Skip to main content

A Non-Linear Field Analysis of the Haldane Gap Problem for Quantum Spin Chains

  • Chapter
Nonlinear Coherent Structures in Physics and Biology

Part of the book series: NATO ASI Series ((NSSB,volume 329))

  • 223 Accesses

Abstract

In 1983 Haldane1 suggested that antiferromagnetic quantum spin chains, where each spin is integer, have a finite energy gap in their spectrum whereas chains made up of half-odd-integer spins are gapless. Numerical studies were undertaken to try and confirm2 that there was indeed a gap for chains with spins S = 1. There were, however, at least initially, numerical convergence problems which clouded the issue and Bethe Ansatz-like approaches seemed to indicate that there might not be a gap when the spins were integral. In this latter approach, however, the interactions between the spins were not of the same form as those discussed by Haldane. Two decades earlier Lieb, Schultz and Mattis3 had provided a rigorous proof that there was no gap for half-odd-integer spins but the method was shown to fail for integer spins. Spin wave theory for the simplest antiferromagnetic systems was developed by Anderson4, Ziman5 and Kubo6 long ago and the situation was reviewed by Nagamiya et al.7

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F.D.M. Haldane, Phys. Lett. 93A:464 (1983); Phys. Rev. Lett. 50:1153 (1983); J. Appl. Phys. 57:3359 (1985).

    MathSciNet  ADS  Google Scholar 

  2. R. Botet and R. Jallien, Phys. Rev. B 27:613 (1983).

    Article  ADS  Google Scholar 

  3. E.H. Lieb, T. Schultz and DJ. Mattis, Am. Phys., NY 16:407 (1961).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. P.W. Anderson, Phys. Rev. B 86:694(1952).

    Article  ADS  MATH  Google Scholar 

  5. J.M. Ziman, Proc. Phys. Soc. A 65:540, 548(1952).

    Article  ADS  MATH  Google Scholar 

  6. R. Kubo, Phys. Rev. 96: 929 (1952)

    Article  ADS  Google Scholar 

  7. ibid 87:568 (1952); Rev. Mod. Phys. 25:344 (1953).

    Google Scholar 

  8. T. Nagamiya, K. Yosida and R. Kubo, Adv. Phys. 4:2 (1955).

    Article  ADS  Google Scholar 

  9. I. Affleck, J. Phys. Cond. Matter. 1:3047 (1989).

    Article  ADS  Google Scholar 

  10. J.A. Tuszynski and J.M. Dixon, J. Phys. A 22:4877 (1989).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. J.M. Dixon and J.A. Tuszynski, J. Phys. A. 22:4895 (1989).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. T. Holstein and H. Primakoff, Phys. Rev. 58:1048 (1940).

    Article  ADS  Google Scholar 

  13. J. Schwinger, “On Angular Momentum”, U.S. Atomic Energy Commission Report NYO-3071 (1952) reprinted in “Quantum Theory of Angular Momentum” L. Biedenharn and H. Van Dam eds., Academic, New York (1965).

    Google Scholar 

  14. D.C. Mattis, “The Theory of Magnetism I Statics and Dynamics”, Springer Series in Solid-State Sciences 17, Springer-Verlag, Berlin (1981).

    Google Scholar 

  15. R. Jackiw, Rev. Mod. Phys. 49:681 (1977).

    Article  MathSciNet  ADS  Google Scholar 

  16. P.F. Byrd and M.E. Friedman, “Handbook of Elliptic Integrals for Engineers and Scientists”, Springer, Berlin (1971).

    Book  MATH  Google Scholar 

  17. K. Rajaraman, “Solitons and Instantons”, North-Holland, Amsterdam (1987).

    Google Scholar 

  18. F.M. Arnscott, “Periodic Differential Equations”, Pergamon Press Ltd., London (1964).

    Google Scholar 

  19. P.M. Morse and H. Feshbach, “Methods of Theoretical Physics, Part I”, McGraw-Hill, New York (1953).

    Google Scholar 

  20. T. Niemeijer, J. Math. Phys. 12:1487 (1971).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

TuszyƄski, J.A., Dixon, J.M. (1994). A Non-Linear Field Analysis of the Haldane Gap Problem for Quantum Spin Chains. In: Spatschek, K.H., Mertens, F.G. (eds) Nonlinear Coherent Structures in Physics and Biology. NATO ASI Series, vol 329. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1343-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1343-2_25

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1345-6

  • Online ISBN: 978-1-4899-1343-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics