Skip to main content

Human Zinc Metabolism: Advances in the Modeling of Stable Isotope Data

  • Chapter
Mathematical Modeling in Experimental Nutrition

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 445))

Abstract

Compartmental modeling is a useful tool for investigating metabolic systems and processes. We and others have applied it to the study of zinc metabolism in humans. Because existing models could not be accurately fitted to our data, we have developed a new model of human zinc metabolism based on stable isotope tracer data from studies of five healthy adults. Multiple isotope tracers were administered orally and intravenously and the resulting enrichment measurement in plasma, erythrocytes, urine, and feces. These tracer kinetic data, along with other measured and calculated tracee and steady-state data, were used to develop the model. A single model structure composed of fourteen compartments was found to be suitable for all subjects. Model development and fitting of data and model for each subject were accomplished using the SAAM/CONSAM computer programs. The model development and fitting processes are described and exemplified using data from one of the subjects. While identifiability could not be demonstrated a priori due to the model’s complexity, parameter statistics for the fitted models did show most parameters to be adequately identified a posteriori.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Berman M; Weiss MF. user’s Manual for SAAM. US Department of Health, Education, and Welfare, Publication No. (NIH) 78–180, Washington, DC. 1978.

    Google Scholar 

  • Berman M. A deconvolution scheme. Math Biosci, 1978, 40:319–323.

    Article  Google Scholar 

  • Berman M. Kinetic analysis and modeling: theory and applications to lipoproteins, in: Lipoprotein Kinetics and Modeling. Berman M; Grundy SM; Howard BV; Eds. Academic Press: New York. 1982. pp. 3–36.

    Chapter  Google Scholar 

  • Berman M; Beltz WF; Greif PC; Chabay R; Boston RC. CONSAM User’s Guide. US Department of Health and Human Services, Washington, DC. 1983.

    Google Scholar 

  • Boston R; Lyne A; McNabb T; Pettigrew K; Greif P; Ramberg C; Zech L. Kinetic models to describe populations: A strategy for summarizing the results of multiple studies, in: Kinetic Models of Trace Element and Mineral Metabolism During Development. Siva Subramanian KN; Wastney ME; Eds. CRC Press: Boca Raton, FL. 1995. pp. 359–372.

    Google Scholar 

  • Carson ER; Cobelli C; Finkelstein L. The Mathematical Modeling of Metabolic and Endocrine Systems. John Wiley & Sons: New York. 1983.

    Google Scholar 

  • Cobelli C; Lepschy A; Jacur GR. Identifiability of compartmental systems and related structural properties. Math Biosci, 1979, 44:1–18.

    Article  Google Scholar 

  • Cobelli C; DiStefano JJ III. Parameter and structural identifiability concepts and ambiguities: A critical review and analysis. Am J Physiol, 1980, 239 (Regulatory Integrative Comp Physiol 8):R7–R24.

    CAS  Google Scholar 

  • Cobelli C. Compartmental models: Theory and practices using the SAAM II software system. In this volume. CONSAM User’s Manual. Resource Facility for Kinetic Analysis: Seattle. 1990.

    Google Scholar 

  • Cousins RJ. Absorption, transport, and hepatic metabolism of copper and zinc: Special reference to metallothionein and ceruloplasmin. Physiol Rev, 1985, 65:238–309.

    CAS  Google Scholar 

  • Cousins RJ. Systemic transport of zinc, in: Zinc in Human Biology. Mills CF; Ed. Springer-Verlag: London. 1989. pp. 79–93.

    Chapter  Google Scholar 

  • DiStefano JJ III. Complete parameter bounds and quasi-identifiability conditions for a class of unidentifiable linear systems. Math Biosci, 1983, 65:51–68.

    Article  Google Scholar 

  • Fairweather Tait SJ; Jackson ML; Fox TE; Wharf SG; Eagles J; Croghan PC. The measurement of exchangeable pools of zinc using the stable isotope 70Zn. Br J Nutr, 1993, 70:221–234.

    Article  Google Scholar 

  • Foster DM; Aamodt RL; Henkin RI; Berman M. Zinc metabolism in humans: A kinetic model. Am J Physiol, 1979, 237(5):R340–349.

    CAS  Google Scholar 

  • Foster DM; Boston RC; Jacquez JA; Zech LA. The SAAM Tutorials: An Introduction to using Conversational SAAM Version 30. Resource Facility for Kinetic Analysis: Seattle. 1989.

    Google Scholar 

  • Friel JK; Naake VL; Miller LV; Fennessesy PV; and Hambidge KM. The analysis of stable isotopes in urine to determine the fractional absorption of zinc. Am J Clin Nutr, 1992, 55:473–477.

    CAS  Google Scholar 

  • Geigy Scientific Tables, 8th Ed. Lentner C; Ed. Ciba-Geigy Corporation: West Caldwell, New Jersey. 1984.

    Google Scholar 

  • Godfrey KR; DiStefano JJ III. Identifiability of model parameters, in: Identifiability of Parametric Models. Walter E; Ed. Pergamon Press: Oxford. 1987.

    Google Scholar 

  • Jacquez JA. Compartmental Analysis in Biology and Medicine. University of Michigan Press: Ann Arbor. 1985.

    Google Scholar 

  • Jacquez JA; Perry T. Parameter estimation: local identifiability of parameters. Am J Physiol, 1990, 258 (Endocrinol Metab 21):E727–E736.

    CAS  Google Scholar 

  • Jackson ML; Jones DA; Edwards RHT; Swainbank IG; Coleman ML. Zinc homeostasis in man: Studies using a new stable isotope-dilution technique. Br J Nutr, 1984, 51:199–208.

    Article  CAS  Google Scholar 

  • Jackson ML. Physiology of zinc: general aspects, in: Zinc in Human Biology. Mills CF; Ed. Springer-Verlag: London. 1989. pp. 1–14.

    Chapter  Google Scholar 

  • Krebs NF; Miller LV; Naake VL; Lei S; Westcott JE; Fennessey PV; Hambidge KM. The use of stable isotope techniques to assess zinc metabolism. J Nutr Biochem, 1995, 6:292–301.

    Article  Google Scholar 

  • Lönnerdal B. Intestinal absorption of zinc, in: Zinc in Human Biology. Mills CF; Ed. Springer-Verlag: London. 1989. pp. 33–55.

    Chapter  Google Scholar 

  • Lowe NM; Green A; Rhodes JM; Lombard M; Jalan R; Jackson ML. Studies of human zinc kinetics using the stable isotope 70Zn. Clin Sci, 1993, 84:113–117.

    CAS  Google Scholar 

  • Lowe NM; Shames DM; Woodhouse LR; Matel JS; Roehl R; Saccomani MP; Toffolo G; Cobelli C; King JC. A compartmental model of zinc metabolism in healthy women using oral and intravenous stable isotope tracers. Am J Clin Nutr, 1997,65:1810–1819.

    CAS  Google Scholar 

  • Lyne A; Boston R; Pettigrew K; Zech L. EMSA: A SAAM service for the estimation of population parameters based on model fits to identically replicated experiments. Comput Methods Prog Biomed, 1992, 38:117–151.

    Article  CAS  Google Scholar 

  • Miller LV; Hambidge KM; Naake VL; Hong Z; Westcott JL;. Fennessey PV. Size of the zinc pools that exchange rapidly with plasma zinc in humans: Alternative techniques for measuring and relation to dietary zinc intake. J Nutr, 1994, 124:268–276.

    CAS  Google Scholar 

  • Novotny JA; Zech LA; Furr HC; Dueker SR; Clifford AJ. Mathematical modeling in nutrition: Constructing a physiologic compartmental model of the dynamics of β-carotene metabolism, in: Advances in Food and Nutrition Research, Vol. 40, Mathematical Modeling in Experimental Nutrition: Vitamins, Proteins, Methods. Coburn SP; Townsend DW. Eds. Academic Press: San Diego. 1996. pp. 25–54.

    Google Scholar 

  • Shipley RA; Clark RE. Tracer Methods for In Vivo Kinetics. Academic Press: New York. 1972.

    Google Scholar 

  • Van Dokkum W; Fairweather-Tait SJ; Hurrell R; Sandström B. Study techniques, in: Stable Isotopes in Human Nutrition: Inorganic Nutrient Metabolism. Mellon F; Sandström B; Eds. Academic Press: London. 1996. pp. 23–42.

    Google Scholar 

  • Van Wouwe JP; Veldhuizen M; De Goeij JJM; Van den Hamer CJA. In vitro exchangeable erythrocytic zinc. Biol Trace Element Res, 1990, 25:57–69.

    Article  Google Scholar 

  • Walter E; Ed. Identifiability of Parametric Models. Pergamon Press: Oxford. 1987.

    Google Scholar 

  • Wastney ME; Aamodt RL; Rumble WF; Henkin RI. Kinetic analysis of zinc metabolism and its regulation in normal humans. Am J Physiol, 1986, 251 (Regulatory Integrative Comp Physiol 20):R398–R408.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leland V. Miller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Miller, L.V., Krebs, N.F., Hambidge, K.M. (1998). Human Zinc Metabolism: Advances in the Modeling of Stable Isotope Data. In: Clifford, A.J., Müller, HG. (eds) Mathematical Modeling in Experimental Nutrition. Advances in Experimental Medicine and Biology, vol 445. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1959-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1959-5_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1961-8

  • Online ISBN: 978-1-4899-1959-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics