S. N. Timasheff, eds.), Academic Press, San Diego, CA, pp. 208–269.

    Google Scholar 

  • Yasui, S. C., and Keiderling, T. A., 1986, Vibrational circular dichroism of polypeptides. VI. Polytyrosine α-helical and random coil results, Biopolymers 25:5–15.

    PubMed  CAS  Google Scholar 

  • Yasui, S. C., Keiderling, T. A., and Katakai, R., 1987, Vibrational CD on polypeptides. X. A study of a-helical oligopeptides in solution, Biopolymers 26:1407–1420.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bloemendal, M., Johnson, W.C. (1995). Structural Information on Proteins from Circular Dichroism Spectroscopy Possibilities and Limitations. In: Herron, J.N., Jiskoot, W., Crommelin, D.J.A. (eds) Physical Methods to Characterize Pharmaceutical Proteins. Pharmaceutical Biotechnology, vol 7. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1079-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1079-0_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1081-3

  • Online ISBN: 978-1-4899-1079-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics