Skip to main content

Characterization of Diacylglycerylphospholipids by Fast Atom Bombardment Tandem Mass Spectrometry

  • Chapter
Mass Spectrometry

Part of the book series: Modern Analytical Chemistry ((MOAC))

Abstract

Fast atom bombardment desorption/ionization combined with collisionally activated dissociation tandem mass spectrometry (FAB-CAD-MS/MS) is a powerful method for directly characterizing underivatized glycerophospholipids, even in mixtures. The FAB mass spectrum in either the positive or negative ion mode contains high-mass ions indicative of the molecular weight of each of the molecular species present in the sample, as well as fragments derived from elimination of the head group and acyl groups. However, it is difficult to directly characterize the structure of any particular molecular species in a mixture from the FAB mass spectrum alone because the molecular ions ([MH]+, [M-H], or [M-CH3] for phosphatidylcholine) of isomeric molecular species overlap and distinguishing fragments may be attributable to more than one molecular species. Only tandem mass spectrometric analysis of specific fragment or molecular ions permits the head group and acyl groups of the individual molecular species to be unambiguously determined. In addition, the relative abundance of specific fragment ions in the product ion spectrum can, in most cases, be used to assign the position of the acyl groups on the glycerol backbone. FAB-CAD-MS/MS of the carboxylate anions found in the low-mass region of the negative FAB spectrum has also been successfully used to localize the positions of double bonds and branch points in the acyl groups by analysis of charge-remote fragmentation patterns. Besides product ion scans, other overlap and distinguishing fragments may be attributable to more than one molecular species. Only tandem mass spectrometric analysis of specific fragment or molecular ions permits the head group and acyl groups of the individual molecular species to be unambiguously determined. In addition, the relative abundance of specific fragment ions in the product ion spectrum can, in most cases, be used to assign the position of the acyl groups on the glycerol backbone. FAB-CAD-MS/MS of the carboxylate anions found in the low-mass region of the negative FAB spectrum has also been successfully used to localize the positions of double bonds and branch points in the acyl groups by analysis of charge-remote fragmentation patterns. Besides product ion scans, other tandem MS scan modes (namely, constant neutral loss scans and precursor ion scans) are useful in identifying, in mixtures, the molecular species of a particular lipid class or those containing a certain acyl group.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Christie, W. W., 1982, Lipid Analysis, Pergamon Press, New York.

    Google Scholar 

  2. Tokumura, A., Handa, Y., Yoshioka, Y., and Tsukatani, H., 1983, Mass spectrometric analyses of biologically active choline phospholipids and their lyso derivatives, Chem. Pharm. Bull. 31:4425–4435.

    Article  CAS  Google Scholar 

  3. Haroldsen, P. E., and Murphy, R. C., 1987, Analysis of phospholipid molecular species in rat lung as dinitrobenzoate diglycerides by electron capture negative chemical ionization mass spectrometry, Biomed. Environ. Mass Spectrom. 14:573–578.

    Article  CAS  Google Scholar 

  4. Blank, M. L., Robinson, M., Fitzgerald, V., and Snyder, F., 1984, Novel quantitative method for determination of molecular species of phospholipids and diglycerides, J. Chromatog. 298:473–82.

    Article  CAS  Google Scholar 

  5. Weintraub, S. T., Lear, C. S., and Pinkard, R. N., 1990, Analysis of platelet-activating factor by GC-MS after direct derivatization with pentafluorobenzoyl chloride and heptafluorobutyric anhydride, J. Lipid Res. 31 7 19–725.

    Google Scholar 

  6. Satsangi, R. K., Ludwig, J. C., Weintraub, S. T., and Pinkard, R. N., 1989, A novel method for the analysis of platelet-activating factor: direct derivatization of glycerophospholipids, J. Lipid Res. 30:929–937.

    CAS  Google Scholar 

  7. Knörr, W., and Spiteller, G., 1990, Simple method for the analysis of glycerol enol ethers from plasmalogens in complex lipid mixtures and subsequent determination of the aldehydic components by gas chromatography-mass spectrometry, J. Chromatog. 526:303–318.

    Google Scholar 

  8. Fenselau, C., Heller, D. N., Olthoff, J. K., Cotter, R. J., Kishimoto, Y., and Uy, O. M., 1989, Desorption of ions from rat membranes: selectivity of different ionization techniques, Biomed. Environ. Mass Spectrom. 18:1037–1045.

    Article  CAS  Google Scholar 

  9. Jensen, N. J., and Gross, M. L., 1988, A comparison of mass spectrometry methods for structural determination and analysis of phospholipids, Mass Spectrom. Rev. 7:41–70.

    Article  CAS  Google Scholar 

  10. Benfenati, E., and Reginato, R., 1985, A comparison of three methods of soft ionization mass spectrometry of crude phospholipid, extracts, Biomed. Mass Spectrom. 12:643–651.

    Article  CAS  Google Scholar 

  11. Münster, H., and Budzikiewicz, H., 1988, Structural and mixture analysis of glycerophos-phoric acid derivatives by fast atom bombardment tandem mass spectrometry, Biol. Chem. Hoppe-Seyler 369:303–308.

    Article  Google Scholar 

  12. Fenwick, G. R., Eagles, J., and Self, R., 1983, Fast atom bombardment mass spectrometry of intact phospholipids and related compounds, Biomed. Mass Spectrom. 10:382–386.

    Article  CAS  Google Scholar 

  13. Hayashi, A., Matsubura, T., Morita, M., Kinoshita, T., and Nakamura, T., 1989, Structural analysis of choline phospholipids by fast atom bombardment mass spectrometry and tandem mass spectrometry, J. Biochem. 106:264–269.

    CAS  Google Scholar 

  14. Ohashi, Y., 1984, Structure determination of phospholipids by secondary ion mass spectrometric techniques: differentiation of isomeric esters, Biomed. Mass Spectrom. 11:383–385.

    Article  CAS  Google Scholar 

  15. Sherman, W. R., Ackermann, K. E., Bateman, R. H., Green, B. N., and Lewis, I., 1985, Mass analyzed ion kinetic energy spectra and B1-E-B2 triple sector mass spectrometric analysis of phosphoinositides by fast atom bombardment, Biomed. Mass Spectrom. 12:409–413.

    Article  CAS  Google Scholar 

  16. Chen, S., Mariot, R., Kirschner, G., Farretto, D., and Traldi, P., 1990, Analysis of arachidonic-acid-containing molecular species in glycerophospholipid classes from rat kidney by fast atom bombardment mass spectrometry, Rapid Commun. Mass Spectrom. 4:495–497.

    Article  CAS  Google Scholar 

  17. Jensen, N. J., Tomer, K. B., and Gross, M. L., 1986, Fast atom bombardment and tandem mass spectrometry of phosphatidylserine and phosphatidylcholine, Lipids 21:580–588.

    Article  CAS  Google Scholar 

  18. Gasser, H., Strohmaier, W., Schlag, G., Schmid, E. R., and Allmaier, G., 1991, Characterizationof phosphotidylcholines in rabbit lung lavage fluid by positive and negative ion fast atom bombardment mass spectrometry, J. Chromatog. Biomed. Appl. 562:257–266.

    Article  CAS  Google Scholar 

  19. Allmaier, G., Schmid, E. R., Gasser, H., Strohmaier, W., and Schlag, G., 1990, Methodological approach to the characterization of diacylphosphatidylcholines in rabbit lung lavage fluid by fast atom bombardment mass spectrometry, Rapid Commun. Mass Spectrom. 4:19–23.

    Article  CAS  Google Scholar 

  20. Zirrolli, J. A., Clay, K. C., and Murphy, R. C., 1991, Tandem mass spectrometry of negative ions from choline phospholipid molecular species related to platelet activating factor, Lipids 2bf26:112–116.

    Google Scholar 

  21. Münster, H., Stein, J., and Budzikiewicz, H., 1986, Structure analysis of underivatized phospholipids by negative ion fast atom bombardment mass spectrometry, Biomed. Environ. Mass Spectrom. 13:423–427.

    Article  Google Scholar 

  22. Jensen, N. J., Tomer, K. B., and Gross, M. L., 1986, FAB-MS/MS for phosphatidylinositol,-glycerol,-ethanolamine and other complex phospholipids, Lipids 22:480–489.

    Article  Google Scholar 

  23. Chen, S., Kirschner, G., and Traldi, P., 1990, Positive ion fast atom bombardment mass spectrometric analysis of the molecular species of glycerophosphotidylserine, Anal. Biochem. 191:100–105.

    Article  CAS  Google Scholar 

  24. Chen, S., Benfenati, E., Fanelli, R., Kirschner, G., and Pregnolato, F., 1989, Molecular species analysis of phospholipids by negative ion fast atom bombardment mass spectrometry: application of surface precipitation technique, Biomed. Environ. Mass Spectrom. 18:1051–1056.

    Article  CAS  Google Scholar 

  25. Huang, Z-H, Gage, D. A., and Sweeley, C. C., 1992, Characterization of diacylglycerylphosphocholine molecular species by FAB-CAD-MS/MS: a general method not sensitive to the nature of the fatty acyl groups, J. Am. Soc. Mass Spectrom. 3:71–78.

    Article  CAS  Google Scholar 

  26. Busch, K. L., Glish, G. L., and McLuckey, S. A., 1988, Mass Spectrometry /Mass Spectrometry Techniques and Applications of Tandem Mass Spectrometry, VCH Publishers, Inc., New York.

    Google Scholar 

  27. Dasgupta, A., Ayanoglu, E., Wegmann-Szente, A., Tomer, K. B., and Djerassi, C., 1986, Mass spectral behavior and HPLC of some unusual molecular phospholipid species, Chem. Phys. Lipids 41:335–347.

    Article  CAS  Google Scholar 

  28. Dasgupta, A., Ayanoglu, E., Tomer, K. B., and Djerassi, C., 1987, High performance liquid chromatography and fast atom bombardment mass spectrometry of unusual branched and unsaturated phospholipid molecular species, Chem. Phys. Lipids 43:101–111.

    Article  CAS  Google Scholar 

  29. Bernstrom, K., Kayganich, K., and Murphy, R. C., 1991, Collisionally induced dissociation of epoxyeicosatrienoic acids and epoxyeicosatrienoic acid-phospholipid molecular species, Anal. Biochem. 198:203–211.

    Article  CAS  Google Scholar 

  30. Van Breeman, R. B., Wheeler, J. J., and Boss, W. F., 1990, Identification of carrot inositol phospholipids by fast atom bombardment mass spectrometry, Lipids 25:328–334.

    Article  Google Scholar 

  31. Jennings, K. R., and Mason, R. S., 1983, Tandem mass spectrometry utilizing linked scanning of double focusing instruments, in Tandem Mass Spectrometry (F. W. McLafferty, ed.), Wiley, New York.

    Google Scholar 

  32. Cole, M. J., and Enke, C. G., 1991, Direct determination of phospholipid structures in microorganisms by fast atom bombardment triple quadrupole mass spectrometry, Anal. Chem. 63:1032–1038.

    Article  CAS  Google Scholar 

  33. Wysocki, V. H., and Ross, M. M., 1991, Charge-remote fragmentation of gas-phase ions: mechanistic and energetic considertions in the dissociation of long-chain functionalized alkanes and alkenes. Int. J. Mass Spectrom. Ion Proc. 104:179–211.

    Article  CAS  Google Scholar 

  34. Bryant, D. K., and Orlando, R., 1991, Location of unsaturated positions in phosphatidylcholines by consecutive-reaction monitoring, Rapid Commun. Mass Spectrom. 5:124–127.

    Article  CAS  Google Scholar 

  35. Bryant, D. K., Orlando, R. C., Fenselau, C., Sowder, R. C., and Henderson, L. E., 1991, Four-sector tandem mass spectrometric analysis of complex mixtures of phosphatidylcholines present in a human immunodeficiency virus preparation, Anal. Chem. 63:1110–1114.

    Article  CAS  Google Scholar 

  36. Heller, D. N., Murphy, C. M, Cotter R. J., Fenselau, C., and Uy, O. M., 1988, Constant neutral loss scanning for the characterization of bacterial phospholipids desorbed by fast atom bombardment, Anal. Chem. 60:2787–2791.

    Article  CAS  Google Scholar 

  37. Cole, M. J., and Enke, C. G., 1991, Fast atom bombardment/ion molecule reactions for the differentiation of phospholipid classes, J. Am. Soc. Mass Spectrom. 2:470–475.

    Article  CAS  Google Scholar 

  38. Jensen, N. J., and Gross, M. L., 1987, Mass spectrometry methods for structural determination and analysis of fatty acids, Mass Spectrom. Rev. 6:497–536.

    Article  CAS  Google Scholar 

  39. Kayganich, K., and Murphy, R. C., 1991, Molecular species analysis of arachidonate containing glycerophosphocholines by tandem mass spectrometry, J. Am. Soc. Mass Spectrom. 2:45–54.

    Article  CAS  Google Scholar 

  40. Kayganich, K., and Murphy, R. C., 1992, Fast atom bombardment and tandem mass spectrometric analysis of diacyl, alkylacyl and alk-1-enyl-acyl glycerophosphoethanolamine in human polymorphonuclear leucocytes. Anal. Chem., 64:2965–2971.

    Article  CAS  Google Scholar 

  41. Robinson, B. S., Johnson, D. W., and Poulos, A., 1990, Unique molecular species of phosphatidylcholine containing very-long-chain (C24-C38) polyenoic fatty acids in rat brain, Biochem. J. 265:763–767.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gage, D.A., Huang, ZH., Sweeley, C.C. (1994). Characterization of Diacylglycerylphospholipids by Fast Atom Bombardment Tandem Mass Spectrometry. In: Desiderio, D.M. (eds) Mass Spectrometry. Modern Analytical Chemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1748-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1748-5_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1750-8

  • Online ISBN: 978-1-4899-1748-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics