Skip to main content

Papillomaviruses as Promoting Agents in Human Epithelial Tumors

  • Chapter
DNA Tumor Viruses

Part of the book series: Infectious Agents and Pathogenesis ((IAPA))

Abstract

The papillomaviruses (PVs) are a large family of DNA viruses indigenous to many, if not all, vertebrate species. The unique feature of these viruses is that they all induce primarily benign proliferations of epithelial cells in their natural hosts. Individual members of this family show a high degree of both species specificity and tissue specificity. Squamous or mucosal epithelial cells are the targets of infection. The life cycle of the virus is intimately coupled to the differentiation program of infected tissue. Conversely, expression of the early viral genes interferes with the normal pattern of keratin expression, cell cycle regulation, and terminal differentiation, which ultimately gives rise to aberrant cells. With some viral types, however, these benign proliferations progress into aggressive malignancies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Coggin, J. R., and zur Hausen, H., 1979, Workshop on papillomaviruses and cancer, Cancer Res. 39:545–546.

    Google Scholar 

  2. De Villiers, E.-M., 1994, Human pathogenic papillomavirus types: An update, Curr. Top. Microbiol. Immunol. 186:1–12.

    Article  PubMed  Google Scholar 

  3. McLachlin, C. M., Tate, J. E., Zitz, J. C., Sheets, E. E., and Crum, C. P., 1994, Human papillomavirus type 18 and intraepithelial lesions of the cervix, Am. J. Pathol. 144:141–147.

    PubMed  CAS  Google Scholar 

  4. Lörincz, A. T., Reid, R., Jenson, A. B., Greenberg, M. D., Lancaster, W., and Kurman, R. J., 1992, Human papillomavirus infection on the cervix: Relative risk association of 15 common anogenital types, Obstet. Gynecol. 79:328–337.

    Article  PubMed  Google Scholar 

  5. Czeglédy, J., Evander, M., Hernádi, Z., Gergely, L., and Wadell, G., 1994, Human papillomavirus type 18 E6* mRNA in primary tumors and pelvic lymph nodes of Hungarian patients with squamous cervical cancer, Int. J. Cancer 56:182–186.

    Article  PubMed  Google Scholar 

  6. Scinicariello, F., Dolan, M. J., Nedelcu, L., Tyring, S., and Hilliard, J. K., 1994, Occurrence of human papillomavirus and p53 gene mutations in Kaposi’s sarcoma, Virology 203:153–157.

    Article  PubMed  CAS  Google Scholar 

  7. De Villiers, E.-M., 1989, Heterogeneity of the human papillomavirus group, J. Virol. 63:4898–4903.

    PubMed  Google Scholar 

  8. Barr, B. B. B., Beriton, E. C., McLaren, K., Bunney, M. H., Smith, J. W., Blessing, K., and Hunter, J. A., 1989, Human papillomavirus infection and skin cancer in renal allograft recipients, Lancet 1:124–129.

    Article  PubMed  CAS  Google Scholar 

  9. Baker, C. C., 1987, Sequence analysis of papillomavirus genomes, in: The Papovaviridae, Vol. 2, The Papillomaviruses (N. P. Salzman and P. M. Howley, eds.), Plenum Press, New York, pp. 321–385.

    Google Scholar 

  10. Griffin, B. E., 1980, Structure and genomic organization of SV40 and polyoma virus, in: DNA Tumor Viruses, Part 2 (J. Tooze, ed.), Cold Spring Harbor Laboratory, New York, pp. 61–123.

    Google Scholar 

  11. Mitchell, P. J., and Tjian, R., 1989, Transcriptional regulation in mammalian cells by sequence-specific DNA binding proteins, Science 245:371–378.

    Article  PubMed  CAS  Google Scholar 

  12. Wolffe, A. P., 1994, Architectural transcription factors, Science 264:1100–1101.

    Article  PubMed  CAS  Google Scholar 

  13. Dollard, S. C., Broker, T. R., and Chow, L. T., 1993, Regulation of the human papillomavirus type 11 E6 promoter by viral and host transcription factors in primary human keratinocytes, J. Virol. 67:1721–1726.

    PubMed  CAS  Google Scholar 

  14. Chong, T., Apt, D., Gloss, B., Isa, M., and Bernard, H.-U., 1991, The enhancer of human papillomavirus type 16: Binding sites for the ubiquitous transcription factors oct-1, NFA, TEF-2, NF1, and AP-1 participate in epithelial cell-specific transcription, J. Virol. 65:5933–5943.

    PubMed  CAS  Google Scholar 

  15. Taniguchi, A., Kikuchi, K., Nagata, K., and Yasumoto, S., 1993, A cell-type-specific transcription enhancer of type 16 human papillomavirus (HPV 16)-P97 promoter is defined with HPV-associated cellular events in human epithelial cell lines, Virology 195:500–510.

    Article  PubMed  CAS  Google Scholar 

  16. Romanczuk, H., Villa, L. L., Schlegel, R., and Howley, P. M., 1991, The viral transcriptional regulatory region upstream of the E6 and E7 genes is a major determinant of the differential immortalization activities of human papillomavirus types 16 and 18, J. Virol. 65:2739–2744.

    PubMed  CAS  Google Scholar 

  17. Mack, D. H., and Laimins, L. A., 1991, A keratinocyte-specific transcription factor, KRF-1, interacts with AP-1 to activate expression of human papillomavirus type 18 in squamous epithelial cells, Proc. Natl Acad. Sci. USA 88:9102–9106.

    Article  PubMed  CAS  Google Scholar 

  18. Chan, W.-K., Chong, T., Bernhard, H.-U., and Klock, G., 1990, Transcription of the transforming genes of the oncogenic human papillomavirus-16 is stimulated by tumor promotors through API binding sites, Nucleic Acids Res. 18:763–769.

    Article  PubMed  CAS  Google Scholar 

  19. Cripe, T. P., Haugen, T. H., Turk, J. P., Tabatabai, F., Schmid III, P. G., Durst, M., Gissmann, L., Roman, A., and Turek, L. P., 1987, Transcriptional regulation of the human papillomavirus-16 E6-E7 promoter by a keratinocyte-dependent enhancer, and by viral E2 transactivator and repressor gene products: Implications for cervical carcinogenesis, EMBO J. 6:3745–3753.

    PubMed  CAS  Google Scholar 

  20. Ishiji, T., Lace, M. J., Parkkinen, S., Anderson, R. D., Haugen, T. H., Cripe, T P., Xiao, J.-H., Davidson, I., Chambon, P., and Turek, L. P., 1992, Transcriptional enhancer factor (TEF-1) and its cell-specific co-activator activate human papillomavirus 16 E6 and E7 oncogene transcription in keratinocytes and cervical carcinoma cells, EMBO J. 11:2271–2281.

    PubMed  CAS  Google Scholar 

  21. Androphy, E.J., Lowy, D. R., and Schiller, J. T., 1987, Bovine papillomavirus E2 trans-activating gene product binds to specific sites in papillomavirus DNA, Nature 325:70–73.

    Article  PubMed  CAS  Google Scholar 

  22. Haugen, T. H., Cripe, T. P., Ginder, G. D., Karin, M., and Turek, L. P., 1987, Trarcs-activation of an upstream early gene promoter of bovine papillomavirus-1 by a gene product of the viral E2 gene, EMBO J. 6:145–152.

    PubMed  CAS  Google Scholar 

  23. Moskaluk, C., and Bastia, B, 1987, The E2 “gene” of bovine papillomavirus encodes an enhancer-binding protein, Proc. Natl. Acad. Sci. USA 84:1215–1218.

    Article  PubMed  CAS  Google Scholar 

  24. Phelps, W. C., and Howley, P. M., 1987, Transcriptional trans-activation by the human papillomavirus type 16 E2 gene product, J. Virol. 61:1630–1638.

    PubMed  CAS  Google Scholar 

  25. Lambert, P. F., Spalholz, B. A., and Howley, P. M., 1987, A transcriptional repressor encoded by BPV-1 shares a common carboxy-terminal domain with the E2 transactivator, Cell 50:69–78.

    Article  PubMed  CAS  Google Scholar 

  26. Hirochika, H., Broker, T. R., and Chow, L. T., 1987, Enhancers and transacting E2 transcriptional factors of papillomaviruses, J. Virol. 61:2599–2606.

    PubMed  CAS  Google Scholar 

  27. Giri, I., and Yaniv, M., 1988, Study of the E2 gene product of the cottontail rabbit papillomavirus reveals a common mechanism of transactivation among papillomaviruses, J. Virol. 62:1573–1581.

    PubMed  CAS  Google Scholar 

  28. Chin, M. T., Hirochika, R., Hirochika, H., Broker, T. R., and Chow, L. T., 1988, Regulation of human papillomavirus type 11 enhancer and E6 promoter by activating and repressing proteins from the E2 open reading frame: Functional and biochemical studies, J. Virol. 62:2994–3002.

    PubMed  CAS  Google Scholar 

  29. Hirochika, H., Hirochika, R., Broker, T. R., and Chow, L. T., 1988, Functional mapping of the human papillomavirus type 11 transcriptional enhancer and its interaction with the transacting E2 proteins, Genes Dev. 2:54–67.

    Article  PubMed  CAS  Google Scholar 

  30. Gius, D., Grossmann, S., Bedell, M. A., and Laimins, L. A., 1988, Inducible and constitutive enhancer domains in the noncoding region of human papillomavirus type 18, J. Virol. 62:665–672.

    PubMed  CAS  Google Scholar 

  31. Thierry, F., and Yaniv, M., 1987, The BPV1-E2 transactivating protein can be either an activator or a repressor of the HPV18 regulatory region, EMBO J. 6:3391–3397.

    PubMed  CAS  Google Scholar 

  32. Chin, M. T., Broker, T. R., and Chow, L. T., 1989, Identification of a novel constitutive enhancer element and an associated binding protein: Implications for human papillomavirus type 11 enhancer regulation, J. Virol. 53:2967–2977.

    Google Scholar 

  33. Baker, C. C., Phelps, W. C., Lindgren, V., Braun, M. J., Gonda, M. A., and Howley, P. M., 1987, Structural and transcriptional analysis of human papillomavirus type 16 sequences in cervical carcinoma cell lines, J. Virol. 61:962–971.

    PubMed  CAS  Google Scholar 

  34. Lehn, H., Krieg, P., and Sauer, G., 1985, Papillomavirus genomes in human cervical tumors: Analysis of their transcriptional activity. Proc. Natl. Acad. Sci. USA 82:5540–5544.

    Article  PubMed  CAS  Google Scholar 

  35. Sousa, R., Dostatni, N., and Yaniv, M., 1990, Control of papillomavirus gene expression, Biochim. Biophys. Acta 1032:19–37.

    PubMed  CAS  Google Scholar 

  36. Romanczuk, H., and Howley, P. M., 1992, Disruption of either the El or the E2 regulatory gene of human papillomavirus type 16 increases viral immortalization capacity, Proc. Natl. Acad. Sci. USA 89:3159–3163.

    Article  PubMed  CAS  Google Scholar 

  37. Garcia-Carranca, A., Thierry, F., and Yaniv, M., 1988, Interplay of viral and cellular proteins along the long control region of human papillomavirus type 18, J. Virol. 62:4321–4330.

    PubMed  CAS  Google Scholar 

  38. Gloss, B., Chong, T., and Bernard, H.-U., 1989, Numerous nuclear proteins bind the long control region of human papillomavirus type 16: A subset of 6 of 23 DNasel-protected segments coincides with the location of the cell-type-specific enhancer, J. Virol. 63:1142–1152.

    PubMed  CAS  Google Scholar 

  39. Royer, H. D., Freyaldenhoven, M. P., Napierski, I., Spitkovsky, D. D., Bauknecht, T., and Dathan, N., 1991, Delineation of human papillomavirus type 18 enhancer binding proteins: The intracellular distribution of a novel octamer binding protein p92 is cell cycle regulated, Nucleic Adds Res. 19:2363–2371.

    Article  CAS  Google Scholar 

  40. Sibbet, G. J., and Campo, M. S., 1990, Multiple interactions between cellular factors and the non-coding region of human papillomavirus type 16, J. Gen. Virol. 71:2699–2707.

    Article  PubMed  CAS  Google Scholar 

  41. Chong, T., Chan, W.-K., and Bernard, H.-U., 1990, Transcriptional activation of human papillomavirus 16 by nuclear factor I, API, steroid receptors and a possibly novel transcription factor, PVF: A model for the composition of genital papillomavirus enhancers, Nucleic Adds Res. 18:465–470.

    Article  CAS  Google Scholar 

  42. Herschlag, D., and Johnson, F. B., 1993, Synergism in transcriptional activation: A kinetic view, Genes Dev. 7:173–179.

    Article  PubMed  CAS  Google Scholar 

  43. Heck, D. V., Yee, C. L., Howley, P., and Münger, K., 1992, Efficiency of binding the retino-blastoma protein correlates with the transforming capacity of the E7 oncoproteins of the human papillomaviruses, Proc. Natl. Acad. Sci. USA 89:4442–4446.

    Article  PubMed  CAS  Google Scholar 

  44. Yamashita, T., Segawa, K., Fujinaga, Y., Nishikawa, T., and Fujinaga, K., 1993, Biological and biochemical activity of E7 genes of the cutaneous human papillomavirus type 5 and 8, Oncogene 8:2433–2441.

    PubMed  CAS  Google Scholar 

  45. Armstrong, D. J., and Roman, A., 1993, The anomalous electrophoretic behavior of the human papillomavirus type 16 E7 protein is due to the high content of acidic amino acid residues, Biochem. Biophys. Res. Commun. 192:1380–1387.

    Article  PubMed  CAS  Google Scholar 

  46. Vallee, B. L., Coleman, J. E., and Auld, D. S., 1991, Zinc fingers, zinc clusters, and zinc twists in DNA-binding protein domains, Proc. Natl. Acad. Sci. USA 88:999–1003.

    Article  PubMed  CAS  Google Scholar 

  47. Mclntyre, M. C., Frattini, M. G., Grossman, S. R., and Laimins, L. A., 1993, Human papillomavirus type 18 E7 protein requires intact Cys-X-X-Cys motifs for zinc binding, dimerization, and transformation but not for Rb binding, J. Virol 67:3142–3150.

    Google Scholar 

  48. Stacey, S. N., Eklund, C. Jordan, D., Smith, N. K., Stern, R L., Dillner, J., and Arrand, J. R., 1994, Scanning the structure and antigenicity of HPV-16 E6 and E7 oncoproteins using antipeptide antibodies, Oncogene 9:636–645.

    Google Scholar 

  49. Greenfield, L., Nickerson, J., Penman, S., and Stanley, M., 1991, Human papillomavirus 16 E7 protein is associated with the nuclear matrix, Proc. Natl. Acad. Sci. USA 88:11217–11221.

    Article  PubMed  CAS  Google Scholar 

  50. Dyson, N., Howley, P. M., Münger, K., and Harlow, E., 1989, The human papilloma virus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product, Science 243:934–936.

    Article  PubMed  CAS  Google Scholar 

  51. Ewen, M. E., 1994, The cell cycle and the retinoblastoma protein family, Cancer Metastasis Rev. 13:45–66.

    Article  PubMed  CAS  Google Scholar 

  52. Barbosa, M. S., Edmonds, C., Fisher, C., Schiller, J. T., Lowy, D. R., and Vousden, K. H., 1990, The region of the HPV E7 oncoprotein homologous to adenovirus Ela and SV40 large T antigen contains separate domains for Rb binding and casein kinase II phosphorylation, EMBO J. 9:153–160.

    PubMed  CAS  Google Scholar 

  53. Edmonds, C., and Vousden, K. H., 1989, A point mutational analysis of human papillomavirus type 16 E7 protein, J. Virol. 63:2650–2656.

    PubMed  CAS  Google Scholar 

  54. Firzlaff, J. M., Luscher, B., and Eisenman, R. N., 1991, Negative charge at the casein kinase II phosphorylation site is important for transformation but not for Rb protein binding by the E7 protein of human papillomavirus type 16, Proc. Natl. Acad. Sci. USA 88:5187–5191.

    Article  PubMed  CAS  Google Scholar 

  55. Phelps, W. C., Yee, C. L., Münger, K., and Howley, P. M., 1988, The human papillomavirus type 16 E7 gene encodes transactivation and transformation functions similar to those of adenovirus E1A, Cell 53:539–547.

    Article  PubMed  CAS  Google Scholar 

  56. Nevins, J. R., 1993, Transcriptional activation by the adenovirus E1A proteins, Semin. Virol. 4:25–31.

    Article  CAS  Google Scholar 

  57. Münger, K., and Phelps, W. C., 1993, The human papillomavirus E7 protein as a transforming and transactivating factor. Biochim. Biophys. Acta 1155:111–123.

    PubMed  Google Scholar 

  58. Münger, K., Yee, C. L., Phelps, W. C., Pietenpol, J. A., Moses, H. L., and Howley, P. M., 1991, Biochemical and biological differences between E7 oncoproteins of the high-and low-risk human papillomavirus types are determined by amino-terminal sequences, J. Virol. 65:3943–3948.

    PubMed  Google Scholar 

  59. Yasumoto, S., Burkhardt, A. L., Doninger, J., and DiPaolo, J., 1986, Human papillomavirus type 16 DNA induced malignant transformation of NIH3T3 cells, J. Virol. 57:572–577.

    PubMed  CAS  Google Scholar 

  60. Bedell, M. A., Jones, K. H., Grossman, S. R., and Laimins, L. A., 1989, Identification of human papillomavirus type 18 transforming genes in immortalized and primary cells, J. Virol. 63:1247–1255.

    PubMed  CAS  Google Scholar 

  61. Tanaka, A., Noda, T., Yajima, H., Hatanaka, M., and Ito, Y, 1989, Identification of a transforming gene of human papillomavirus type 16, J. Virol. 63:1465–1469.

    PubMed  CAS  Google Scholar 

  62. Watts, S. L., Phelps, W. C., Ostrow, R. S., Zachow, K. R., and Faras, A. J., 1984, Cellular transformation by human papillomavirus DNA in vitro, Science 225:634–636.

    Article  CAS  Google Scholar 

  63. Banks, L., Edmonds, C., and Vousden, K. H., 1990, Ability of the HPV16 E7 protein to bind RB and induce DNA synthesis is not sufficient for efficient transforming activity in HIH3T3 cells, Oncogene 5:1383–1389.

    PubMed  CAS  Google Scholar 

  64. Cerni, C., Patocka, K., and Meneguzzi, G., 1990, Immortalization of primary rat embryo cells by human papillomavirus type 11 DNA is enhanced upon cotransfer of ras, Virology 177:427–436.

    Article  PubMed  CAS  Google Scholar 

  65. Chester, P. M., and McCance, D. J., 1989, Human papillomavirus types 6 and 16 in cooperation with Ha-ras transform secondary rat embryo fibroblasts, J. Gen. Virol. 70:353–365.

    Article  Google Scholar 

  66. Cerni, C., Binetruy, B., Schiller, J. T., Lowy, D. R., Meneguzzi, C., and Cuzin, F., 1989, Successive steps in the process of immortalization identified by transfer of separate bovine papillomavirus genes into rat fibroblasts, Proc. Natl. Acad. Sci. USA 86:3266–3270.

    Article  PubMed  CAS  Google Scholar 

  67. Kaur, P., and McDougall, J. K., 1989, HPV-18 immortalization of human keratinocytes, Virology 173:302–310.

    Article  PubMed  CAS  Google Scholar 

  68. Pirisi, L., Yasumoto, S., Feller, M., Doninger, J., and DiPaolo, J. A., 1987, Transformation of human fibroblasts and keratinocytes with human papillomavirus type 16 DNA, J. Virol. 61:1061–1066.

    PubMed  CAS  Google Scholar 

  69. Hawley-Nelson, P., Vousden, K. H., Hubbert, N. L., Lowy, D. R., and Schiller, J. T., 1989, HPV16 E6 and E7 proteins cooperate to immortalize human foreskin keratinocytes, EMBO J. 8:3905–3910.

    PubMed  CAS  Google Scholar 

  70. Munger, K., Phelps, W. C., Bubb, V., Howley, P. M., and Schlegel, R., 1989, The E6 and E7 genes of the human papillomavirus type 16 together are necessary and sufficient for transformation of primary human keratinocytes, J. Virol. 63:4417–4421.

    PubMed  CAS  Google Scholar 

  71. McCance, D.J., Kopan, R., Fuchs, E., and Laimins, L. A., 1988, Human papillomavirus type 16 alters human epithelial cell differentiation in vitro. Proc. Natl. Acad. Sci. USA 85:7169–7173.

    Article  PubMed  CAS  Google Scholar 

  72. Grossman, S. R., and Laimins, L. A., 1989, E6 protein of human papillomavirus type 18 binds zinc, Oncogene 4:1089–1093.

    PubMed  CAS  Google Scholar 

  73. Grossman, S. R., Mora, S., and Laimins, L. A., 1989, Intracellular localization and DNA-binding properties of human papillomavirus type 18 E6 protein expressed with a baculovirus vector, J. Virol. 63:366–374.

    PubMed  CAS  Google Scholar 

  74. Liang, X. H., Volkmann, M., Klein, R., Herman, B., and Lockett, S. J., 1993, Co-localization of the tumor-suppressor protein p53 and human papillomavirus E6 protein in human cervical carcinoma cell lines, Oncogene 8:2645–2652.

    PubMed  CAS  Google Scholar 

  75. Keen, N., Elston, R., and Crawford, L., 1994, Interaction of the E6 protein of human papillomavirus with cellular proteins, Oncogene 9:1493–1499.

    PubMed  CAS  Google Scholar 

  76. Desaintes, C., Hallez, S., van Alphen, P., and Burny, A., 1992, Transcriptional activation of several heterologous promoters by the E6 protein of human papillomavirus type 16, J. Virol. 66:325–333.

    PubMed  CAS  Google Scholar 

  77. Sedman, S. A., Barbosa, M. S., Vass, W. C., Hubbert, N. L., Haas, J. A., Lowy, D. R., and Schiller, J. T., 1991, The full-length E6 protein of human papillomavirus type 16 has transforming and trans-activating activities and cooperates with E7 to immortalize keratinocytes in culture, J. Virol 65:4860–4866.

    PubMed  CAS  Google Scholar 

  78. Smotkin, D., Prokoph, H., and Wettstein, F. O., 1989, Oncogenic and nononcogenic human genital papillomaviruses generate the E7 mRNA by different mechanisms, J. Virol. 63:1441–1447.

    PubMed  CAS  Google Scholar 

  79. Kern, S. E., Kinzler, K. W., Bruskin, A., Jarosz, D., Friedman, P., Prives, C., and Vogelstein, B., 1991, Identification of p53 as a sequence-specific DNA-binding protein, Science 252:1708–1711.

    Article  PubMed  CAS  Google Scholar 

  80. Mietz, J. A., Unger, T., Huibregtse, J. M., and Howley, P. M., 1992, The transcriptional transactivation function of wild type p53 is inhibited by SV40 large T-antigen and by HPV-16 E6 oncoprotein, EMBO J. 11:5013–5020.

    PubMed  CAS  Google Scholar 

  81. Pirn, D., Storey, A., Thomas, M., Massimi, A., and Banks, L., 1994, Mutational analysis of HPV-18 E6 identifies domains required for p53 degradation in vitro, abolition of p53 transactivation in vivo and immortalization of primary BMK cells, Oncogene 9:1869–1876.

    Google Scholar 

  82. Scheffner, M., Werness, B. A., Huibregtse, J. M., Levine, A. J., and Howley, P. M., 1990, The E6 oncoprotein encoded by human papillomavirus type 16 and 18 promotes the degradation of p53, Cell 63:1129–1136.

    Article  PubMed  CAS  Google Scholar 

  83. Huibregtse, J. M., Scheffher, M., and Howley, P. M., 1991, A cellular protein mediates association of p53 with the 6 oncoprotein of human papillomavirus types 16 or 18, EMBO J. 10:4129–4135.

    PubMed  CAS  Google Scholar 

  84. Scheffner, M., Huibregtse, J. M., Vierstra, R. D., and Howley, P. M., 1993, The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53, Cell 75:495–505.

    Article  PubMed  CAS  Google Scholar 

  85. Huibregtse, J. M., Scheffner, M., and Howley, P. M, 1993, Cloning and expression of the cDNA for E6-AP, a protein that mediates the interaction of the human papillomavirus E6 oncoprotein with p53, Mol. Cell. Biol. 13:775–784.

    PubMed  CAS  Google Scholar 

  86. Medcalf, E. A., and Milner, J., 1993, Targeting and degradation of p53 by E6 of human papillomavirus type 16 is preferentially for the 1620+ conformation, Oncogene 8:2847–2851.

    PubMed  CAS  Google Scholar 

  87. Lechner, M. S., Mack, D. H., Finicle, A. B., Crook, T., Vousden, K. H., and Laimins, L. A., 1992, Human papillomavirus E6 proteins bind p53 in vivo and abrogate p53-mediated repression of transcription, EMBO J. 11:3045–3052.

    PubMed  CAS  Google Scholar 

  88. Band, V., Dalai, S., Delmolino, L., and Androphy, E. J., 1993, Enhanced degradation of p53 protein in HPV-6 and BPV-1 E6-immortalized human mammary epithelial cells, EMBO J. 12:1847–1852.

    PubMed  CAS  Google Scholar 

  89. Crook, T., Fisher, C., Masterson, P.J., and Vousden, K. H., 1994, Modulation of transcriptional regulatory properties of p53 by HPV E6, Oncogene 9:1225–1230.

    PubMed  CAS  Google Scholar 

  90. Crook, S. T., Tidy, J. A., and Vousden, K. H., 1991, Degradation of p53 can be targeted by HPV E6 sequences distinct from those required for p53 binding and transactivation, Cell 67:547–556.

    Article  PubMed  CAS  Google Scholar 

  91. Lamberti, C., Morrissey, L. C., Grossman, S. R., and Androphy, E. J., 1990, Transcriptional activation by the papillomavirus E6 zinc finger oncoprotein, EMBO J. 9:1907–1913.

    PubMed  CAS  Google Scholar 

  92. Koyono, T., Hiraiwa, A., and Ishibashi, M., 1992, Differences in transforming activity and coded amino acid sequence among E6 genes of several papillomaviruses associated with epidermodysplasia verruciformis, Virology 186:628–639.

    Article  Google Scholar 

  93. Storey, A., and Banks, L., 1993, Human papillomavirus type 16 E6 gene cooperates with EJ-ras to immortalize primary mouse cells, Oncogene 8:919–924.

    PubMed  CAS  Google Scholar 

  94. Liu, Z., Ghai, J., Ostrow, R. S., McGlennen, R. C., and Faras, A. J., 1994, The E6 gene of human papillomavirus type 16 is sufficient for transformation of baby rat kidney cells in cotransfection with activated Ha-ras Virology 201:388–396.

    Article  PubMed  CAS  Google Scholar 

  95. Shay, J. W., Wright, W. E., Brasiskyte, D., and Van der Haegen, B. A., 1993, E6 of human papillomavirus type 16 can overcome the M1 stage of immortalization in human mammary epithelial cells but not human fibroblasts, Oncogene 8:1407–1413.

    PubMed  CAS  Google Scholar 

  96. Shay, J. W., Wright, W. E., and Werbin, H., 1991, Defining the molecular mechanisms of human cell immortalization, Biochim. Biophys. Acta 1072:1–7.

    PubMed  CAS  Google Scholar 

  97. Cullen, A. P., Reid, R., Campion, M., and Lorincz, A. T., 1991, Analysis of the physical state of different human papillomavirus DNAs in intraepithelial and invasive cervical neoplasm, J. Virol. 65:606–612.

    PubMed  CAS  Google Scholar 

  98. Chen, L., Ashe, S., Singhal, M. C., Galloway, D. A., Hellström, I., and Hellström, K. E., 1993, Metastatic conversion of cells by expression of human papillomavirus type 16 E6 and E7 genes. Proc. Natl. Acad. Sci. USA 90:6523–6527.

    Article  PubMed  CAS  Google Scholar 

  99. Böhm, S., Wilczynski, S. P., Pfister, H., and Iftner, T, 1993, The predominant mRNA class in HPV16-infected genital neoplasias does not encode the E6 or the E7 protein, Int. J. Cancer 55:791–798.

    Article  PubMed  Google Scholar 

  100. Conrad, M., Bubb, V.J., and Schlegel, R., 1993, The human papillomavirus type 6 and 16 E5 proteins are membrane-associated proteins which associate with the 16-kilodalton poreforming protein, J. Virol. 67:6170–6178.

    PubMed  CAS  Google Scholar 

  101. Chen, S.-L., and Mounts, P., 1990, Transforming activity of E5a protein of human papilloma-virus type 6 in NIH 3T3 and C127 cells, J. Virol. 64:3226–3233.

    PubMed  CAS  Google Scholar 

  102. Pirn, D., Collins, M., and Banks, L., 1992, Human papillomavirus type 16 E5 gene stimulates the transforming activity of the epidermal growth factor receptor, Oncogene 7:27–32.

    Google Scholar 

  103. Leptak, C., Ramon, S., Cajal, Y., Kulke, R., Horowitz, B. H., Riese, D. J., Dotto, G. P., and DiMaio, D., 1991, Tumorigenic transformation of murine keratinocytes by the E5 gene of bovine papillomavirus type 1 and human papillomavirus type 16, J. Virol 65:7078–7083.

    PubMed  CAS  Google Scholar 

  104. Conrad, M., Goldstein, D., Andersson, T., and Schlegel, R., 1994, The E5 protein of HPV-6, but not of HPV-16, associates efficiently with cellular growth factor receptors, Virology 200:796–800.

    Article  PubMed  CAS  Google Scholar 

  105. Bouvard, V., Matlashewski, G., Gu, Z.-M., Storey, A., and Banks, L., 1994, The human papillomavirus type 16 E5 gene cooperates with the E7 gene to stimulate proliferation of primary cells and increase viral gene expression, Virology 203:73–80.

    Article  PubMed  CAS  Google Scholar 

  106. Lambert, P. E, 1991, Papillomavirus DNA replication, J. Virol 65:3417–3420.

    PubMed  CAS  Google Scholar 

  107. Ustav, M., and Stenlund, A., 1991, Transient replication of BPV-1 requires two viral polypeptides encoded by the El and E2 open reading frames, EMBO J. 10:449–458.

    PubMed  CAS  Google Scholar 

  108. Wilson, V. G., and Ludes-Meyers, J., 1991, A bovine papillomavirus El-related protein binds specifically to bovine papillomavirus DNA, J. Virol 65:5314–5322.

    PubMed  CAS  Google Scholar 

  109. Seo, Y-S., Müller, F. Lusky, M., and Hurwitz, J., 1993, Bovine papilloma virus (BPV)-encoded El protein contains multiple activities required for BPV DNA replication, Proc. Natl Acad. Sci. USA 90:702–706.

    Article  PubMed  CAS  Google Scholar 

  110. Yang, L., Mohr, I., Fouts, E., Lim, D. A., Nohaile, M., and Botchan, M, 1993, The El protein of bovine papilloma virus 1 is an ATP-dependent DNA helicase, Proc. Natl. Acad. Sci. USA 90:5086–6090.

    Article  PubMed  CAS  Google Scholar 

  111. Mohr, I. J., Clark, R., Sun, S., Androphy, E. J., MacPherson, P., and Botchan, M. R., 1990, Targeting the El replication protein to the papillomavirus origin of replication by complex formation with the E2 transactivator, Science 250:1694–1699.

    Article  PubMed  CAS  Google Scholar 

  112. Lusky, M., and Fontane, E., 1991, Formation of the complex of bovine papillomavirus El and E2 proteins is modulated by E2 phosphorylation and depends upon sequences within the carboxyl terminus of El, Proc. Natl Acad. Sci. USA 88:6363–6367.

    Article  PubMed  CAS  Google Scholar 

  113. Bream, G. L., Ohmstede, C.-A., and Phelps, W. C., 1993, Characterization of human papillomavirus type El and E2 proteins expressed in insect cells, J. Virol. 67:2655–2663.

    PubMed  CAS  Google Scholar 

  114. Hughes, F. J., and Romanos, M. A., 1993, El protein of human papillomavirus is a DNA helicase/ATPase, Nucleic Acids Res. 25:5817–5823.

    Article  Google Scholar 

  115. Hedge, R. S., Grosman, S. R., Laimins, L. A., and Sigler, P. B., 1992, Crystal structure at 1.7 A of the bovine papillomavirus-1 E2 DNA-binding domain bound to its DNA target, Nature 359:505–512.

    Article  Google Scholar 

  116. Nasseri, M., Gage, J. R., Lorincz, A., and Wettstein, F. O., 1991, Human papillomavirus type 16 immortalized cervical keratinocytes contain transcripts encoding E6, E7, and E2 initiated at the p97 promoter and express high levels of E7, Virology 184:131–140.

    Article  PubMed  CAS  Google Scholar 

  117. Sterling, J. C., Skeeper, J. N., and Stanley, M. A., 1993, Immuno-electronmicroscopical localization of human papillomavirus type 16 LI and E4 proteins in cervical keratinocytes cultured in vitro, J. Invest. Dermatol 100:154–158.

    Article  PubMed  CAS  Google Scholar 

  118. Roberts, S., Ashmole, I., Sheehan, T. M. T., Davies, A. H., and Gallimore, P. H., 1994, Human papillomavirus type 1 E4 protein is a zinc-binding protein, Virology 202:865–874.

    Article  PubMed  CAS  Google Scholar 

  119. Chan, S.-Y., Bernard, H.-U., Ong, C.K., Chan, S.-P., Hofmann, B., and Delius, H., 1992, Phylogenetic analysis of 48 papillomavirus types and 28 subtypes and variants: A showcase for the molecular evolution of DNA viruses, J. Virol 66:5714–5725.

    PubMed  CAS  Google Scholar 

  120. Hagensee, M. E., Yaegashi, N., and Galloway, D., 1993, Self-assembly of human papillomavirus type 1 capsids by expression of the LI protein alone or by coexpression of the LI and L2 capsid proteins, J. Virol. 67:315–322.

    PubMed  CAS  Google Scholar 

  121. Kirnbauer, R., Taub, J., Greenstone, H., Roden, R., Durst, M., Gissmann, L., Lowy, D. R., and Schiller, J. T., 1993, Efficient self-assembly of human papillomavirus type 16 LI and L1-L2 into virus-like particles, J. Virol. 67:6929–6936.

    PubMed  CAS  Google Scholar 

  122. Christensen, N. D., Höpfl, R., DiAngelo, S. L., Cladel, N. M., Patrick, S. D., Welsh, P. A., Budgeon, L. R., Reed, C. A., and Kreider, J. W., 1994, Assembled baculovirus-expressed human papillomavirus type 11 LI capsid protein virus like particles are recognized by neutralizing monoclonal antibodies and induce high titres of neutralizing antibodies, J. Gen. Virol. 75:2271–2276.

    Article  PubMed  CAS  Google Scholar 

  123. Zhou, J., Stenzel, D. J., Sun, X.-Y., and Frazer, I. H., 1993, Synthesis and assembly of infectious bovine papillomavirus particles in vitro, J. Gen. Virol. 71:2185–2190.

    Article  Google Scholar 

  124. Zhou, J., Sun, X.-Y., Louis, K., and Frazer, I. H., 1994, Interaction of human papillomavirus (HPV) type 16 capsid proteins with HPV DNA requires an intact L2 N-terminal sequence, J. Virol. 68:619–625.

    PubMed  CAS  Google Scholar 

  125. Carter, J.J., Hagensee, M. B., Lee, S. K., McKnight, B., Koutsky, L. A., and Galloway, D. A., 1994, Use of HPV1 capsids produced by recombinant vaccinia viruses in an ELISA to detect serum antibodies in people with foot warts, Virology 199:284–491.

    Article  PubMed  CAS  Google Scholar 

  126. Huber, H. E., Edwars, G., Goddhart, P. J., Patrick, D. R., Huang, P. S., Ivey-Hoyle, M., Barnett, S. F., Oliff, A., and Heimbrook, D. C., 1993, Transcription factor E2F binds DNA as a heterodimer, Proc. Natl. Acad. Sci. USA 90:3525–3529.

    Article  PubMed  CAS  Google Scholar 

  127. Chellappan, S. P., Hiebert, S., Mudryj, M., Horowitz, J. M., and Nevins, J. R., 1991, The E2F transcription factor is a cellular target for the RB protein, Cell 65:1053–1061.

    Article  PubMed  CAS  Google Scholar 

  128. Hu, Q., Lees, J. A., Buchkovich, K.J., and Harlow, E., 1992, The retinoblastoma protein physically associates with the human cdc2 kinase, Mol. Cell. Biol. 12:971–980.

    PubMed  CAS  Google Scholar 

  129. Bates, S., Parry, D., Bonetta, L., Vousden, K. H., and Dickson, C., 1994, Absence of cyclin D/cdk complexes in cells lacking functional retinoblastoma protein, Oncogene 9:1633–1640.

    PubMed  CAS  Google Scholar 

  130. Huang, P. S., Patrick, D. R., Edwards, G., Goodhart, P. J., Huber, H., Miles, L., Durfee, T., Becherer, K., Chen, P.-L., Yeh, S.-H., Yang, Y., Killburn, A. E., Lee, W.-H., and Elledge, S. J., 1993, The retinoblastoma protein associates with the protein phosphatase type 1 catalytic subunit, Genes Dev. 7:555–569.

    Article  Google Scholar 

  131. Whyte, P., Williamson, N. M., and Harlow, E., 1989, Cellular targets for transformation by the adenovirus E1A proteins, Cell 56:67–75.

    Article  PubMed  CAS  Google Scholar 

  132. Chellappan, S., Kraus, V. B., Kroger, B., Munger, K., Howley, P. M., Phelps, W. C., and Nevins, J. R., 1992, Adenovirus E1A, simian virus 40 tumor antigen, and human papillomavirus E7 protein share the capacity to disrupt the interaction between transcription factor E2F and the retinoblastoma gene product, Proc. Natl. Acad. Sci. USA 89:4549–4553.

    Article  PubMed  CAS  Google Scholar 

  133. Wu, E. W., Clemens, K. E., Heck, V., and Münger, K., 1993, The human papillomavirus E7 oncoprotein and the cellular transcription factor E2F bind to separate sites on the retinoblastoma tumor suppressor protein, J. Virol. 67:2402–2407.

    PubMed  CAS  Google Scholar 

  134. Lam, E. W.-E., Morris, J. D. H., Davies, R., Crook, T., Watson, R. J., and Vousden, K., 1994, HPV16 E7 oncoprotein deregulates B-myb expression: Correlation with targeting of pl07/E2F complexes, EMBO J. 13:871–878.

    PubMed  CAS  Google Scholar 

  135. Oswald, F., Lovec, H., Möröy, T., and Lipp, M., 1994, E2F-dependent regulation of human MYC: Transactivation by cyclins D1 and A overrides tumor suppressor protein functions, Oncogene 9:2029–2036.

    PubMed  CAS  Google Scholar 

  136. Singh, P., Wong, S. H., and Hong, W., 1994, Overexpression of E2F-1 in rat embryo fibroblasts leads to neoplastic transformation, EMBO J. 13:3329–3338.

    PubMed  CAS  Google Scholar 

  137. Kaelin, W. G., Pallas, D. C., DeCaprio, J. A., Kaye, F. J., and Livingston, D. M., 1991, Identification of cellular proteins that can interact specifically with the T/ElA-binding region of the retinoblastoma gene product, Cell 64:521–532.

    Article  PubMed  CAS  Google Scholar 

  138. Ewen, M. E., Sluss, H. K., Sherr, C. J., Matsushime, H., Kato, J.-Y, and Livingston, D. M., 1993, Functional interactions of the retinoblastoma protein with mammalian D-type cyclins, Cell 73:487–497.

    Article  PubMed  CAS  Google Scholar 

  139. Dowdy, S. F., Hinds, P. W., Louie, K., Reed, S., Arnold, A., and Weinberg, R. A., 1993, Physical interaction of the retinoblastoma protein with human D cyclins, Cell 3:499–511.

    Article  Google Scholar 

  140. Pagano, M., Durst, M. Joswig, S., Draetta, G., and Jansen-Dürr, P., 1992, Binding of the human E2F transcription factor to the retinoblastoma protein but not to cyclin A is abolished in HPV-16-immortalized cells, Oncogene 7:1681–1986.

    PubMed  CAS  Google Scholar 

  141. Davies, R., Hicks, R., Crook, T., Morris, J., and Vousden, K., 1993, Human papillomavirus type 16 E7 associates with a histone HI kinase and with pl07 through sequences necessary for transformation, J. Virol. 67:2521–2528.

    PubMed  CAS  Google Scholar 

  142. Dyson, N., Guida, P., Munger, K., and Harlow, E., 1992, Homologous sequences in adenovirus E1A and human papillomavirus E7 proteins mediate interaction with the same set of cellular proteins, J. Virol. 66:6893–6902.

    PubMed  CAS  Google Scholar 

  143. Tommasino, M., Adamczewski, J. P., Carlotti, F., Barth, C. F., Manetti, R., Contorni, M., Cavalieri, F., Hunt, T., and Crawford, L., 1993, HPV16 E7 protein associates with the protein kinase p33 cdk2 and cyclin A, Oncogene 8:195–202.

    PubMed  CAS  Google Scholar 

  144. Arroyo, M., Bagchi, S., and Raychaudhuri, P., 1993, Association of the human papillomavirus type 16 E7 protein with the S-phase-specific E2F-cyclin A complex, Mol. Cell. Biol. 13:6537–6546.

    PubMed  CAS  Google Scholar 

  145. Chinami, M., Moriyama, K., Fukumaki, Y., Terada, M., and Shingu, M., 1993, Association of RNA with human papillomavirus E7 protein of type 16 but not type 6b, Biochem. Biophys. Res. Commun. 197:1609–1614.

    Article  PubMed  CAS  Google Scholar 

  146. Werness, B. A., Levine, A. J., and Howley, P. M., 1990, Association of human papillomavirus types 16 and 18 E6 proteins with p53, Science 248:76–79.

    Article  PubMed  CAS  Google Scholar 

  147. Lechner, M. S., and Laimins, L. A., 1994, Inhibition of p53 DNA binding by human papillomavirus E6 proteins, J. Virol. 68:4262–4273.

    PubMed  CAS  Google Scholar 

  148. Seto, E., Usheva, A., Zambetti, G. P., Momand, J., Horikoshi, N., Weinmann, R., Levine, A. J., and Shenk, T., 1992, Wild-type p53 binds to the TATA-binding protein and represses transcription, Proc. Natl. Acad. Sci. USA 89:12028–12032.

    Article  PubMed  CAS  Google Scholar 

  149. Foord, O., Navot, N., and Rotter, V., 1993, Isolation and characterization of DNA sequences that are specifically bound by wild-type p53 protein, Mol. Cell. Biol. 13:1378–1384.

    PubMed  CAS  Google Scholar 

  150. Slingerland, J. M., Jenkins, J. R., and Benchimol, S., 1993, The transforming and suppressor functions of p53 alleles: Effects of mutations that disrupt phosphorylation, oligomerization and nuclear translocation, EMBO J. 12:1029–1027.

    PubMed  CAS  Google Scholar 

  151. Donehower, L. A., Harvey, M., Siagle, B. L., McArthus, M. J., Montgomery, C. A., Butel, J. S., and Bradley, A., 1992, Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours, Nature 356:215–221.

    Article  PubMed  CAS  Google Scholar 

  152. Vogelstein, B., and Kinzler, K. W., 1992, p53 function and dysfunction, Cell 70:523–526.

    Article  PubMed  CAS  Google Scholar 

  153. Deppert, W., 1994, The yin and yang of p53 in cellular proliferation, Semin. Cancer Biol. 5:187–202.

    PubMed  CAS  Google Scholar 

  154. Selter, H., and Montearh, M., 1994, The emerging picture of p53, Int. J. Biochem. 26:145–154.

    Article  PubMed  CAS  Google Scholar 

  155. Dulic, V., Kaufmann, W. K., Wilson, S.J., Tlsty, T. D., Lees, E., Harper, J. W., Elledge, S.J., and Reed, S. I., 1993, p53-dependent inhibition of cyclin-dependent kinase activities in human fibroblasts during radiation-induced G1 arrest, Cell 76:1013–1023.

    Article  Google Scholar 

  156. El-Deiry, W S., Harper, J. W., O’Connor, P. M., Velculescu, V. E., Canman, C. E., Jackman, J., Pietenpol, J. A., Burell, M., Hill, D. E., Wang, Y., Wiman, K. G., Mercer, W. E., Kastan, M. B., Kohn, K. W., Elledge, S. J., Kinzler, K. W., and Vogelstein, B., 1994, WAF/CIP1 is induced in p53-mediated Gl arrest and apoptosis, Cancer Res. 54:1169–1174.

    PubMed  Google Scholar 

  157. Clarke, A. R., Purdie, C. A., Harrison, D.J., Morris, R. G., Bird, C. C., Hooper, M. L., and Willie, A. H., 1993, Thymocyte apoptosis induced by p53-dependent and independent pathways, Nature 362:849–852.

    Article  PubMed  CAS  Google Scholar 

  158. Zhengming, G., Pirn, D., Labrecque, S., Banks, L., and Matlashewski, G., 1994, DNA damage induced p53 mediated transcription is inhibited by human papillomavirus type 18 E6, Oncogene 9:629–633.

    Google Scholar 

  159. Kessis, T. D., Slebos, R. J., Nelson, W. G., Kastan, M., Plunkett, B. S., Han, S. M., Lorincz, A. T., Hedrick, L., and Cho, K. R., 1993, Human papillomavirus 16 E6 expression disrupts the p53-mediated cellular response to DNA damage, Proc. Natl. Acad. Sci. USA 90:3988–3992.

    Article  PubMed  CAS  Google Scholar 

  160. Pan, H., and Griep, A. E., 1994, Altered cell cycle regulation in the lens of HPV-16 E6 or E7 transgenic mice: Implications for tumor suppressor function in the development, Genes Dev. 8:1285–1299.

    Article  PubMed  CAS  Google Scholar 

  161. Livingston, L. R., White, A., Sprouse, J., Livanos, E. Jacks, T., and Tlsty, T., 1992, Altered cell cycle arrest and gene amplification potential accompany loss of wild-type p53, Cell 70:923–935.

    Article  Google Scholar 

  162. Yin, Y., Tainsky, M. A., Bischoff, F. Z., Strong, L. C., and Wahl, G. M., 1992, Wild-type p53 restores cell cycle control and inhibits gene amplification in cells with mutant p53 alleles, Cell 70:937–948.

    Article  PubMed  CAS  Google Scholar 

  163. Harvey, M., Sands, A. T., Weiss, R. S., Flegi, M. E., Wiseman, R. W., Pantazis, P., Giovanella, B. C., Tainsky, M. A., Bradley, A., and Donehower, L. A., 1993, In vitro growth characteristics of embryo fibroblasts isolated from p53-deficient mice, Oncogene 8:2457–2467.

    PubMed  CAS  Google Scholar 

  164. Fuchs, E., 1993, Epidermal differentiation and keratin gene expression, J. Cell Sci. [Suppl.] 17:197–208.

    Article  CAS  Google Scholar 

  165. Yuspa, S. H., 1994, The pathogenesis of squamous cell cancer: Lessons learned from studies of skin carcinogenesis—Thirty-third G. H. A. Clowes memorial award lecture, Cancer Res. 54:1178–1189.

    PubMed  CAS  Google Scholar 

  166. Goustin, A. S., Leof, E. B., Shipley, G. D., and Moses, H. L., 1986, Growth factors and cancer, Cancer Res. 46:1015–1029.

    PubMed  CAS  Google Scholar 

  167. Roberts, A. B., Thompson, N. L., Heine, U., Flanders, C., and Sporn, M. B., 1988, Transforming growth factor-β: Possible roles in carcinogenesis, Br. J. Cancer 57:594–600.

    Article  PubMed  CAS  Google Scholar 

  168. Braun, L., Durst, M., Mikumo, R., and Gruppuso, P., 1990, Differential response of non-tumorigenic and tumorigenic human papillomavirus type 16-positive epithelial cells to transforming growth factor βl, Cancer Res. 50:7324–7332.

    PubMed  CAS  Google Scholar 

  169. Woodworth, C. D., Notario, V., and DiPaolo, J. A., 1992, Transforming growth factors beta 1 and 2 transcriptionally regulate human papillomavirus (HPV) type 16 early gene expression in HPV-immortalized human genital epithelial cells, J. Virol. 64:4767–4775.

    Google Scholar 

  170. Braun, L., Durst, M., Mikumo, R., Crowley, A., and Robinson, M., 1992, Regulation of growth and gene expression in human papillomavirus-transformed keratinocytes by transforming growth factor-beta: Implications for the control of papillomavirus infection, Mol. Carcinogen. 6:100–111.

    Article  CAS  Google Scholar 

  171. Pirisi, L., Batova, A., Jenkins, G. R., Hodam, J. R., and Creek, K. E., 1992, Increased sensitivity of human keratinocytes immortalized by human papillomavirus type 16 DNA to growth control by retinoids, Cancer Res. 52:187–193.

    PubMed  CAS  Google Scholar 

  172. Moses, H. L., 1992, TGF-beta regulation of epithelial cell proliferation, Mol. Reprod. Dev. 32:179–184.

    Article  PubMed  CAS  Google Scholar 

  173. Yasumoto, S., Taniguchi, A., and Sohma, K., 1991, Epidermal growth factor (EGF) elicits down-regulation of human papillomavirus type 16 (HPV-16) E6/E7 mRNA at the transcriptional level in an EGF-stimulated human keratinocyte cell line: Functional role of EGF-responsive silencer in the HPV-16 long control region, J. Virol. 65:2000–2009.

    PubMed  CAS  Google Scholar 

  174. Hembree, J. R., Agarwal, C., and Eckert, R. L., 1994, Epidermal growth factor suppresses insulin-like growth factor binding protein 3 levels in human papillomavirus type 16-immortalized cervical epithelial cells and thereby potentiates the effects of insulin-like growth factor 1, Cancer Res. 54:3160–3166.

    PubMed  CAS  Google Scholar 

  175. Malejczyk, J., Malejczyk, M., Majewski, S., Breitburd, F., Luger, T. A., Jablonska, S., and Orth, G., 1994, Increased tumorigenicity of human keratinocytes harboring human papillomavirus type 16 is associated with resistance to endogenous tumor necrosis factor-alpha-mediated growth limitation, Int. J. Cancer 56:593–598.

    Article  PubMed  CAS  Google Scholar 

  176. Bartsch, D., Boye, B., Baust, C., zur-Hausen, H., and Schwarz, E., 1992, Retinoic acid-mediated repression of human papillomavirus 18 transcription and different ligand regulation of the retinoic acid receptor beta gene in nontumorigenic and tumorigenic HeLa hybrid cells, EMBO J. 11:2283–2291.

    PubMed  CAS  Google Scholar 

  177. Sizemore, N., and Rorke, E. A., 1993, Human papillomavirus 16 immortalization of normal human ectocervical epithelial cells alters retinoic acid regulation of cell growth and epidermal growth factor receptor expression, Cancer Res. 53:4511–4517.

    PubMed  CAS  Google Scholar 

  178. Merrick, D. T., Gown, A. M., Halbert, C. L., Blanton, R. A., and McDougall, J. K., 1993, Human papillomavirus-immortalized keratinocytes are resistant to the effects of retinoic acid on terminal differentiation, Cell Growth Differ. 4:831–840.

    PubMed  CAS  Google Scholar 

  179. Batova, A., Danielpour, D., Pirisi, L., and Creek, K. E., 1992, Retinoic acid induces secretion of latent transforming growth factor beta 1 and beta 2 in normal and human papillomavirus type 16-immortalized human keratinocytes, Cell Growth Differ. 3:763–772.

    PubMed  CAS  Google Scholar 

  180. Glick, A. B., Flanders, K. C., Danielpour, D., Yuspa, S. H., and Sporn, M. B., 1989, Retinoic acid induces transforming growth factor-ß2 in cultured keratinocytes and mouse epidermis, Cell Regal 1:87–97.

    CAS  Google Scholar 

  181. Lazo, P. A., Gallego, M. I., Ballester, S., and Feduchi, E, 1992, Genetic alterations by human papillomaviruses in oncogenesis, FEBS Lett. 300:109–113.

    Article  PubMed  CAS  Google Scholar 

  182. Crook, T., Wrede, D., and Vousden, K. H., 1991, p53 point mutation in HPV negative human cervical carcinoma cell lines, Oncogene 6:873–875.

    PubMed  CAS  Google Scholar 

  183. Wrede, D., Tidy, J. A., Crook, T., Lane, D., and Vousden, K. H., 1991, Expression of RB and p53 proteins in HPV-positive and HPV-negative cervical carcinoma cell lines, Mol. Carcinogen. 4:171–175.

    Article  CAS  Google Scholar 

  184. Srivastava, S., Tong, Y. A., Devadas, K., Zou, Z. Q., Chen, Y., Pirollo, F. K., and Chang, E. H., 1992, The status of the p53 gene in human papilloma virus positive and negative cervical carcinoma cell lines, Carcinogenesis 13:1273–1275.

    Article  PubMed  CAS  Google Scholar 

  185. Park, D. J., Sharon, P., Wilczynski, R. L., Paquette, R. L., and Miller, C. W., 1994, p53 mutations in HPV-negative cervical carcinoma, Oncogene 9:205–210.

    PubMed  CAS  Google Scholar 

  186. Chen, L., Thomas, E. K., Hu, S., Hellström, I., and Hellström, K. E., 1991, Human papillomavirus type 16 nucleoprotein E7 is a tumor rejection antigen, Proc. Natl. Acad. Sci. USA 88:110–114.

    Article  PubMed  CAS  Google Scholar 

  187. Chen, L., Mizuno, M. T., Singhal, M. C., Hu, S.-L., Galloway, D. A., Hellström, I., and Hellström, K. E., 1992, Induction of cytotoxic T lymphocytes specific for a syngeneic tumor expressing the E6 oncoprotein of human papillomavirus type 16, J. Immunol. 148:2617–2621.

    PubMed  CAS  Google Scholar 

  188. Meneguzzi, G., Cerni, C., Kieny, M. P., and Lathe, R., 1991, Immunization against human papillomavirus type 16 tumor cells with recombinant vaccinia viruses expressing E6 and E7, Virology 181:62–69.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cerni, C., Seelos, C. (1995). Papillomaviruses as Promoting Agents in Human Epithelial Tumors. In: Barbanti-Brodano, G., Bendinelli, M., Friedman, H. (eds) DNA Tumor Viruses. Infectious Agents and Pathogenesis. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1100-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1100-1_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1102-5

  • Online ISBN: 978-1-4899-1100-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics