Skip to main content

φ(ρz) Equations for Quantitative Analysis

  • Chapter
Electron Probe Quantitation

Abstract

The idea of φ(ρz) equations and the depth distribution of x-ray intensities as a basis for the quantitative correction of measured x-ray intensities goes back to the origins of electron probe microanalysis. φ(ρz) is the characteristic x-ray intensity generated in a thin layer dρz at depth ρz in the specimen relative to intensity generated in an identical layer dρz, isolated in space. Castaing [1] first suggested that you could write the measured k-ratio in terms of φ(ρz) equations as:

EquationSource% MathType!MTEF!2!1!+- % feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AamaaBa % aaleaacaWGbbaabeaakiabg2da9maalaaabaGaamysamaaDaaaleaa % caWG4baabaGaamytaaaaaOqaaiaadMeadaqhaaWcbaGaamyqaaqaai % aad2eaaaaaaOGaeyypa0ZaaSaaaeaadaWdXaqaaiabew9aMnaaBaaa % leaacaWGZbaabeaakmaabmaabaGaeqyWdiNaamOEaaGaayjkaiaawM % caaiaadwgadaahaaWcbeqaaiabgkHiTiabeY7aTnaaDaaameaacaWG % bbaabaGaam4Caaaaliabeg8aYjaadQhaciGGJbGaai4Caiaacogacq % aHipqEaaGccaWGKbGaeqyWdiNaamOEaaWcbaGaaGimaaqaaiabg6Hi % LcqdcqGHRiI8aaGcbaWaa8qmaeaacqaHvpGzdaWgaaWcbaGaamyqaa % qabaGcdaqadaqaaiabeg8aYjaadQhaaiaawIcacaGLPaaacaWGLbWa % aWbaaSqabeaacqGHsislcqaH8oqBdaqhaaadbaGaamyqaaqaaiaadg % eaaaWccqaHbpGCcaWG6bGaci4yaiaacohacaGGJbGaeqiYdKhaaOGa % amizaiabeg8aYjaadQhaaSqaaiaaicdaaeaacqGHEisPa0Gaey4kIi % paaaaaaa!77B5! ]]</EquationSource><EquationSource Format="TEX"><![CDATA[$${k_A} = \frac{{I_x^M}}{{I_A^M}} = \frac{{\int_0^\infty {{\phi _s}\left( {\rho z} \right){e^{ - \mu _A^s\rho z\csc \psi }}d\rho z} }}{{\int_0^\infty {{\phi _A}\left( {\rho z} \right){e^{ - \mu _A^A\rho z\csc \psi }}d\rho z} }}$$
(1)

where subscripts s and A refer to specimen and pure element A, respectively, μ is the mass absorption coefficient, with subscript referring to characteristic line and superscript the absorber. ρz represents the mass depth in the specimen. Ψ is the x-ray take-off angle. Castaing (with Descamps) [2] also demonstrated that is was possible to measure φ(ρz) curves using a sandwich sample technique (fig. 1). The advantage of the φ(ρz) equation is its relative simplicity in concept and the fact that the major corrections of absorption, atomic number and characteristic fluorescence can be explicitly written. The equation for the fraction of x rays which escape from the specimen, f(χ), the absorption correction is

EquationSource% MathType!MTEF!2!1!+- % feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa % aaleaacaWGbbaabeaakmaabmaabaGaeq4Xdm2aaSbaaSqaaiaadgea % aeqaaaGccaGLOaGaayzkaaGaeyypa0ZaaSaaaeaadaWdXaqaaiabew % 9aMnaaBaaaleaacaWGZbaabeaakmaabmaabaGaeqyWdiNaamOEaaGa % ayjkaiaawMcaaiaadwgadaahaaWcbeqaaiabgkHiTiabeY7aTnaaDa % aameaacaWGbbaabaGaam4Caaaaliabeg8aYjaadQhaciGGJbGaai4C % aiaacogacqaHipqEaaaabaGaaGimaaqaaiabg6HiLcqdcqGHRiI8aO % Gaamizaiabeg8aYjaadQhaaeaadaWdXaqaaiabew9aMnaaBaaaleaa % caWGZbaabeaakmaabmaabaGaeqyWdiNaamOEaaGaayjkaiaawMcaai % aadsgacqaHbpGCcaWG6baaleaacaaIWaaabaGaeyOhIukaniabgUIi % Ydaaaaaa!68A5!]]</EquationSource><EquationSource Format="TEX"><![CDATA[$${f_A}\left( {{\chi _A}} \right) = \frac{{\int_0^\infty {{\phi _s}\left( {\rho z} \right){e^{ - \mu _A^s\rho z\csc \psi }}} d\rho z}}{{\int_0^\infty {{\phi _s}\left( {\rho z} \right)d\rho z} }}$$
(2)

where μ sA is the mass absorption coefficient for the characteristic x rays of element A in the specimen. The combined factor μ cscΨ is the so-called absorption parameter χ. The numerator is simply the number of x rays which escape from the specimen while the denominator represents the total number of x rays generated in the specimen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Castaing, R. (1960), Advances in Electronics and Electron Physics, Vol. XIII, Marton, L., ed., Academic Press, New York, 317.

    Google Scholar 

  2. Castaing, R. and Descamps, J. (1955), J. Phys. et Radium 16, 304.

    Article  CAS  Google Scholar 

  3. Brown, J. D., Ph.D. (1966), Thesis, University of Maryland, College Park, MD, 167.

    Google Scholar 

  4. Castaing, R. and Henoc J. (1966), X-Ray Optics and Microanalysis, Castaing, R., Descamps, P. and Philibert, J., eds., Hermann, Paris, 120.

    Google Scholar 

  5. Brown, J. D. and Parobek, L. (1972), Proc. 6th Int. Conf. X-Ray Optics and Microanalysis, Shinoda, G., Kohra, K., and Ichinokawa, T., eds., U. of Tokyo Press, Tokyo, 163.

    Google Scholar 

  6. Buchner, A. R. and Pitsch, W. (1971), Z. Metallkunde 62, 393.

    Google Scholar 

  7. Buchner, A. R. and Pitsch, W. (1972), Z. Metallkunde 63, 398.

    Google Scholar 

  8. Rehbach, W. and Karduck, P. (1987), Proc. 11th Int. Conf. X-Ray Optics and Microanalysis, Brown, J. D. and Packwood, R. H., eds., UWO Graphics Serv., London, Ontario, Canada, 244.

    Google Scholar 

  9. Criss, J. W. (1968), NBS Spec. Publ. 298, 53.

    Google Scholar 

  10. Wittry, D. B., (1957), Ph.D. Thesis, California Institute of Technology.

    Google Scholar 

  11. Kyser, D. F. (1972), Proc. 6th Int. Conf. X-Ray Optics and Microanalysis, Shinoda, G., Kohra, K., and Ichinokawa, T., eds., 147.

    Google Scholar 

  12. Parobek, L. and Brown, J. D. (1978), X-Ray Spectr. 7, 26.

    Article  CAS  Google Scholar 

  13. Brown, J. D. and Robinson, W. H. (1979), Microbeam Analysis, 238.

    Google Scholar 

  14. Packwood, R. H. and Brown, J. D. (1981), X-Ray Spectr. 10, 138.

    Article  CAS  Google Scholar 

  15. Brown, J. D. and Packwood, R. H. (1982), X-Ray Spectr. 11, 187.

    Article  CAS  Google Scholar 

  16. Packwood, R. H. and Brown, J. D. (1980), Microbeam Analysis, 45.

    Google Scholar 

  17. Bastin, G. F. and Heijligers, H. J. M. (1984 and 1985 ), Internal Reports, Univ. of Technology, Eindhoven, ISBN, 90–6819–002–4 and 90–6819–006–7.

    Google Scholar 

  18. Bastin, G. F., Heijligers, H. J. M., and van Loo, F. J. J. (1984), Scanning 6, 58.

    Article  CAS  Google Scholar 

  19. Bastin, G. F., Heijligers, H. J. M. (1986), X-Ray Spectr. 15, 143.

    Article  CAS  Google Scholar 

  20. Tirira Saa, J. H., Del Giorgio, M. A., and Riveros, J. A. (1987), X-Ray Spectr. 16, 255.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Brown, J.D. (1991). φ(ρz) Equations for Quantitative Analysis. In: Heinrich, K.F.J., Newbury, D.E. (eds) Electron Probe Quantitation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2617-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2617-3_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2619-7

  • Online ISBN: 978-1-4899-2617-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics