Skip to main content

Structures and Genesis of Allophanes and Imogolite and their Distribution in Non-Volcanic Soils

  • Chapter
Soil Colloids and Their Associations in Aggregates

Part of the book series: NATO ASI Series ((NSSB,volume 214))

Abstract

A reawakening of interest in the role of amorphous clays in soils derived from non-volcanic crystalline igneous and sedimentary rocks can probably be dated by the review of Mitchell et al. (1964). They pointed out that the properties of many such soils could not be interpreted adequately in terms of crystalline clay minerals. Progress in defining these amorphous components has, however, proved slow, and even in 1977 Wada could report that little was known of their nature. Since then, rapid developments have resulted from the initial finding that imogolite is widely distributed in the Bs horizons of podzols and acid brown soils (Tait et al., 1978), and from the integration of this finding with laboratory studies on the synthesis and structure of imogolite (Farmer et al., 1977; Farmer and Fraser, 1979). In addition, progress in the last few years has led to the recognition that allophane, although non-crystalline, can exhibit a variety of structures which are not necessarily defined by bulk composition. This chapter will concentrate on these recent developments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, H.A., Berrow, M.L., Farmer, V.C., Hepburn, A., Russell, J.D. and Walker, A.D. 1982. A reassessment of podzol formation processes. J. Soil Sci. 33, 125–136.

    Article  CAS  Google Scholar 

  • Barron, P.F., Wilson, M.A., Campbell, A.S. and Frost, R.L. 1982. Detection of imogolite in soils using solid state 29Si NMR. Nature (London) 299, 616–618.

    Article  CAS  Google Scholar 

  • Bartoli F., Jeanroy, E. and Vedy, J.C. 1981. Transport and redistribution of silicon, aluminium and iron in podzols: Role of organic compounds and mineral supports. Colloq. Intern. C.N.R.S. No. 303, pp. 281–289.

    Google Scholar 

  • Brydon, J.E. and Shimoda, S. 1972. Allophanes and amorphous constituents in a podzol from Nova Scotia. Can. J. Soil Sci. 52, 465–475.

    Article  CAS  Google Scholar 

  • Childs, C.W, Parfitt, R.L. and Lee, R. 1983. Movement of aluminium as an inorganic complex in some podzolised soils, New Zealand. Geoderma 29, 139–155.

    Article  CAS  Google Scholar 

  • Colman, S.M. 1982. Clay mineralogy of weathering rinds and possible implications concerning the sources of clay minerals in soils. Geology 10, 370–375.

    Article  CAS  Google Scholar 

  • Farmer, V.C. 1981. Possible roles of a mobile hydroxyaluminium orthosilicate complex (proto-imogolite) in podzolisation. Colloq. Intern. C.N.R.S. No. 303, pp. 275–279.

    Google Scholar 

  • Farmer, V.C. 1982. Significance of the presence of allophane and imogolite in podzol Bs horizons for podzolisation mechanisms: a review. Soil Sci. Plant Nutr. 28, 571–578.

    Article  CAS  Google Scholar 

  • Farmer, V.C. 1984. Distribution of allophane and organic matter in podzol B horizons: reply to Buurman and Van Reeuwijk. J. Soil Sci. 35, 453–458.

    Article  CAS  Google Scholar 

  • Farmer, V.C., Adams, M.J., Fraser, A.R. and Palmieri, F. 1983a. Synthetic imogolite: properties, synthesis, and possible applications. Clay Miner. 18, 459–472.

    Article  CAS  Google Scholar 

  • Farmer, V.C. and Fraser, A.R. 1979. Synthetic imogolite, a tubular hydroxy-aluminium silicate. In M.M. Mortland and V.C. Farmer (eds.), Proceedings, International Clay Conference (Oxford 1978). Elsevier, Amsterdam, pp. 547-553.

    Google Scholar 

  • Farmer, V.C. and Fraser, A.R. 1982. Chemical and colloidal stability of sols in the Al2O3-Fe2O3-SiO2-H2O system: their role in podzolisation. J. Soil Sci. 33, 737–742.

    Article  CAS  Google Scholar 

  • Farmer, V.C., Fraser, A.R., Robertson, L. and Sleeman, J.R. 1984. Proto-imogolite allophane in podzol concretions in Australia: possible relationship to aluminous ferrallitic (lateritic) cementation. J. Soil Sci. 35, 333–340.

    Article  CAS  Google Scholar 

  • Farmer V.C., Fraser, A.R. and Tait, J.M. 1977. Synthesis of imogolite. J. Chem. Soc., Chem. Comm. pp. 462-463.

    Google Scholar 

  • Farmer, V.C., Fraser, A.R. and Tait, J.M. 1979a. Characterisation of the chemical structures of natural and synthetic aluminosilicate gels and sols by infrared spectrometry. Geochim. Cosmochim. Acta 43, 1417–1420.

    Article  CAS  Google Scholar 

  • Farmer, V.C., McHardy, W.J., Robertson, L., Walker, A. and Wilson, M.J. 1985. Micromorphology and submicroscopy of allophane and imogolite in a podzol Bs horizon: evidence for translocation and origin. J. Soil Sci. 36, 87–95.

    Article  CAS  Google Scholar 

  • Farmer, V.C., Russell, J.D. and Berrow, M.L. 1980. Imogolite and proto-imogolite allophane in spodic horizons: Evidence for a mobile aluminium silicate complex in podzol formation. J. Soil Sci. 31, 673–684.

    Article  CAS  Google Scholar 

  • Farmer, V.C., Russell, J.D. and Smith, B.F.L. 1983b. Extraction of inorganic forms of translocated Al, Fe and Si from a podzol Bs horizon. J. Soil Sci. 34, 571–576.

    Article  CAS  Google Scholar 

  • Farmer, V.C., Skjemstad, J.O. and Thompson, C.H. 1983c. Genesis of humus B horizons in hydromorphic humus podzols. Nature (London) 304, 342–344.

    Article  CAS  Google Scholar 

  • Farmer, V.C., Smith, B.F.L. and Tait, J.M. 1977. Alteration of allophane and imogolite by alkaline digestion. Clay Miner. 12, 195–198.

    Article  CAS  Google Scholar 

  • Farmer, V.C., Smith, B.F.L. and Tait, J.M. 1979b. The stability, free energy and heat of formation of imogolite. Clay Miner. 14, 103–107.

    Article  CAS  Google Scholar 

  • Fey, M.V. and Le Roux, J. 1977. Properties and quantitative estimation of poorly crystalline components in sesquioxidic clay soils. Clays Clay Miner. 25, 285–294.

    Article  CAS  Google Scholar 

  • Goodman, B.A., Russell, J.D., Montez, B., Oldfield, E. and Kirkpatrick, R.J. 1985. Structural studies of imogolite and allophanes by aluminium-27 and silicon-29 Nuclear Magnetic Resonance Spectroscopy. Phys. Chem. Miner. 12, 342–346.

    Article  CAS  Google Scholar 

  • Henmi, T. and Wada, K. 1976. Morphology and composition of allophane. Am. Mineral. 61, 379–390.

    CAS  Google Scholar 

  • Higashi, T. and Ikeda, H. 1974. Dissolution of allophane by acid Oxalate solution. Clay Sci. 4, 205–211.

    CAS  Google Scholar 

  • Inoue, K. and Huang, P.M. 1984. Influence of citric acid on the natural formation of imogolite. Nature (London) 308, 58–60.

    Article  CAS  Google Scholar 

  • Iyengar, S.S., Zelazny, L.W. and Martens, D.C. 1981. Effect of photolytic Oxalate treatment on soil hydroxy-interlayered vermiculites. Clays Clay Miner. 29, 429–434.

    Article  CAS  Google Scholar 

  • McBride, M.B., Farmer, V.C., Russell, J.D., Tait, J.M. and Goodman, B.A. 1984. Iron substitution in aluminosilicate sols synthesised at low pH. Clay Miner. 19, 1–8.

    Article  CAS  Google Scholar 

  • McKeague, J.A. and Day, J.H. 1966. Dithionite and Oxalate extractable Fe and Al as aids in differentiating various classes of soils. Canad. J. Soil Sci. 46, 13–22.

    Article  CAS  Google Scholar 

  • McKeague, J.A. and Kodama, H. 1981. Imogolite in cemented horizons of some British Columbia soils. Geoderma 25, 189–197.

    Article  CAS  Google Scholar 

  • Mitchell, B.D. and Farmer, V.C. 1962. Amorphous clay minerals in some Scottish soil profiles. Clay Miner. Bull. 5, 128–144.

    Article  CAS  Google Scholar 

  • Mitchell, B.D., Farmer, V.C. and McHardy, W.J. 1964. Amorphous inorganic materials in soils. Adv. Agron. 16, 327–383.

    Article  CAS  Google Scholar 

  • Mizota, C. 1981. Clay mineralogy of seven Dystrandepts developed from basalts in Northland (New Zealand), the French Massif Central, and Western Oregon, U.S.A. Soil Sci. Plant. Nutr. 27, 511–522.

    Article  CAS  Google Scholar 

  • Mizota, C. 1982a. Clay mineralogy of a Dystrandept and a Haplaquod from Northland, New Zealand. Soil Sci. Plant Nutr. 28, 293–301.

    Article  CAS  Google Scholar 

  • Mizota, C. 1982b. Clay Mineralogy of spodic horizons from Cryorthods in Japan. Soil Sci Plant Nutr. 28, 257–268.

    Article  CAS  Google Scholar 

  • Parfitt, R.L. and Henmi, T. 1982. Comparison of an oxalate-extraction method and an infrared spectroscopic method for determining allophane in soil clays. Soil Sci. Plant Nutr. 28, 183–190.

    Article  CAS  Google Scholar 

  • Parfitt, R.L., Furkert, R.J. and Henmi, T. 1980. Identification and structure of two types of allophane from volcanic ash soils and tephra. Clays Clay Miner. 28, 328–334.

    Article  CAS  Google Scholar 

  • Parfitt, R.L. and Saigusa, M. 1985. Allophane and humus-aluminium in spodosols and andepts formed from the same volcanic ash beds in New Zealand. Soil Sci. 139, 149–155.

    Article  CAS  Google Scholar 

  • Parfitt, R.L. and Webb, T.H. 1984. Allophane in some South Island yellow-brown shallow and stony soils and high-country and upland yellow-brown earths. New Zealand J. Sci. 27, 37–40.

    CAS  Google Scholar 

  • Ross, C.S. and Kerr, P.F. 1934. Halloysite and allophane. U.S. Geol. Surv. Prof. Pap. 185G, 135–148.

    Google Scholar 

  • Ross, G.J. and Kodama, H. 1979. Evidence for imogolite in Canadian soils. Clays Clay Miner. 23, 297–300.

    Article  Google Scholar 

  • Schuppli, P.A., Ross, G.J. and McKeague, J.A. 1983. The effective removal of suspended materials from pyrophosphate extracts of soils from tropical and temperate regions. Soil Sci. Soc. Amer. J. 47, 1026–1032.

    Article  CAS  Google Scholar 

  • Shoji, S. and Fujiwara, Y. 1984. Active aluminium and iron in the humus horizons of Andosols from northeastern Japan: their forms, properties and significance in, clay weathering. Soil Sci. 137, 216–226.

    Article  CAS  Google Scholar 

  • Shoji, S., Fujiwara, Y. Yamada, I. and Saigusa, M. 1982. Chemistry and clay mineralogy of ando soils, brown forest soils, and podzolic soils formed from recent Towada ashes, Northeastern Japan. Soil Sci. 133, 69–86.

    Article  CAS  Google Scholar 

  • Soil Survey Staff 1975. Soil Taxonomy, U.S. Dept. Agric., Handbook No. 436..

    Google Scholar 

  • Tachibana, K. 1980. Plant remains replaced by clay mineral (allophane) in volcanic ash beds: ‘allophanisation’. Chigaku Kenkya 31, 481–490.

    CAS  Google Scholar 

  • Tait, J.M., Yoshinaga, N. and Mitchell, B.D. 1978. The occurrence of imogolite in some Scottish soils. Soil Sci. Plant Nutr. 24, 145–151.

    Article  CAS  Google Scholar 

  • Wada, K. 1977. Allophane and imogolite. In J.B. Dixon and S.B. Weed (eds.), Minerals in Soil Environments. Soil Science Society America, Inc., Madison, Wisconsin, pp. 603–663.

    Google Scholar 

  • Wada, K. 1980. Mineralogical characteristics of Andisols. In B.K.G. Theng (ed.), Soils with Variable Charge. New Zealand Soc. Soil Sci., Lower Hutt, pp. 87–107.

    Google Scholar 

  • Wada, S-I. and Wada, K. 1981. Reactions between aluminate ions and orthosilicic acid in dilute, alkaline to neutral solutions. Soil Sci. 132, 267–273.

    Article  CAS  Google Scholar 

  • Wada, S-I., Eto, A. and Wada, K. 1979. Synthetic allophane and imogolite. J. Soil Sci. 30, 347–355.

    Article  CAS  Google Scholar 

  • Wells, N., Childs, C.W. and Downes, C.J. 1977. Silica Springs, Tongariro National Park, New Zealand — analysis of the spring water and characterisation of the alumino-silicate deposit. Geochim. Cosmochim. Acta 41, 1497–1506.

    Article  CAS  Google Scholar 

  • Yoshinaga, N., Nakai, M., Minagawa, T. and Henmi, T. 1984. Formation of imogolite and allophane in shattered sandstone underlying Brown Forest soil. Soil Sci. Plant Nutr. (Tokyo) 30, 555–567.

    Article  CAS  Google Scholar 

  • Young, A.W., Campbell, A.S. and Walker, T.W. 1980. Allophane isolated from a podzol developed on a non-vitric parent material. Nature (London) 284, 46–48.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Farmer, V.C., Russell, J.D. (1990). Structures and Genesis of Allophanes and Imogolite and their Distribution in Non-Volcanic Soils. In: De Boodt, M.F., Hayes, M.H.B., Herbillon, A., De Strooper, E.B.A., Tuck, J.J. (eds) Soil Colloids and Their Associations in Aggregates. NATO ASI Series, vol 214. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2611-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2611-1_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2613-5

  • Online ISBN: 978-1-4899-2611-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics