Skip to main content

Electroporation of Cell Membranes

Mechanisms and Applications

  • Chapter
Electroporation and Electrofusion in Cell Biology

Abstract

The recent success in applying the pulsed electric field (PEF) method to introduce gene material into living cells and to demonstrate the expression of these genes (Wong and Neumann, 1982; Neumann et al., 1982; Potter et al., 1984) has opened up new possibilities in molecular biology and genetic engineering research. Electric modification of cell membrane permeability, or “electroporation,” is believed to be the basis of the DNA entry. No less an accomplishment is the use of PEF to induce fusion of cells when these cells are brought into contact before (Zimmermann and Pilwat, 1978; Zimmermann and Vienken, 1982; Teissie et al., 1982; Berg et al., 1983; Lo et al., 1984) or after (Sowers, 1984, 1986) the PEF treatment. Electroporation, again, is believed to be one factor leading to membrane fusion. These findings have aroused the attention of cell biologists and biophysicists alike. One must realize, however, that the study of the effect of PEF on cell membranes has spanned more than three decades (Cole, 1972; see also Schwan, this volume). The present chapter reviews the physical characteristics of cell membranes that are essential for understanding the electroporation phenomenon and summarizes experiments done in my laboratory in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adey, W. R., 1981, Tissue interactions with nonionizing electromagnetic fields, Physiol. Rev. 61:435–513.

    PubMed  CAS  Google Scholar 

  • Astumian, R. D., Chock, P. B., Tsong, T. Y., Chen, Y.-d., and Westerhoff, H. V., 1987, Can free energy be transduced from electric noise? Proc. Natl. Acad. Sci. USA 84:434–438.

    Article  PubMed  CAS  Google Scholar 

  • Benz, R., and Zimmermann, U., 1980, Relaxation studies on cell membranes and lipid bilayers in the high electric field range, Bioelectrochem. Bioenerg. 7:723–739.

    Article  CAS  Google Scholar 

  • Benz, R., Beckers, F., and Zimmermann, U., 1979, Reversible electrical breakdown of lipid bilayer membranes: A charge-pulse relaxation study, J. Membr. Biol. 48:181–204.

    Article  PubMed  CAS  Google Scholar 

  • Berg, H., Schumann, I., and Steizner, A., 1983, Electrically stimulated fusion between myeloma cells and spleen cells, Stud. Biophys. 94:101–102.

    Google Scholar 

  • Charlmers, R. A., 1985, Comparison and potential of hypo-osmotic and iso-osmotic erythrocyte ghosts and carrier erythrocytes as drug and enzyme carriers, Bibl. Haematol. (Basel) 51:15–24.

    Google Scholar 

  • Chauvin, F., Astumian, R. D., and Tsong, T. Y., 1987, Voltage sensing of mitochondrial ATPase in pulsed electric field induced ATP synthesis, Biophys. J. 51:243a.

    Google Scholar 

  • Cole, K. S., 1972, Membranes, Ions and Impulses, University of California Press, Berkeley.

    Google Scholar 

  • Coster, H. G. L., and Zimmermann, U., 1975, Dielectric breakdown in the membranes of Valonia utricularis: The role of energy dissipation, Biochim. Biophys. Acta 382:410–418.

    Article  PubMed  CAS  Google Scholar 

  • El-Mashak, M. E., and Tsong, T. Y., 1985, Ion selectivity of temperature-induced and electric field-induced pores in dipalmitoylphosphatidylcholine vesicles, Biochemistry 24:2884–2888.

    Article  PubMed  CAS  Google Scholar 

  • Farkas, D. L., Korenstein, R., and Malkin, S., 1984, Electroluminescence and the electrical properties of the photosynthetic membrane, Biophys. J. 45:363–373.

    Article  PubMed  CAS  Google Scholar 

  • Gross, D., Loew, L. M., and Webb, W. W., 1986, Optical imaging of cell membrane potential changes induced by applied electric fields, Biophys. J. 50:339–348.

    Article  PubMed  CAS  Google Scholar 

  • Hol, W. G. J., 1985, The role of the α-helix dipole in protein function and structure, Prog. Biophys. Mol. Biol. 45:149–195.

    Article  PubMed  CAS  Google Scholar 

  • Hui, S. W., Stewart, T. P., Boni, L. T., and Yeagle, P. L., 1981, Membrane fusion through point defects in bilayers, Science 212:921–923.

    Article  PubMed  CAS  Google Scholar 

  • Kaibara, M., and Tsong, T. Y., 1980, Voltage pulsation of sickle erythrocytes enhances membrane permeability to oxygen, Biochim. Biophys. Acta 595:146–150.

    Article  PubMed  CAS  Google Scholar 

  • Kanehisa, M. I., and Tsong, T. Y., 1978, Cluster model of lipid phase transitions with application to passive permeation of molecules and structure relaxations in lipid bilayers, J. Am. Chem. Soc. 100:424–432.

    Article  CAS  Google Scholar 

  • Kinosita, K., Jr., and Tsong, T. Y., 1977a, Hemolysis of human erythrocytes by transient electric field, Proc. Natl. Acad. Sci. USA 74:1923–1927.

    Article  PubMed  CAS  Google Scholar 

  • Kinosita, K., Jr., and Tsong, T. Y., 1977b, Formation and resealing of pores of controlled sizes in human erythrocyte membrane, Nature 268:438–441.

    Article  PubMed  Google Scholar 

  • Kinosita, K., Jr., and Tsong, T. Y., 1977c, Voltage induced pore formation and hemolysis of human erythrocytes, Biochim. Biophys. Acta 471:227–242.

    Article  PubMed  CAS  Google Scholar 

  • Kinosita, K., Jr., and Tsong, T. Y., 1978. Survival of sucrose-loaded erythrocytes in circulation, Nature 272:258–260.

    Article  PubMed  CAS  Google Scholar 

  • Kinosita, K., Jr., and Tsong, T. Y., 1979, Voltage-induced conductance in human erythrocyte membranes, Biochim. Biophys. Acta 554:479–494.

    Article  PubMed  CAS  Google Scholar 

  • Lindner, P., Neumann, E., and Rosenheck, K., 1977, Kinetics of permeability changes induced by electric impulses in chromaffin granules, J. Membr. Biol. 32:231–254.

    Article  PubMed  CAS  Google Scholar 

  • Lo, M. M. S., Tsong, T. Y., Conrad, M. K., Strittmatter, S. M., Hester, L. D., and Snyder, S., 1984, Monoclonal antibody production by receptor-mediated electrically induced cell fusion, Nature 310:792–794.

    Article  PubMed  CAS  Google Scholar 

  • Neumann, E., and Rosenheck, K., 1972, Permeability changes induced by electric impulses in vesicular membranes, J. Membr. Biol. 10:279–290.

    Article  PubMed  CAS  Google Scholar 

  • Neumann, E., Schaefer-Ridder, M., Wang, Y., and Hofschneider, P. H., 1982, Gene transfer into mouse lyoma cells by electroporation in high electric fields, EMBO J. 1:841–845.

    PubMed  CAS  Google Scholar 

  • Pauly, H., and Schwan, W. P., 1966, Dielectric properties and ion mobility in erythrocytes, Biophys. J. 6:621–639.

    Article  PubMed  CAS  Google Scholar 

  • Potter, H., Weir, L., and Leder, P., 1984, Enhancer-dependent expression of the human kappa immunoglobulin genes introduced into mouse pre-B lymphocytes by electroporation, Proc. Natl. Acad. Sci. USA 81:7161–7165.

    Article  PubMed  CAS  Google Scholar 

  • Sale, A. J. H., and Hamilton, W. A., 1967, Effects of high electric fields on microorganisms. I. Killing of bacteria and yeasts, Biochim. Biophys. Acta 118:781–788.

    Article  Google Scholar 

  • Sale, A. J. H., and Hamilton, W. A., 1968, Effects of high electric fields on microorganisms. III. Lysis of erythrocytes and protoplasts, Biochim. Biophys. Acta 163:37–43.

    Article  PubMed  CAS  Google Scholar 

  • Serpersu, E. H., and Tsong, T. Y., 1983, Stimulation of a ouabain-sensitive Rb+ uptake in human erythrocytes with an external electric field, J. Membr. Biol. 74:191–201.

    Article  PubMed  CAS  Google Scholar 

  • Serpersu, E. H., and Tsong, T. Y., 1984, Activation of electrogenic Rb+ transport of (Na,K)-ATPase by an electric field, J. Biol. Chem. 259:7155–7162.

    PubMed  CAS  Google Scholar 

  • Serpersu, E. H., Kinosita, K., Jr., and Tsong, T. Y., 1985, Reversible and irreversible modification of erythrocyte membrane permeability by electric field, Biochim. Biophys. Acta 812:779–785.

    Article  PubMed  CAS  Google Scholar 

  • Sowers, A. E., 1984, Characterization of electric field induced fusion in erythrocyte ghost membranes, J. Cell Biol 99:1989–1996.

    Article  PubMed  CAS  Google Scholar 

  • Sowers, A. E., 1986, A long-lived fusogenic state is induced in erythrocyte ghosts by electric pulses, J. Cell Biol. 103:1358–1362.

    Article  Google Scholar 

  • Teissie, J., and Tsong, T. Y., 1980, Evidence of voltage-induced channel opening in (Na,K)-ATPase of human erythrocyte membrane, J. Membr. Biol. 55:133–140.

    Article  PubMed  CAS  Google Scholar 

  • Teissie, J., and Tsong, T. Y., 1981a, Voltage modulation of Na+/K + transport in human erythrocytes, J. Physiol. Paris 77:1043–1053.

    PubMed  CAS  Google Scholar 

  • Teissie, J., and Tsong, T. Y., 1981b, Electric field induced transient pores in phospholipid bilayer vesicles, Biochemistry 20:1548–1554.

    Article  PubMed  CAS  Google Scholar 

  • Teissie, J., Knox, B. E., Tsong, T. Y., and Wehrle, J., 1981, Synthesis of ATP in respiration-inhibited submitochondrial particles induced by microsecond electric pulses, Proc. Natl. Acad. Sci. USA 78:7473–7477.

    Article  PubMed  CAS  Google Scholar 

  • Teissie, J., Knutson, V. P., Tsong, T. Y., and Lane, M. D., 1982, Electric pulse-induced fusion of 3T3 cells in monolayer culture, Science 216:537–538.

    Article  PubMed  CAS  Google Scholar 

  • Tien, H. T., 1974, Bilayer Lipid Membranes (BLM), Dekker, New York.

    Google Scholar 

  • Tsong, T. Y., 1983, Voltage modulation of membrane permeability and energy utilization in cells, Biosci. Rep. 3:487–505.

    Article  PubMed  CAS  Google Scholar 

  • Tsong, T. Y., and Astumian, R. D., 1986, Absorption and conversion of electric field energy by membrane bound ATPases, Bioelectrochem. Bioenerg. 211:457–476.

    Article  Google Scholar 

  • Tsong, T. Y., and Astumian, R. D., 1987, Electroconformational coupling and membrane protein function, Prog. Biophys. Mol. Biol. 50:1–45.

    Article  PubMed  CAS  Google Scholar 

  • Tsong, T. Y., and Astumian, R. D., 1988, Electroconformational coupling: How membrane-bound ATPase transduces energy from dynamic electric fields, Annu. Rev. Physiol. 50:273–290.

    Article  PubMed  CAS  Google Scholar 

  • Tsong, T. Y., and Kinosita, K., Jr., 1985, Use of voltage pulses for the pore opening and drug loading, and the subsequent resealing of red blood cells, Bibl. Haematol. (Basel) 51:108–114.

    Google Scholar 

  • Tsong, T. Y., Tsong, T. T., Kingsley, E., and Siliciano, R., 1976, Relaxation phenomena in human erythrocyte suspensions, Biophys J. 16:1091–1104.

    Article  PubMed  CAS  Google Scholar 

  • Westerhoff, H. V., Tsong, T. Y., Chock, P. B., Chen, Y.-d., and Astumian, R. D., 1986, How enzymes can capture and transmit free energy from an oscillating electric field, Proc. Natl. Acad. Sci. USA 83:4734–4738.

    Article  PubMed  CAS  Google Scholar 

  • Wong, T.-K., and Neumann, E., 1982, Electric field mediated gene transfer, Biochem. Biophys. Res. Commun. 107:584–587.

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann, U., and Benz, R., 1980, Dependence of the electrical breakdown voltage on the charging time in Valonia utricularis, J. Membr. Biol. 53:33–43.

    Article  Google Scholar 

  • Zimmermann, U., and Pilwat, G., 1978, The relevance of electric field induced changes in the membrane structure to basic membrane research and clinical therapeutics and diagnosis, Sixth Int. Biophys. Congr., Kyoto, Abstr. IV–19(H), p. 140.

    Google Scholar 

  • Zimmermann, U., and Vienken, J., 1982, Electric field induced cell-to-cell fusion, J. Membr. Biol. 67:165–182.

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann, U., Riemann, F., and Pilwat, G., 1976, Enzyme loading of electrically homogeneous human red blood cell ghosts prepared by dielectric breakdown, Biochim. Biophys. Acta 436:460–474.

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann, U., Pilwat, G., and Esser, B., 1978, The effect of encapsulation in red blood cells in the distribution of methotrexate in mice, J. Clin. Chem. Clin. Biochem. 16:135–144.

    PubMed  CAS  Google Scholar 

  • Zimmermann, U., Vienken, J., and Pilwat, G., 1980, Development of drug carrier system: Electric field induced effects in cell membranes, Bioelectrochem. Bioenerg. 7:553–574.

    Article  CAS  Google Scholar 

  • Zimmermann, U., Scheurich, P., Pilwat, G., and Benz, R., 1981, Cells with manipulated functions: New perspectives for cell biology, medicine and technology, Angew. Chem. Int. Ed. Engl. 20:325–345.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tsong, T.Y. (1989). Electroporation of Cell Membranes. In: Neumann, E., Sowers, A.E., Jordan, C.A. (eds) Electroporation and Electrofusion in Cell Biology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2528-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2528-2_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2530-5

  • Online ISBN: 978-1-4899-2528-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics