Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 433))

Abstract

The leukotrienes are formed by transformation of arachidonic acid into an unstable epoxide intermediate, leukotriene A4 (LTA4), which can be converted enzymatically by hydration to LTB4, and by addition of glutathione to LTC4. This last compound is metabolized to LTD4 and LTE4 by successive elimination of a γ-glutanyl residue and glycine1, 2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Samuelsson, Leukotrienes: Mediators of immediate hypersensitivity reactions and inflammation, Science, 220:568–575, (1983).

    Article  PubMed  CAS  Google Scholar 

  2. B. Samuelsson, S.-E. Dahlén, J.-Å. Lindgren, C.A. Rouzer, and C.N. Serhan, Leukotrienes and lipoxins: Structures, biosynthesis, and biological effects, Science, 237:1171–1176, (1987).

    Article  PubMed  CAS  Google Scholar 

  3. S.-E. Dahlén, G. Hansson, P. Hedqvist, T. Björck, E. Granström, and B. Dahlén, Allergen challenge of lung tissue from asthmatics elicits bronchial contraction that correlates with the release of leukotrienes C4, D4 and E4, Proc. Natl. Acad. Sci. USA, 80:1712–1716,(1983).

    Article  PubMed  Google Scholar 

  4. R.A. Coleman, R.M. Eglen, R.L. Jones, S. Narumiya, T. Shimizu, W.L. Smith, S.E. Dahlén, J.M. Drazen, P.J. Gardiner, W.T. Jackson, T.R. Jones, R.D. Krell, and S. Nicosia, Prostanoid and leukotriene receptors: a progress report from the IUPHAR working parties on classification and nomenclature, in: Adv. Prostaglandin Thromboxane Leukotriene Res, 23:283–285, (1995).

    CAS  Google Scholar 

  5. P.R. Devchand, H. Keller, J.M. Peters, M. Vazquez, F.J. Gonzalez, and W. Wahli, The ppar-alpha-leukotriene b-4 pathway to inflammation control, Nature, 384:39–43, 1996.

    Article  PubMed  CAS  Google Scholar 

  6. A.W. Ford-Hutchinson, Leukotriene B4 in inflammation, Immunology, 10:1–12, (1990).

    CAS  Google Scholar 

  7. M. Rola-Pleszczynski, L. Gagnon, and P. Sirois, Leukotriene B4 augments human natural killer cytotoxic cell activity, Biochem. Biophys. Res. Commun., 113: 531–537,(1983).

    Article  PubMed  CAS  Google Scholar 

  8. M. Rola-Pleszczynski, Differential effects of leukotriene B4 on T4+ and T8+ lympho-cyte phenotype and immunoregulatory functions, J. Immunol, 135:1357–1360, (1985).

    PubMed  CAS  Google Scholar 

  9. M. Rola-Pleszczynski and I. Lemaire, Leukotrienes augment interleukin-1 production by human monocytes, J. Immunol, 135:3958–3961, (1985).

    PubMed  CAS  Google Scholar 

  10. M. Rola-Pleszczynski, P.-A. Chavaillaz, and I. Lemaire, Stimulation of interleukin-2 and interferon gamma production by leukotriene B4 in human lymphocyte cultures, Prostagl Leukotr. Med, 23:207–210, (1986).

    Article  CAS  Google Scholar 

  11. J. Stankova and M. Rola-Pleszcynski, Leukotriene B4 stimulates c-fos and c-jun gene transcription and AP-1 binding activity in human monocytes, Biochem. J., 282:625–629, (1992).

    PubMed  CAS  Google Scholar 

  12. K.A. Yamaoka, H.-E. Claesson, and A. Rosén, Leukotriene B4 enhances activation, proliferation, and differentiation of human B lymphocytes, J. Immunol., 143: 1996–2000,(1989).

    PubMed  CAS  Google Scholar 

  13. M. Kumlin, B. Dahlén, T. Björck, O. Zetterström, E. Granström, and S.-E. Dahlén, Urinary excretion of leukotriene E4 and 11-dehydro-thromboxane B2 in response to bronchial provocations with allergen, aspirin, leukotriene D4, and histamine in asthmatics, Am. Rev. Respir. Dis, 146:96–103, (1992).

    Article  PubMed  CAS  Google Scholar 

  14. W.R. Henderson, New modalities for the pharmacotherapy of asthma-leukotriene inhibitors and antagonists, Immunology & Allergy Clinics of North America, 16:797 ff., (1996).

    Google Scholar 

  15. J.M. Drazen, Pharmacology of leukotriene receptor antagonists and 5-lipoxygenase inhibitors in the management of asthma, Pharmacotherapy, 17:S22–S30, (1997).

    Google Scholar 

  16. J.S. Larsen and S.K. Jackson, Antileukotriene therapy asthma, American Journal of Health-System Pharmacy, 53:2821–2830, (1996).

    PubMed  CAS  Google Scholar 

  17. P.M. Obyrne, Exercise-induced bronchoconstriction-elucidating the roles of leukotrienes and prostaglandins, Pharmacotherapy, 17:S 31–S 38, (1997).

    Google Scholar 

  18. J.C. Boyington, B.J. Gaffney, and L.M. Amzel, The three-dimensional structure of an arachidonic acid 15-lipoxygenase, Science, 260:1482–1486, (1993).

    Article  PubMed  CAS  Google Scholar 

  19. W. Minor, J. Steczko, J.T. Bolin, Z. Otwinowski, and B. Axelrod, Crystallographic determination of the active site iron and its ligands in soybean lipoxygenase L1, Biochemistry, 32:6320–6323,(1993).

    Article  PubMed  CAS  Google Scholar 

  20. T. Hammarberg, Y.-Y. Zhang, B. Lind, O. Rådmark, and B. Samuelsson, Mutations at the C-terminal isoleucine and other potential iron ligands of 5-lipoxygenase, European J Biochem, 230:401–407, (1995).

    Article  CAS  Google Scholar 

  21. C.D. Funk, S. Hoshiko, T. Matsumoto, O. Rådmark, and B. Samuelsson, Characteri-zation of the human 5-lipoxygenase gene, Proc. Natl. Acad Sci. USA, 86: 2587–2591, (1989).

    Article  PubMed  CAS  Google Scholar 

  22. K.H. In, K. Asano, D. Beier, J. Grobholz, P.W. Finn, E.K. Silverman, E.S. Silverman, T. Collins, A.R. Fischer, T.P. Keith, K. Serino, S.W. Kim, G.T. Desanctis, C. Yandava, A. Pillari, P. Rubin, J. Kemp, E. Israel, W. Busse, D. Ledford, J.J. Murray, A. Segal, D. Tinkleman, and J.M. Drazen, Naturally occurring mutations in the human 5-lipoxygenase gene promoter that modify transcription factor binding and reporter gene transcription, Journal of Clinical Investigation, 99:1130–1137, (1997).

    Article  PubMed  CAS  Google Scholar 

  23. D. Steinhilber, M. Brungs, O. Werz, I. Wiesenberg, C. Danielsson, J.-P. Kahlen, S. Nayeri, M. Schräder, and C. Carlberg, The Nuclear Receptor for Melatonin Represses 5-Lipoxygenase Gene Expression in Human B Lymphocytes, J. Biol.Chem, 270:7037–7040,(1995).

    Article  PubMed  CAS  Google Scholar 

  24. D. Steinhilber, O. Rådmark, and B. Samuelsson, Transforming growth factor-β upregulates 5-lipoxygenase activity during myeloid cell maturation, Proc. Natl. Acad. Sci. USA: in press, (1993).

    Google Scholar 

  25. M. Brungs, O. Rådmark, B. Samuelsson, and D. Steinhilber, Sequential induction of 5-lipoxygenase gene expression and activity in Mono Mac 6 cells, by transforming growth factor-β and 1,25-dihydroxyvitamin D3., Proc. Natl. Acad. Sci., 92:107–111,(1995).

    Article  PubMed  CAS  Google Scholar 

  26. A.W. Ford-Hutchinson, 5-Lipoxygenase activation in psoriasis: a dead issue?, Skin Pharmacol, 6:292–297,(1993).

    Article  PubMed  CAS  Google Scholar 

  27. U. Janssen-Timmen, P.J. Vickers, U. Wittig, W.D. Lehmann, H.-J. Stark, N.E. Fusenig, T. Rosenbach, O. Rådmark, B. Samuelsson, and A.J.R. Habenicht, Expression of 5-lipoxygenase in differentiating human skin keratinocytes., Proc. Natl. Acad. Sci., 92:6966–6970, (1995).

    Article  PubMed  CAS  Google Scholar 

  28. T.G. Brock, R. Paine, III, and M. Peters-Golden, Localization of 5-lipoxygenase to the nucleus of unstimulated rat bosophilic leukemia cells, J. Biol. Chem, 269: 22059–22066,(1994).

    PubMed  CAS  Google Scholar 

  29. M. Peters-Golden and R.W. McNish, Redistribution of 5-lipoxygenase and cytosolic phospholipase A2 to the nuclear fraction upon macrophage activation., Biochem. Biophys. Res. Commun., 196:147–153, (1993).

    Article  PubMed  CAS  Google Scholar 

  30. J.W. Woods, M. Coffey, T. Brock, I. Singer, and M. Peters-Golden, 5-Lipoxygenase is located in the euchromatin of the nucleus in resting human alveolar macrophages and translocates to the nuclear envelope upon cell activation. J. Clin. Invest., 95:2035–2040,(1995).

    Article  PubMed  CAS  Google Scholar 

  31. X.-S. Chen, T.A. Naumann, U. Kurre, N.A. Jenkins, and N.G. Copeland, C.D, J. Biol Chem, 270:17993–17999,(1995).

    Article  PubMed  CAS  Google Scholar 

  32. J.W. Woods, J.F. Evans, D. Ethier, S. Scott, P.J. Vickers, L. Hearn, J. A. Heibein, S. Charleson, and I.I. Singer, 5-lipoxygenase and 5-lipoxygenase activating protein are localized in the nuclear envelope of activated human leukocytes., J. Exp. Med., 178:1935–1946, (1993).

    Article  PubMed  CAS  Google Scholar 

  33. T.G. Brock, R.W. McNish, and M. Peters-Golden, J. Biol. Chem., 270:21652–21658, (1995).

    Article  PubMed  CAS  Google Scholar 

  34. T.G. Brock, R.W. McNish, M.B. Bailie, and M. Peters-Golden, Rapid Import of Cytosolic 5-Lipoxygenase into the Nucleus of Neutrophils after in Vivo Recruit-ment and in Vitro Adherence, J. Biol. Chem, 272:8276–8280, (1997).

    Article  PubMed  CAS  Google Scholar 

  35. R.A. Lepley and F.A. Fitzpatrick, 5-Lipoxygenase Contains a Functional Src Homology 3-binding Motif that Interacts with the Src Homology 3 Domain of GrB2 and Cytoskeletal Proteins, J. Biol. Chem, 269:24163–24168, (1994).

    PubMed  CAS  Google Scholar 

  36. R.A. Lepley, T. Muskardin, and F.A. Fitzpatrick, “Tyrosine Kinase Activity Modulates Catalysis and Translocation of Cellular 5-Lipoxygenase, J. Biol. Chem, 271:6179–6184,(1996).

    Article  PubMed  CAS  Google Scholar 

  37. J.Z. Haeggström, A. Wetterholm, B.L. Vallee, and B. Samuelsson, Leukotriene A4 hydrolase: An epoxide hydrolase with peptidase activity, Biochem. Biophys. Res. Commun., 173:431–437,(1990).

    Article  PubMed  Google Scholar 

  38. M. Minami, N. Ohishi, H. Mutoh, T. Izumi, H. Bito, H. Wada, Y. Seyama, H. Toh, and T. Shimizu, Leukotriene A4 hydrolase is a zinc-containing aminopeptidase, Biochem. Biophys. Res. Commun., 173:620–626, (1990).

    Article  PubMed  CAS  Google Scholar 

  39. J.Z. Haeggström, A. Wetterholm, J.F. Medina, and B. Samuelsson, Leukotriene A4hydrolase: structural and functional properties of the active center, J. Lipid. Med., 6:1–13,(1993).

    Google Scholar 

  40. J. McGee and F. Fitzpatrick, Enzymatic hydration of leukotriene A4: Purification and characterization of a novel epoxide hydrolase from human erythrocytes, J. Biol. Chem., 260:12832–12837,(1985).

    PubMed  CAS  Google Scholar 

  41. J.F. Evans, D.J. Nathaniel, R.J. Zamboni, and A.W. Ford-Hutchinson, Leukotriene A3: A poor substrate but a potent inhibitor of rat and human neutrophil leukotriene A4 hydrolase, J. Biol. Chem., 260:10966–10970,(1985).

    PubMed  CAS  Google Scholar 

  42. F.F. Sun and J.C. McGuire, Metabolism of arachidonic acid by human neutrophils. Characterization of the enzymatic reactions that lead to the synthesis of leukotriene B4, Biochim. Biophys. Acta, 794:56–64, (1984).

    Article  PubMed  CAS  Google Scholar 

  43. M.J. Mueller, A. Wetterholm, M. Blomster, H. Jörnvall, B. Samuelsson, and J.Z. Haeggström, Leukotriene A4 hydrolase: Mapping of a henicosapeptide involved in mechanism-based inactivation, Proc. Natl. Acad. Sci. USA, 92: 8383–8387,(1995).

    Article  PubMed  CAS  Google Scholar 

  44. M.J. Mueller, M. Blomster, U. Oppermann, H. Jörnvall, B. Samuelsson, and J.Z. Haeggström, Leukotriene A4 hydrolase: Protection from mechanism-based inactivation by mutation of tyrosine-378, Proc. Natl. Acad. Sci. USA, 93:5931–5935,(1996).

    Article  PubMed  CAS  Google Scholar 

  45. M.J. Mueller, M. Blomster Anderberg, B. Samuelsson, and J.Z. Haeggström, Leukotriene A4 hydrolase: mutation of tyrosine-378 allows conversion of leukotriene A4 into an isomer of leukotriene B4, J. Biol. Chem, 271:24345–24348,(1996).

    Article  PubMed  CAS  Google Scholar 

  46. M. Blomster, A. Wetterholm, M.J. Mueller, and J.Z. Haeggström, Evidence for a catalytic role of tyrosine 383 in the peptidase reaction of leukotriene A4 hydrolase, Eur. J. Biochem, 231:528–534, (1995).

    Article  PubMed  CAS  Google Scholar 

  47. M. Blomster-Andberg, Hamberg, M and Haeggström, J.Z., Mutation of tyrosine 383 in leukotriene A4 hydrolase allows conversion of leukotriene A4 into 5S, 6S-DHETE, implications for the epoxide hydrolase mechanism, J. Biol. Chem., subm. for publ. (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Samuelsson, B. (1997). Some Recent Advances in Leukotriene Research. In: Sinzinger, H., Samuelsson, B., Vane, J.R., Paoletti, R., Ramwell, P., Wong, P.YK. (eds) Recent Advances in Prostaglandin, Thromboxane, and Leukotriene Research. Advances in Experimental Medicine and Biology, vol 433. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1810-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1810-9_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1812-3

  • Online ISBN: 978-1-4899-1810-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics