Skip to main content

Anaplerosis of the Tricarboxylic Acid Cycle in Human Skeletal Muscle during Exercise

Magnitude, Sources, and Potential Physiological Significance

  • Chapter
Skeletal Muscle Metabolism in Exercise and Diabetes

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 441))

Abstract

In comparison to cardiac tissue, relatively few data are available regarding the concentrations of tricarboxylic acid cycle intermediates (TCAI) and the potential influence of TCAI pool size on the regulation of cycle flux in mammalian skeletal muscle. However, recent human exercise studies have confirmed the fundamental observation made in electrically-stimulated rodent muscle that moderate to intense contraction results in a net accumulation of TCAI. The increase in TCAI pool size, termed “anaplerosis,” appears exponentially related to work intensity, although the relative changes in the individual cycle intermediates differ markedly. While a number of mechanisms could potentially contribute to the increase in TCAI, the reaction catalyzed by alanine aminotransferase appears primarily responsible for anaplerosis at the onset of exercise in humans. The expansion of the TCAI pool has been suggested to be important for aerobic energy provision, and various theories have been proposed which link the total concentration of TCAI with the capacity for TCA cycle flux during exercise. However, despite the recent advances which have been made with regard to the magnitude and potential source of TCAI expansion in humans, our understanding of the physiological significance of anaplerosis is limited. Indeed, it remains speculative whether the increase in TCAI pool size represents an important regulatory signal or is simply a consequence of the huge increase in metabolic flux which occurs during exercise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aragón, J.J., and J.M. Lowenstein. The purine nucleotide cycle. Comparison of the levels of citric acid cycle intermediates with the operation of the purine nucleotide cycle in rat skeletal muscle during exercise and recovery from exercise. Eur. J. Biochem. 110: 371–377, 1980.

    Article  PubMed  Google Scholar 

  2. Armstrong, R.G., and R.O. Phelps. Muscle fibre type composition of the rat hindlimb. Am. J. Anat. 171: 259–272, 1984.

    Article  PubMed  CAS  Google Scholar 

  3. Blomstrand, E., G. Rõdegran, and B. Saltin. Maximum rate of oxygen uptake by human skeletal muscle in relation to maximal activities of enzymes in the Kreb’s cycle. J. Physiol. 501: 455–460, 1997.

    Article  PubMed  CAS  Google Scholar 

  4. Brodai, B., and K. Hjelle. Synthesis of phosphoenolpyruvate from pyruvate in rat skeletal muscle. Int. J. Biochem. 22: 752–758, 1990.

    Google Scholar 

  5. Cadefau, J., H.J. Green, R. Cusso, M. Ball-Burnett, and G. Jamieson. Coupling of muscle phosphorylation potential to glycolysis during work after short-term training. J. Appl. Physiol. 76: 2586–2593, 1994.

    PubMed  CAS  Google Scholar 

  6. Crabtree, B., S.J. Higgins, and E.A. Newsholme. The activities of pyruvate carboxylase, phosphoenolpyruvate carboxylase and fructose diphosphate in muscles from vertebrates and invertebrates. Biochem. J. 130: 391–396, 1972.

    PubMed  CAS  Google Scholar 

  7. Davis, E.J., Ø. Spydevold, and J. Bremer. Pyruvate carboxylase and propionyl-CoA carboxylase as anaplerotic enzymes in skeletal muscle mitochondria. Eur. J. Biochem. 110: 255–262, 1980.

    Article  PubMed  CAS  Google Scholar 

  8. Essén, B., and L. Kaijser. Regulation of glycolysis in intermittent exercise in man. J. Physiol. 281: 499–511, 1978.

    PubMed  Google Scholar 

  9. Flanagan, W.F., E.W. Holmes, R.L. Sabina, and J.L. Swain. Importance of purine nucleotide cycle to energy production in skeletal muscle. Am. J. Physiol. 252 (Cell Physiol. 20): C795-C802, 1986.

    Google Scholar 

  10. Gibala, M.J. D.A. MacLean, T.E. Graham, and B. Saltin. Anaplerotic processes in human skeletal muscle during brief dynamic exercise. J. Physiol. 502: 703–713, 1997.

    Article  PubMed  CAS  Google Scholar 

  11. Gibala, M. J., D. A. MacLean, T. E. Graham, and B. Saltin. Tricarboxylic acid cycle intermediate pool size and estimated cycle flux in human muscle during exercise. Am. J. Physiol. 275 (Endocrinol. Metab.), in press, 1998.

    Google Scholar 

  12. Gibala, M.J., M.A. Tarnopolsky, and T.E. Graham. Tricarboxylic acid cycle intermediates in human muscle at rest and during prolonged cycling. Am. J. Physiol. 272 (Endocrinol. Metab. 35): E239-E244, 1997.

    Google Scholar 

  13. Graham, T.E., B. Kiens, M. Hargreaves, and E.A. Richter. Influence of fatty acids on ammonia and amino acid flux from active human muscle. Am. J. Physiol. 261 (Endocrinol. Metab. 24): E168-E176, 1991.

    Google Scholar 

  14. Graham, T.E., and B. Saltin. Estimation of the mitochondrial redox state in human skeletal muscle during exercise. J. Appl. Physiol. 66: 561–566, 1989.

    PubMed  CAS  Google Scholar 

  15. Hansford, R.G. Control of mitochondrial substrate oxidation. Curr. Top. Bioenerg. 10: 217–78, 1980.

    CAS  Google Scholar 

  16. Hiltunen, J.K., and E.J. Davis. The disposition of citric acid cycle intermediates by isolated rat heart mitochondria. Biochem. Biophys. Acta. 678: 115–121, 1981.

    Article  PubMed  CAS  Google Scholar 

  17. Hiltunen, J.K., and I.E. Hassinen. Energy-linked regulation of the citric acid cycle and the pool size of the cycle intermediates in the isolated perfused rat heart. J. Biochem. 8: 505–509, 1977.

    CAS  Google Scholar 

  18. Jackman, M.L., M.J. Gibala, E. Hultman, and T.E. Graham. Nutritional status affects branched-chain oxoacid dehydrogenase activity during exercise in humans. Am. J. Physiol. 272 (Endocrinol. Metab. 35): E233-E238, 1997.

    Google Scholar 

  19. Karlsson, J. Pyruvate and lactate ratios in muscle tissue and blood during exercise in man. Acta Physiol. Scand. 81: 455–459, 1971.

    Article  PubMed  CAS  Google Scholar 

  20. Kornberg, H.L. Anaplerotic sequences and their role in metabolism. In: Essays in Biochemistry, edited by P.N. Campbell and R.D. Marshall. London: Academic Press, 1966, pp. 1–31.

    Google Scholar 

  21. Lanoue, K.F., and A.C. Schoolwerth. Metabolite transport in mammalian mitochondria. In: Bioenergetics, edited by L. Ernster. Amsterdam: Elsevier Science Publishers, 1984, pp. 221–268.

    Google Scholar 

  22. Lee, S.-H., and E.J. Davis. Carboxylationand decarboxylation reactions. Anaplerotic flux and removal of citrate cycle intermediates. J. Biol. Chem. 254: 420–430, 1979.

    PubMed  CAS  Google Scholar 

  23. Lowenstein, J.M. Ammonia production in muscle and other tissues: the purine nucleotide cycle. Physiol. Rev. 52: 382–414, 1972.

    PubMed  CAS  Google Scholar 

  24. Newsholme, E.A., and A.R. Leech. Biochemistry for the Medical Sciences. Toronto: Wiley, 1983.

    Google Scholar 

  25. Palmieri, F., F. Bisaccia, L. Capobianco, V. Dolce, G. Fiermonte, V. Iacobazzi, C. Indiveri, and L. Palmieri. Mitochondrial metabolite transporters. Biochim. Biophys. Acta. 1275: 127–132, 1996.

    Article  PubMed  Google Scholar 

  26. Pastoris, O., M. Dossena, R. Arnaboldi, A. Gorini, and R.F. Villa. Age-related alterations of skeletal muscle metabolism by intermittent hypoxia and TRH-analogue treatment. Pharmacological Res. 30: 171–185, 1994.

    Article  CAS  Google Scholar 

  27. Peuhkurinen, K.J. Regulation of the tricarboxylic acid cycle pool size in heart muscle. J. Mol. Cell. Cardiol. 16: 487–495, 1984.

    Article  PubMed  CAS  Google Scholar 

  28. Putman, C.T., N.L. Jones, L.C. Lands, T.M. Bragg, M.G. Hollidge-Horvat, and G.J.F. Heigenhauser. Skeletal muscle pyruvate dehydrogenase activity during maximal exercise in humans. Am. J. Physiol. 269 (Endocrinol. Metab. 32): E458-E468, 1995.

    Google Scholar 

  29. Randle, P.J., P.J. England, and R.M. Denton. Control of the tricarboxylate cycle and its interactions with glycolysis during acetate utilization in rat heart. Biochem. J. 117: 677–695, 1970.

    PubMed  CAS  Google Scholar 

  30. Randle, P.J., and P.K. Tubbs. Carbohydrate and fatty acid metabolism. In: Handbook of Physiology: The Cardiovascular System, edited by R.M. Berne. Bethesda, MD: American Physiological Society, 1979, pp. 805-844.

    Google Scholar 

  31. Sahlin, K. Muscle carnitine metabolism during incremental dynamic exercise in humans. Acta Physiol. Scand. 138: 259–262, 1990.

    Article  PubMed  CAS  Google Scholar 

  32. Sahlin, K., L. Jorfeldt, K.-G. Henriksson, S.R. Lewis, and R.G. Haller. Tricarboxylic acid cycle intermediates during incremental exercise in healthy subjects and in patients with McArdle’s disease. Clin. Sci. 88: 687–693, 1995.

    PubMed  CAS  Google Scholar 

  33. Sahlin, K., A. Katz, and S. Broberg. Tricarboxylic acid cycle intermediates in human muscle during prolonged exercise. Am. J. Physiol. 259 (Cell Physiol. 28): C834-C841, 1990.

    Google Scholar 

  34. Sahlin, K., A. Katz, and J. Henrikkson. Redox state and lactate accumulation in human skeletal muscle during dynamic exercise. Biochem. J. 245: 551–556, 1987.

    PubMed  CAS  Google Scholar 

  35. Spencer, M.K., and A. Katz. Role of glycogen in control of glycolysis and IMP formation in human muscle during exercise. Am. J. Physiol. 260 (Endocrinol. Metab. 23): E859-E864, 1991.

    Google Scholar 

  36. Spencer, M.K., A. Katz, and I. Raz. Epinephrine increases tricarboxylic acid cycle intermediates in human muscle. Am. J. Physiol. 260 (Endocrinol. Metab. 23): E436-E439, 1991a.

    Google Scholar 

  37. Spencer, M.K., Z. Yan, and A. Katz. Carbohydrate supplementation attenuates IMP accumulation in human muscle during prolonged exercise. Am. J. Physiol. 261 (Cell Physiol. 30): C71-C76, 1991b.

    Google Scholar 

  38. Spencer, M.K., Z. Yan, and A. Katz. Effect of low glycogen on carbohydrate and energy metabolism in human muscle during exercise. Am. J. Physiol. 262 (Cell Physiol. 31): C975-C979, 1992.

    Google Scholar 

  39. Spydevold, Ø., E.J. Davis, and J. Bremer. Replenishment and depletion of citric acid cycle intermediates in skeletal muscle. Eur. J. Biochem. 71: 155–165, 1976.

    Article  PubMed  CAS  Google Scholar 

  40. Swain, J.L., J.J. Hines, R.L. Sabina, O.L. Harbury, and E.W. Holmes. Disruption of purine nucleotide cycle by inhibition of adenylosuccinate lyase produces skeletal muscle dysfunction. J. Clin. Invest. 74: 1422–1427, 1984.

    Article  PubMed  CAS  Google Scholar 

  41. Taegtmeyer, H. On the inability of ketone bodies to serve as the only energy providing substrate for rat heart at physiological work load. Bas. Res. Cardiol. 78: 435–450, 1983.

    Article  CAS  Google Scholar 

  42. Wagenmakers, A.J.M., J.H. Coakley, and R.H.T. Edwards. Metabolism of branched-chain amino acids and ammonia during exercise: clues from McArdle’s disease. Int. J. Sports Med. 11: S101–S113, 1990.

    Article  PubMed  Google Scholar 

  43. Wibom, R., and E. Hultman. ATP production rate in mitochondria isolated from microsamples of human muscle. Am. J. Physiol. 259 (Endocrinol. Metab. 22): E204-E209, 1990.

    Google Scholar 

  44. Williamson, J.R., and R.H. Cooper. Regulation of the citric acid cycle in mammalian systems. FEBS Lett. 117, Suppl.: K73–K85, 1980.

    Article  PubMed  Google Scholar 

  45. Wolfe, B.R., T.E. Graham, and J.K. Barclay. Hyperoxia, mitochondrial redox state, and lactate metabolism of in situ canine muscle. Am. J. Physiol. 253 (Cell Physiol. 22): C263-C268, 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Graham, T.E., Gibala, M.J. (1998). Anaplerosis of the Tricarboxylic Acid Cycle in Human Skeletal Muscle during Exercise. In: Richter, E.A., Kiens, B., Galbo, H., Saltin, B. (eds) Skeletal Muscle Metabolism in Exercise and Diabetes. Advances in Experimental Medicine and Biology, vol 441. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1928-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1928-1_25

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1930-4

  • Online ISBN: 978-1-4899-1928-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics