Skip to main content

Abstract

Calcium (Ca2+) ions are ubiquitous intracellular messengers governing innumerable functions such as the control of cell growth and differentiation, membrane excitability, exocytosis and synaptic activity. Because of this, neurons must tightly regulate the cytosolic Ca2+ concentration ([Ca2+]i) to achieve a sufficiently high signal-to-noise ratio for efficient Ca- signaling to occur. The resting free [Ca2+]i must remain at very low levels (around 100 nM, or 105 times lower than extracellular [Ca2+]), so that relatively small or localized increases in [Ca2+]i can be used to trigger physiological events such as the activation of an enzyme or an ion channel. Neurons have therefore evolved complex homeostatic mechanisms to control both [Ca2+]i and the intracellular location of Ca2+ ions (for a general review of Ca2+ homeostasis in neurons see refs Blaustein, 1988; Meldolesi et al. 1988; Smith, Augustine, 1988; Miller, 1992). These mechanisms consist of complex interactions between four general categories of events: Ca2+ influx, Ca2+ buffering, internal Ca2+ storage and Ca2+ efflux. Under physiological conditions, a delicate interplay between these processes allows multiple Ca2+ dependent signaling cascades to be regulated independently within the same cell. However, it is widely believed that excessive Ca2+ loading, exceeding the capacity of Ca-regulatory mechanisms, may inappropriately activate Ca-dependent processes which either lie dormant or normally operate at low levels. When over-activated, such processes directly damage neurons or lead to the formation of toxic reaction products which ultimately cause cell death. However, in spite of two decades of research supporting the association between Ca2+ excess and neurotoxicity, the precise molecular mechanisms by which Ca2+ toxicity occurs remain poorly understood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abele AE, Scholz KP, Scholz WK & Miller RJ (1990) Excitotoxicity induced by enhanced excitatory neurotransmission in cultured hippocampal pyramidal neurons. Neuron 4, 413–419.

    Article  PubMed  CAS  Google Scholar 

  • Adler EM, Augustine GJ, Duffy SN & Charlton MP (1991) Alien intracellular calcium chelators attenuate neuro-transmitter release at the squid giant synapse. J Neurosci 11, 1496–1507.

    PubMed  CAS  Google Scholar 

  • Aizenman E, Hartnett KA & Reynolds IJ (1990) Oxygen free radicals regulate NMDA receptor function via a redox modulatory site. Neuron 5, 841–846.

    Article  PubMed  CAS  Google Scholar 

  • Ankarcrona M, Dypbukt JM, Bonfoco E, Zhivotovsky B, Orrenius S, Lipton SA & Nicotera P (1995) Glutamate-induced neuronal death: A succession of necrosis or apoptosis depending on mitochondrial function. Neuron 15, 961–973.

    Article  PubMed  CAS  Google Scholar 

  • Augustine GJ, Adler EM & Charlton MP (1991) The calcium signal for transmitter secretion from presynaptic nerve terminals. Ann NY Acad Sci 635, 365–381.

    Article  PubMed  CAS  Google Scholar 

  • Bading H, Ginty DD & Greenberg ME (1993) Regulation of gene expression in hippocampal neurons by distinct calcium signaling pathways. Science 260, 181–186.

    Article  PubMed  CAS  Google Scholar 

  • Barinaga M (1991) Is nitric oxide the “retrograde messenger”? Science 254, 1296–1297.

    Article  PubMed  CAS  Google Scholar 

  • Beckman JS (1991) The double-edged role of nitric oxide in brain function and superoxide-mediated injury. J Develop Physiol 15, 53–59.

    CAS  Google Scholar 

  • Bengzon J, Kokaia Z, Elmer E, Nanobashvili A, Kokaia M & Lindvall O (1997) Apoptosis and proliferation of dentate gyrus neurons after single and intermittent limbic seizures. Proc Natl Acad Sci USA 94, 10432–10437.

    Article  PubMed  CAS  Google Scholar 

  • Berdichevsky E, Riveros N, Sanches-Armass S & Orrego F (1983) Kainate, N-methylaspartate and other excitatory amino acids increase calcium influx onto rat brain cortex cells in vitro. Neurosci Lett 36, 75–80.

    Article  PubMed  CAS  Google Scholar 

  • Berridge MJ (1997) The AM and FM of calcium signalling. Nature 386, 759–760.

    Article  PubMed  CAS  Google Scholar 

  • Blaustein MP (1988) Calcium transport and buffering in neurons. TINS 11, 438–443.

    PubMed  CAS  Google Scholar 

  • Bredt DS, Hwang PM & Snyder SH (1990) Localization of nitric oxide synthase indicating a neural role for nitric oxide. Nature 347, 768–770.

    Article  PubMed  CAS  Google Scholar 

  • Bredt DS & Snyder SH (1990) Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme. Proc Natl Acad Sci USA 87, 682–685.

    Article  PubMed  CAS  Google Scholar 

  • Brenman JE, Chao DS, Gee SH, McGee AW, Craven SE, Santillano DR, Wu Z, Huang F, Xia H, Peters MF, Froehner SC & Bredt DS (1996a) Interaction of nitric oxide synthase with the postsynaptic density protein PSD-95 and alphal-syntrophin mediated by PDZ domains. Cell 84, 757–767.

    Article  PubMed  CAS  Google Scholar 

  • Brenman JE, Christopherson KS, Craven SE, McGee AW & Bredt DS (1996b) Cloning and characterization of postsynaptic density 93, a nitric oxide synthase interacting protein. J Neurosci 16, 7407–7415.

    PubMed  CAS  Google Scholar 

  • Brenman JE & Bredt DS (1997) Synaptic signaling by nitric oxide. Current Opin Neurobiol 7, 374–378.

    Article  CAS  Google Scholar 

  • Carafoli E (1992) The Ca2+ pump of the plasma membrane. J Biol Chem 267, 2115–2118.

    PubMed  CAS  Google Scholar 

  • Chan PH, Yang GY, Chen SF, Carlson E & Epstein CJ (1991) Cold induced brain edema and infarction are reduced in transgenic mice overexpressing CuZn-superoxide-dismutase. Ann Neurol 29, 482–486.

    Article  PubMed  CAS  Google Scholar 

  • Chard PS, Bleakman D, Christakos S, Fullmer CS & Miller RJ (1993) Calcium buffering properties of calbindin D28k and parvalbumin in rat sensory neurones. J Physiol (Lond) 472, 341–357.

    CAS  Google Scholar 

  • Chizzonite RA & Zak R (1981) Calcium-induced cell death: Susceptibility of cardiac myocytes is age-dependent. Science 213, 1508–1511.

    Article  PubMed  CAS  Google Scholar 

  • Choi DW (1985) Glutamate neurotoxicity in cortical cell culture is calcium dependent. Neurosci Lett 58, 293–297.

    Article  PubMed  CAS  Google Scholar 

  • Choi DW (1987) Ionic dependence of glutamate neurotoxicity. J Neurosci 7, 369–379.

    PubMed  CAS  Google Scholar 

  • Choi DW, Maulucci-Gedde M & Kriegstein AR (1987) Glutamate neurotoxicity in cortical cell culture. J Neurosci 7, 357–368.

    PubMed  CAS  Google Scholar 

  • Churn SB, Limbrick D, Sombati S & DeLorenzo RJ (1995) Excitotoxic activation of the NMDA receptor results in inhibition of calcium/calmodulin kinase II activity in cultured hippocampal neurons. J Neurosci 15, 3200–3214.

    PubMed  CAS  Google Scholar 

  • Collins F, Schmidt MF, Guthrie PB & Kater SB (1991) Sustained increase in intracellular calcium promotes neuronal survival. J Neurosci 11, 2582–2587.

    PubMed  CAS  Google Scholar 

  • Coyle JT & Puttfarcken P (1993) Oxidative stress, glutamate, and neurodegenerative disorders. Science 262, 689–695.

    Article  PubMed  CAS  Google Scholar 

  • Dawson TM, Bredt DS, Fotuhi M, Hwang PM & Snyder SH (1991) Nitric oxide synthase and neuronal NADPH diaphorase are identical in brain and peripheral tissues. Proc Natl Acad Sci USA 88, 7797–7801.

    Article  PubMed  CAS  Google Scholar 

  • Dawson VL, Dawson TM, London ED, Bredt DS & Snyder SH (1991) Nitric oxide mediates glutamate neurotoxicity in primary cortical cultures. Proc Natl Acad Sci USA 88, 6368–6371.

    Article  PubMed  CAS  Google Scholar 

  • DeCoster MA, Koenig ML, Hunter JC & Tortella FC (1992) Calcium dynamics in neurons treated with toxic and non-toxic concentrations of glutamate. Neuroreport 3, 773–776.

    Article  PubMed  CAS  Google Scholar 

  • Dessi F, Charriaut-Marlangue C, Khrestchatisky M & Ben-Ari Y (1993) Glutamate induced neuronal death is not a programmed cell death in cerebellar cultures. J Neurochem 60, 1953–1955.

    Article  PubMed  CAS  Google Scholar 

  • Dolmetsch RE, Lewis RS, Goodnow CC & Healy JI (1997) Differential activation of transcription factors induced by Ca2+ response amplitude and duration. Nature 386, 855–858.

    Article  PubMed  CAS  Google Scholar 

  • Dubinsky JM & Rothman SM (1991) Intracellular calcium concentration during “chemical hypoxia” and excitotoxic neuronal injury. J Neurosci 11, 2545–2551.

    PubMed  CAS  Google Scholar 

  • Dugan LL, Sensi SL, Canzoniero LMT, Handran SD, Rothman SM, Lin TS, Goldberg MP & Choi DW (1995) Mitochondrial production of reactive oxygen species in cortical neurons following exposure to N-methyl-D-aspartate. J Neurosci 15, 6377–6388.

    PubMed  CAS  Google Scholar 

  • Dumuis A, Sebben M, Haynes L, Pin JP & Bockaert J (1988) NMDA receptors activate the arachidonic acid cascade system instriatal neurons. Nature 336, 68–70.

    Article  PubMed  CAS  Google Scholar 

  • East SJ & Garthwaite J (1991) NMDA receptor activation in rat hippocampus induces cyclic GMP formation through the 1-arginine-nitric oxide pathway. Neurosci Lett 123, 17–19.

    Article  PubMed  CAS  Google Scholar 

  • Eimrel S & Schramm M (1994) The quantity of calcium that appears to induce neuronal death. J Neurochem 62, 1223–1226.

    Article  Google Scholar 

  • Eliasson MJL, Sampei K, Mandir AS, Hum PD, Traystman RJ, Bao J, Pieper A, Wang ZQ, Dawson TM, Snyder SH & Dawson VL (1997) Poly(ATP-ribose) polymerase gene disruption renders mice resistant to cerebral ischemia. Nature Medicine 3, 1089–1095.

    Article  PubMed  CAS  Google Scholar 

  • Fariss MW, Pascoe GA & Reed DJ (1985) Vitamin E reversal of the effect of extracellular calcium on induced toxicity in hepatocytes. Science 227, 751–754.

    Article  PubMed  CAS  Google Scholar 

  • Farooqui AA & Horrocks LA (1991) Excitatory amino acid receptors, neural membrane phospholipid metabolism and neurological disorders. Brain ResBrain Res Rev 16, 171–191.

    Article  PubMed  CAS  Google Scholar 

  • Freund TF, Buzsaki G, Leon A, Baimbridge KG & Somogyi P (1990) Relationship of neuronal vulnerability and calcium binding protein immunoreactivity in ischemia. Exp Brain Res 83, 55–66.

    Article  PubMed  CAS  Google Scholar 

  • Friedlander RM, Gagliardini V, Hara H, Fink KB, Li W, MacDonald G, Fishman MC, Greenberg AH, Moskowitz MA, Yuan J (1997) Expression of a dominant negative mutant of interleukin-1 beta converting enzyme in transgenic mice prevents neuronal cell death induced by trophic factor withdrawal and ischemic brain injury. J Exp Med 185, 933–940.

    Article  PubMed  CAS  Google Scholar 

  • Furchgott RF & Zawadzki JV (1980) THe obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288, 373–376.

    Article  PubMed  CAS  Google Scholar 

  • Gadian DG, Frackowiak RSJ, Crockard HA, Proctor E, Allen K, Williams SR & Russell RWR (1987) Acute cerebral ischemia: Concurrent changes in cerebral blood flow, Energy metabolites, pH, and lactatemeasured with hydrogen clearance and 31P and 1H nuclear magnetic resonance spectroscopy. I. Methodology. J Cereb Blood Flow Metab 7, 199–206.

    Article  PubMed  CAS  Google Scholar 

  • Garthwaite G, Hajos F & Garthwaite J (1986) Ionic requirements for neurotoxic effects of excitatory amino acid analogues in rat cerebellar slices. Neuroscience 18, 437–447.

    Article  PubMed  CAS  Google Scholar 

  • Garthwaite J, Charles SL & Chess-Williams R (1988) Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as inter-cellular messenger in the brain. Nature 336, 385–388.

    Article  PubMed  CAS  Google Scholar 

  • Ghosh A & Greenberg ME (1995) Calcium signalling in neurons: Molecular mechanisms and cellular consequences. Science 268, 239–247.

    Article  PubMed  CAS  Google Scholar 

  • Glaum SR, Scholz WK & Miller RJ (1990) Acute-and long-term glutamate-mediated regulation of [Ca2+]i in rat hippocampal pyramidal neurons in vitro. J Pharmacol Exp Ther 253, 1293–1302.

    PubMed  CAS  Google Scholar 

  • Goldberg MP, Kurth MC, Giffard RG & Choi DW (1989) 45Calcium accumulation and intracellular calcium during in vitro “ischemia”. Soc Neurosci Abstr 15, 803.

    Google Scholar 

  • Gunter TE & Pfeiffer DR (1990) Mechanisms by which mitochondria transport calcium. Amer J Physiol 258, C755–C786.

    PubMed  CAS  Google Scholar 

  • Hajimohammadreza I, Probert AW, Coughenour LL, Borosky SA, Marcoux FW, Boxer PA & Wang KKW (1995) A specific inhibitor of calcium/calmodulin-dependent protein kinase-II provides neuroprotection against NMDA-and hypoxia/hypoglycemia-induced cell death. J Neurosci 15, 4093–4101.

    PubMed  CAS  Google Scholar 

  • Halestrap AP, Griffiths EJ & Connern CP (1993) Mitochondrial calcium handling and oxidative stress. Biochem Soc Trans 21, 353–358.

    PubMed  CAS  Google Scholar 

  • Hartley DM, Kurth MC, Bjerkness L, Weiss JH & Choi DW (1993) Glutamate receptor-induced 45Ca2+ accumulation in cortical cell culture correlates with subsequent neuronal degeneration. J Neurosci 13, 1993–2000.

    PubMed  CAS  Google Scholar 

  • Hartley Z & Dubinsky JM (1993) Changes in intracellular pH associated with glutamate excitotoxicity. J Neurosci 13, 4690–4699.

    PubMed  CAS  Google Scholar 

  • Hope BT, Michael GJ, Knigge KM & Vincent SR (1991) Neuroal NADPH diaphorase is a nitric oxide synthase. Proc Natl Acad Sci USA 88, 2811–2814.

    Article  PubMed  CAS  Google Scholar 

  • Hyrc K, Handran SD, Rothman SM & Goldberg MP (1997) Ionized intracellular calcium concentration predicts excitotoxic neuronal death: Observations with low-affinity fluorescent calcium indicators. J Neurosci 17

    Google Scholar 

  • Irwin RP & Paul SM (1992) Glutamate exposure rapidly decreases intracellular pH in rat hippocampal neurons in culture. Soc Neurosci Abstr 18, 118.10.

    Google Scholar 

  • Jones OT, Kunze DL & Angelides KJ (1989) Localization and mobility of w-conotoxin-sensitive Ca2+ channels in hippocampal CA1 neurons. Science 244, 1189–1193.

    Article  PubMed  CAS  Google Scholar 

  • Kaku DA, Giffard RG & Choi DW (1993) Neuroprotective effects of glutamate antagonists and extracellular acidity. Science 260, 1516–1518.

    Article  PubMed  CAS  Google Scholar 

  • Kasai H & Peterson OH (1994) Spatial dynamics of second messengers: IP3 and cAMP as long-range and associative messengers. Trends Neurosci 17, 95–101.

    Article  PubMed  CAS  Google Scholar 

  • Kass IS & Lipton P (1982) Mechanisms involved in irreversible anoxic damage to the in vitro rat hippocampal slice. J Physiol (Lond) 332, 459–472.

    CAS  Google Scholar 

  • Kiedrowski L, Brooker G, Costa E & Wroblewski JT (1994) Glutamate impairs neuronal calcium extrusion while reducing sodium gradient. Neuron 12, 295–300.

    Article  PubMed  CAS  Google Scholar 

  • Kirino T (1982) Delayed neuronal death in the gerbil hippocampus following ischemia. Brain Res 239, 57–69.

    Article  PubMed  CAS  Google Scholar 

  • Kitamura Y, Miyazaki A, Yamanaka Y & Nomura Y (1993) Stimulatory effects of protein kinase C and calmodulin kinase II on N-methyl-D-aspartate receptor/channels in the postsynaptic density of rat brain. J Neurochem 61, 100–109.

    Article  PubMed  CAS  Google Scholar 

  • Koch RA & Barish ME (1994) Perturbation of intracellular calcium and hydrogen ion regulation in cultured mouse hippocampal neurons by reduction of the sodium ion concentration gradient. J Neurosci 14, 2585–2593.

    PubMed  CAS  Google Scholar 

  • Kure S, Tominaga T, Yoshimoto T, Tada K & Narisawa K (1991) Glutamate triggers internucleosomal DNA cleavage in neuronal cells. Biochem Biophys Res Comm 179, 39–45.

    Article  PubMed  CAS  Google Scholar 

  • Kurth MC, Weiss JH & Choi DW (1989) Relationship between glutamate-induced 45-Calcium influx and resultant neuronal injury in cultured cortical neurons. Neurology 39 (suppl), 217.

    Google Scholar 

  • Lafon-Cazal M, Pietri S, Culcasi M & Bockaert J (1993) NMDA-dependent Superoxide production and neuro-toxicity. Nature 364, 535–537.

    Article  PubMed  CAS  Google Scholar 

  • Lei SZ, Pan ZH, Aggarwal SK, Chen HSV, Hartman J, Sucher NJ & Lipton SA (1992) Effect of nitric oxide production on the redox modulatory site of the NMDA receptor-channel complex. Neuron 8, 1087–1099.

    Article  PubMed  CAS  Google Scholar 

  • Lemasters JJ, DiGiuseppi JD, Nieminen AL & Herman B (1987) Blebbing, free calcium and mitochondrial membrane potential preceding cell death in hepatocytes. Nature 325, 78–81.

    Article  PubMed  CAS  Google Scholar 

  • Lerea LS & McNamara JO (1993) Ionotropic glutamate receptor subtypes activate c-fos transcription by distinct calcium-requiring intracellular signalling pathways. Neuron 10, 31–41.

    Article  PubMed  CAS  Google Scholar 

  • Lipton SA, Choi YB, Pan ZH, Lei SZ, Chen SHV, Sucher NJ, Loscalzo J, Singel DJ & Stamler JS (1993) A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds. Nature 364, 626–631.

    Article  PubMed  CAS  Google Scholar 

  • Lledo PM, Somasundram B, Morton AJ, Emson PC & Mason WT (1992) Stable transfection of calbindin-D28k into the GH3 cell line alters calcium currents and intracellular calcium homeostasis. Neuron 9, 943–954.

    Article  PubMed  CAS  Google Scholar 

  • Llinas R, Sugimori M & Silver RB (1992) Microdomains of high calcium concentration in a presynaptic terminal. Science 256, 677–679.

    Article  PubMed  CAS  Google Scholar 

  • Lobner D & Lipton P (1993) Intracellular calcium levels and calcium fluxes in the CA1 region of the rat hippo-campal slice during in vitro ischemia: Relationship to electrophysiological cell damage. J Neuwsci 13, 4861–4871.

    CAS  Google Scholar 

  • Lu YM, Yin HZ, Chiang J & Weiss JH (1996) Ca2+-permeable AMPA/kainate and NMDA channels: High rate of Ca2+ influx underlies potent induction of injury. J Neurosci 16, 5457–5465.

    PubMed  CAS  Google Scholar 

  • Lucas DR & Newhouse JP (1957) The toxic effect of sodium L-glutamate on the inner layers of the retina. Arch Ophthalmol 58, 193–201.

    Article  CAS  Google Scholar 

  • Madison D (1993) Pass the nitric oxide. Proc Natl Acad Sci USA 90, 4329–4331.

    Article  PubMed  CAS  Google Scholar 

  • Manev H, Favaron M, Guidotti A & Costa E (1989) Delayed increase of Ca2+ influx elicited by glutamate: Role in neuronal death. Mol Pharmacol 36, 106–112.

    PubMed  CAS  Google Scholar 

  • Marcoux FW, Probert AW & Weber ML (1989) Hypoxic neural injury in cell culture: Calcium accumulation blockade and neuroprotection by NMDA antagonists but not calcium channel antagonists. In: Cerebrovascular Disease: Sixteenth Princeton Conference. (Ginsberg MD, Dietrich WD eds), pp 135–141. New York: Raven Press.

    Google Scholar 

  • Marcoux FW, Probert AW & Weber ML (1990) Hypoxie neuronal injury in tissue culture is associated with delayed calcium accumulation. Stroke 21 (suppl III), III–71–III–74.

    CAS  Google Scholar 

  • Marmarou A, Holdaway R, Ward JD, Yoshida K, Choi SC, Muizelaar JP & Young HF (1993) Traumatic brain tissue acidosis: experimental and clinical studies. Acta Neurochir Suppl 57, 160–164.

    PubMed  CAS  Google Scholar 

  • Mattson MP, Guthrie PB & Kater SB (1989) A role for Na+-dependent Ca2+ extrusion in protection against neuronal excitotoxicity. FASEB J 3, 2519–2526.

    PubMed  CAS  Google Scholar 

  • Mattson MP, Rychlik B, Chu C & Christakos S (1991) Evidence for calcium-reducing and excito-protective roles for the calcium-binding protein calbindin-D28k in cultured hippocampal neurons. Neuron 6, 41–51.

    Article  PubMed  CAS  Google Scholar 

  • McGlade McCulloh E, Yamamoto H, Tan S-E, Brickey DA & Soderling TR (1993) Phosphorylation and regulation of glutamate receptors by calcium/calmodulin-dependent protein kinase II. Nature 362, 640–642.

    Article  PubMed  CAS  Google Scholar 

  • McLean AEM, McLean E & Judah JD (1965) Cellular necrosis in the liver induced and modified by drugs. Int Rev Exp Pathol 4, 127–157.

    PubMed  CAS  Google Scholar 

  • Meldolesi J, Volpe P & Pozzan T (1988) The intracellular distribution of calcium. TINS 11, 449–452.

    PubMed  CAS  Google Scholar 

  • Miller RJ (1992) Neuronal Ca2+: getting it up and keeping it up. TINS 15, 317–319.

    PubMed  CAS  Google Scholar 

  • Neher E (1986) Concentration profiles of intracellular calcium in the presence of a diffusible chelator. In: Calcium electrogenesis and neuronal functioning (Heinemann U, Klee M, Neher E eds), pp 80–96. Berlin-Heidelberg: Exp Brain Res, Series 14, Springer-Verlag.

    Chapter  Google Scholar 

  • Neher E & Augustine GJ (1992) Calcium gradients and buffers on bovine chromaffin cells. J Physiol (Lond) 450, 273–301.

    CAS  Google Scholar 

  • Nowak L, Bregestovski P & Ascher P (1984) Magnesium gates glutamate activated channels in mouse central neurones. Nature 307, 462–465.

    Article  PubMed  CAS  Google Scholar 

  • Nowycky MC & Pinter MJ (1993) Time courses of calcium and calcium-bound buffers following calcium influx in a model cell. Biophys J 64, 77–91.

    Article  PubMed  CAS  Google Scholar 

  • Ojcius DM, Zychlinsky A, Zheng LM & Young D (1991) Ionophore-induced apoptosis: role of DNA fragmentation and calcium fluxes. Exp Cell Res 197, 43–49.

    Article  PubMed  CAS  Google Scholar 

  • Olney JW (1969) Brain lesion, obesity and other disturbances in mice treated with monosodium glutamate. Science 164, 719–721.

    Article  PubMed  CAS  Google Scholar 

  • Olney JW (1978) Neurotoxicity of excitatory amino acids. In: Kainic acid as a tool in neurobiology. (McGeer EG, Olney JW, McGeer PL eds), pp 95–121. New York: Raven Press.

    Google Scholar 

  • Olney JW, Price MT, Samson L & Labruyere J (1986) The role of specific ions in glutamate neurotoxicity. Neurosci Lett 65, 65–71.

    Article  PubMed  CAS  Google Scholar 

  • Ozawa K, Seta K, Araki H & Handa H (1966) The effect of ischemia on mitochondrial metabolism. J Biol Chem 61, 512–514.

    Google Scholar 

  • Ozyurt E, Graham DI, Woodruff GN & McCulloch J (1988) Protective effect of the Glutamate antagonist, MK-801 in focal cerebral ischemia in the cat. J Cereb Blood Flow Metab 8, 13 8–143.

    Article  CAS  Google Scholar 

  • Pellegrini-Giampietro DE, Cherici G, Alesiani M, Carla V & Moroni F (1990) Excitatory amino acid release and free radical formation may cooperate in the genesis of ischemia-induced neuronal damage. J Neurosci 10, 1035–1041.

    PubMed  CAS  Google Scholar 

  • Pirollet F, Derancourt J, Haiech J, Job D & Margolis R (1992) Ca2+-calmodulin regulated effectors of microtubule stability in bovine brain. Biochemistry 31, 8849–8855.

    Article  PubMed  CAS  Google Scholar 

  • Price MT, Olney JW, Samson L & Labruyere J (1985) Calcium influx accompanies but does not cause excitotoxin-induced neuronal necrosis in retina. Brain Res Bull 14, 369–376.

    Article  PubMed  CAS  Google Scholar 

  • Raff MC, Barres BA, Burne JF, Coles HS, Ishizaki Y & Jacobson MD (1993) Programmed cell death and the control of cell survival: lessons from the nervous system. Science 262, 695–700.

    Article  PubMed  CAS  Google Scholar 

  • Randall RD & Thayer SA (1992) Glutamate-induced calcium transient triggers delayed calcium overload and neurotoxicity in rat hippocampal neurons. J Neurosci 12, 1882–1895.

    PubMed  CAS  Google Scholar 

  • Rehncrona S, Mela L & Siesjo BK (1979) Recovery of brain mitochondrial function in the rat after complete and incomplete cerebral ischemia. Stroke 10, 437–446.

    Article  PubMed  CAS  Google Scholar 

  • Roberts WM (1993) Spatial calcium buffering in saccular hair cells. Nature 363, 74–76.

    Article  PubMed  CAS  Google Scholar 

  • Roberts-Lewis JM, Savage MJ, Marcy VR, Pinsker LR & Siman R (1994) Immunolocalization of calpain I-mediated spectrin degradation to vulnerable neurons in the ischemic brain. J Neurosci 14, 3934–3944.

    PubMed  CAS  Google Scholar 

  • Rosenberg PA, Amin S & Leitner M (1992) Glutamate uptake disguises neurotoxic potency of glutamate agonists in cerebral cortex in dissociated cell culture. J Neurosci 12, 56–61.

    PubMed  CAS  Google Scholar 

  • Rothman SM (1983) Synaptic activity mediates death of hypoxic neurons. Science 220, 536–537.

    Article  PubMed  CAS  Google Scholar 

  • Rothman SM (1984) Synaptic release of excitatory amino acid neurotransmitter mediates anoxic neuronal death. J Neurosci 4, 1884–1891.

    PubMed  CAS  Google Scholar 

  • Rothman SM (1985) The neurotoxicity of excitatory amino acids is produced by passive chloride influx. J Neurosci 5, 1483–1489.

    PubMed  CAS  Google Scholar 

  • Sako K, Kobatake K, Yamamoto YL & Diksic M (1985) Correlation of local cerebral blood flow, glucose utilization and tissue pH following a middle cerebral artery occlusion in the rat. Stroke 16, 828–834.

    Article  PubMed  CAS  Google Scholar 

  • Sala F & Hernandez-Cruz A (1990) Calcium diffusion modelling in a spherical neuron: relevance of buffering properties. Biophys J 57, 313–324.

    Article  PubMed  CAS  Google Scholar 

  • Schanne FAX, Kane AB, Young EA & Farber JL (1979) Calcium dependence of toxic cell death: a final common pathway. Science 206, 700–702.

    Article  PubMed  CAS  Google Scholar 

  • Scharfman HE & Schwartzkroin PA (1989) Protection of dentate hilar cells from prolonged stimulation by intra-cellular calcium chelation. Science 246, 257–260.

    Article  PubMed  CAS  Google Scholar 

  • Schindler A, F., Olson EC, Spitzer NC & Montai M (1996) Mitochondrial dysfunction is a primary event in glutamate neurotoxicity. J Neurosci 16, 6125–6133.

    Google Scholar 

  • Schlaepfer WW & Bunge RP (1973) Effects of calcium ion concentration on the degeneration of amputated axons in tissue culture. J Cell Biol 59, 456–470.

    Article  PubMed  CAS  Google Scholar 

  • Schmidley JW (1990) Free radicals in central nervous system ischemia. Stroke 21, 1086–1090.

    Article  PubMed  CAS  Google Scholar 

  • Schuman EM & Madison DV (1991) A requirement for the intracellular messenger nitric oxide in long term poten-tiation. Science 254, 1503–1506.

    Article  PubMed  CAS  Google Scholar 

  • Schutz H, Silverstein PR, Vapalahti M, Bruce DA, Mela L & Langfitt TW (1973a) Brain mitochondrial fuction after ischemia and hypoxia: I.Ischemia induced by increased intracranial pressure. Archives of Neurology 29, 408–416.

    Article  PubMed  CAS  Google Scholar 

  • Schutz H, Silverstein PR, Vapalahti M, Bruce DA, Mela L & Langfitt TW (1973b) Brain mitochondrial function after ischemia and hypoxia: II. Normotensive systemic hypoxemia. Archives of Neurology 29, 417–419.

    Article  PubMed  CAS  Google Scholar 

  • Shah PT, Yoon KW, Xu XM & Broder LD (1997) Apoptosis mediates cell death following traumatic injury in rat hippocampal neurons. Neuroscience 79, 999–1004.

    Article  PubMed  CAS  Google Scholar 

  • Sher PK & Hu SX (1990) Increased glutamate uptake and glutamine synthetase activity in neuronal cell cultures surviving chronic hypoxia. Glia 3, 350–357.

    Article  PubMed  CAS  Google Scholar 

  • Siesjo BK (1992a) Pathophysiology and treatment of focal cerebral ischemia. Part II: Mechanisms of damage and treatment. J Neurosurg 77, 337–354.

    Article  PubMed  CAS  Google Scholar 

  • Siesjo BK (1992b) Pathophysiology and treatment of focal cerebral ischemia. Part I: pathophysiology. J Neurosurg 77, 169–184.

    Article  PubMed  CAS  Google Scholar 

  • Siman R, Noszek C & Kegerise C (1989) Calpain I activation is specifically related to excitatory amino acid induction of hippocampal damage. J Neurosci 9, 1579–1590.

    PubMed  CAS  Google Scholar 

  • Siman R (1992) Proteolytic mechanism for the neurodegeneration of Alzheimer’s disease. Ann NY Acad Sci 674, 193–202.

    Article  PubMed  CAS  Google Scholar 

  • Siman R & Noszek JC (1988) Excitatory amino acids activate calpain I and induce structural protein breakdown in vivo. Neuron 1, 279–287.

    Article  PubMed  CAS  Google Scholar 

  • Simon RP, Swan JH & Meldrum BS (1984) Blockade of N-methyl-D-aspartate receptors may protect against is-chemic damage in the brain. Science 226, 850–852.

    Article  PubMed  CAS  Google Scholar 

  • Smith MT, Thor H & Orrenius S (1981) Toxic injury to isolated hepatocytes is not dependent on extracellular calcium. Science 213, 1257–1259.

    Article  PubMed  CAS  Google Scholar 

  • Smith SJ & Augustine GJ (1988) Calcium ions, active zones, and synaptic transmitter release. TINS 11, 458–464.

    PubMed  CAS  Google Scholar 

  • Southam ES, East SJ & Garthwaite J (1991) Excitatory amino acid receptors coupled to the nitric oxide/cyclic GMP pathway in rat cerebellum during development. J Neurochem 56, 2072–2081.

    Article  PubMed  CAS  Google Scholar 

  • Speksnijder JE, Miller AL, Weisenseel MH, Chen TH & Jaffe LF (1989) Calcium buffer injections block fucoid egg development by facilitating calcium diffusion. Proc Natl Acad Sci USA 86, 6607–6611.

    Article  PubMed  CAS  Google Scholar 

  • Stern MD (1992) Buffering of calcium in the vicinity of a channel pore. Cell Calcium 13, 183–192.

    Article  PubMed  CAS  Google Scholar 

  • Stys PK, Waxman SG & Ransom BR (1991) Na+-Ca2+ exchanger mediates Ca2+ influx during anoxia in mammalian central nervous system white matter. Ann Neurol 30, 375–380.

    Article  PubMed  CAS  Google Scholar 

  • Stys PK, Waxman SG & Ransom BR (1992) Ionic mechanisms of anoxic injury in mammalian CNS white matter: role of Na+ channels and Na+-Ca2+ exchanger. J Neurosci 12, 430–439.

    PubMed  CAS  Google Scholar 

  • Taira T, Smirnov S, Voipio J & Kaila K (1993) Intrinsic proton modulation of excitatory transmission in rat hippo-campal slices. Neuroreport 4, 93–96.

    Article  PubMed  CAS  Google Scholar 

  • Thayer SA & Miller RJ (1990) Regulation of the intracellular free calcium concentration in single rat dorsal root ganglion neurones in vitro. J Physiol (Lond) 425, 85–115.

    CAS  Google Scholar 

  • Toescu EC, Gardner JM & Petersen OH (1993) Mitochondrial Ca2+ uptake at submicromolar [Ca2+]i in permeabi-lised pancreatic acinar cells. Biochem Biophys Res Comm 192, 854–859.

    Article  PubMed  CAS  Google Scholar 

  • Tombaugh GC & Sapolsky RM (1990) Mechanistic distinctions between excitotoxic and acidotic hippocampal damage in an in vitro model of ischemia. J Cereb Blood Flow Metab 10, 527–535.

    Article  PubMed  CAS  Google Scholar 

  • Tominaga T, Kure S & Yoshimoto T (1993) Temporal profile of DNA degradation in injured rat brain. J Cereb Blood Flow Metab 13, Suppl 1, S460.

    Google Scholar 

  • Tymianski M, Charlton MP, Carlen PL & Tator CH (1993a) Source specificity of early calcium neurotoxicity in cultured embryonic spinal neurons. J Neurosci 13, 2085–2104.

    PubMed  CAS  Google Scholar 

  • Tymianski M, Charlton MP, Carlen PL & Tator CH (1993b) Secondary Ca2+ overload indicates early neuronal injury which precedes staining with viability indicators. Brain Res 607, 319–323.

    Article  PubMed  CAS  Google Scholar 

  • Tymianski M, Wallace MC, Spigelman I, Uno M, Carlen PL, Tator CH & Charlton MP (1993c) Cell permeant Ca2+ chelators reduce early excitotoxic and ischemic neuronal injury in vitro and in vivo. Neuron 11, 221–235.

    Article  PubMed  CAS  Google Scholar 

  • Tymianski M, Wallace MC, Uno M, Spigelman I, Charlton MP, Carlen PL & Tator CH (1993d) Successful treatment of focal ischemic stroke by intracellular calcium chelation. J Cereb Blood Flow Metab 13, Suppl 1, S638(Abstract).

    Google Scholar 

  • Tymianski M, Charlton MP, Carlen PL & Tator CH (1994a) Properties of neuroprotective cell-permeant Ca2+ chelators: Effects on [Ca2+]i and glutamate neurotoxicity in vitro. J Neurophysiol 267, 1973–1992.

    Google Scholar 

  • Tymianski M, Spigelman I, Zhang L, Carlen PL, Tator CH, Charlton MP & Wallace MC (1994b) Mechanism of action and persistence of neuroprotection by cell permeant Ca2+ chelators. J Cereb Blood Flow Metab 14, 911–923.

    Article  PubMed  CAS  Google Scholar 

  • Weber ML, Probert AW, Boxer PA & Marcoux FW (1988) The effect of ion channel modulators on hypoxia-in-duced calcium accumulation and injury in cortical neuronal cultures. Soc Neurosci Abstr 14, 1117.

    Google Scholar 

  • Weiss JH, Koh JY, Baimbridge KG & Choi DW (1990) Cortical neurons containing somatostatin-or parvalbumin-like immunoreactivity are atypically vulnerable to excitotoxic injury in vitro. Neurology 40, 1288–1292.

    Article  PubMed  CAS  Google Scholar 

  • Werth JL & Thayer SA (1994) Mitochondria buffer physiological calcium loads in cultured rat dorsal root ganglion neurons. J Neurosci 14, 348–356.

    PubMed  CAS  Google Scholar 

  • White RJ & Reynolds IJ (1996) Mitochondrial depolarization in glutamate-stimulated neurons: an early signal specific to excitotoxin exposure. J Neurosci 16, 5688–5697.

    PubMed  CAS  Google Scholar 

  • Yang G, Chan PH, Chen J, Carlson E, Chen SF, Weinstein P, Epstein CJ & Kamii H (1994) Human copper-zinc su-peroxide dismutase transgenic mice are highly resistant to reperfusion injury after focal cerebral ischemia. Stroke 25, 165–170.

    Article  PubMed  Google Scholar 

  • Yu SP & Choi DW (1997) Na+-Ca2+ exchange currents in cortical neurons: concomitant forward and reverse operation and effect of glutamate. European J Neurosci 9, 1273–1281.

    Article  CAS  Google Scholar 

  • Zhang J, Dawson VL, Dawson TM & Snyder SH (1994) Nitric oxide activation of poly(ADP-Ribose) synthetase in neurotoxicity. Science 263, 687–689.

    Article  PubMed  CAS  Google Scholar 

  • Zhou Z & Neher E (1993) Mobile and immobile calcium buffers in bovine adrenal chromaffm cells. J Physiol (Lond) 469, 245–273.

    CAS  Google Scholar 

  • Zimmerman ANE & Hulsman WC (1966) Paradoxical influence of calcium ions on the permeability of the cell membranes of the isolated rat heart. Nature 211, 646–647.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sattler, R., Tymianski, M. (1998). Calcium and Cellular Death. In: Verkhratsky, A., Toescu, E.C. (eds) Integrative Aspects of Calcium Signalling. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1901-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1901-4_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1903-8

  • Online ISBN: 978-1-4899-1901-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics