Skip to main content

Part of the book series: Studies in Chemical Physics ((SCP))

  • 99 Accesses

Abstract

There are a large number of ionic compounds in which the crystal structure is determined largely by a close-packed lattice of the anions. The most familiar examples are found among the oxides, sulphides, and anhydrous halides. The anionic lattice has the power to accommodate a wide range of different cations in the largest interstices, not only to give stoichiometric compounds, but also to form the important category of non-stoichiometric compounds. Any given cation in the lattice is co-ordinated to several anions which frequently number four or six and are arranged in a near regular geometry. The electronic interaction of the cation with this environment can be described in terms of the ideas outlined in the previous chapters on electronic structure. However, although all cations of a given type may have the same co-ordination to the anion, the successive co-ordination spheres containing other cations may well be very different. It is this distinction between a stoichiometric ordered lattice, such as in FeF2, and a non-stoichiometric disordered lattice as in Co1−x Zn x Fe2O4 which results in important new phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Evans, B. J., Hafner, S. S. and Weber, H. P. (1971) J. Chem. Phys., 55, 5282.

    Article  ADS  Google Scholar 

  2. Eibschutz, M., Ganiel, U. and Shtrikman, S. (1966) Phys. Rev., 151, 245.

    Article  ADS  Google Scholar 

  3. Gibb, T. C., Greatrex, R., Greenwood, N. N., Puxley, D. C. and Snowdon, K. (1973) Chem. Phys. Letters, 20, 130.

    Article  ADS  Google Scholar 

  4. Tanaka, M., Tokoro, T. and Aiyama, Y. (1966) J. Phys. Soc. Japan, 21, 262.

    Article  ADS  Google Scholar 

  5. Ono, K., Chandler, L. and Ito, A. (1968) J. Phys. Soc. Japan, 25, 175.

    Google Scholar 

  6. Eibschutz, M., Hermon, E. and Shtrikman, S. (1967) J. Phys. Chem. Solids, 28, 1633.

    Article  ADS  Google Scholar 

  7. Armstrong, R. J., Morrish, A. H. and Sawatzky, G. A. (1966) Phys. Letters, 23, 414.

    Article  ADS  Google Scholar 

  8. Gallagher, P. K., MacChesney, J. B. and Buchanan, D. N. E. (1964) J. Chem. Phys., 41, 2429.

    Article  ADS  Google Scholar 

  9. Sawatzky, G. A., van der Woude, F. and Morrish, A. H. (1969) Phys. Rev., 187, 747.

    Article  ADS  Google Scholar 

  10. Greenwood, N. N. and Howe, A. T. (1972) J. Chem. Soc. (A), pp. 110, 116 and 122.

    Google Scholar 

  11. van der Woude, F. and Sawatzky, G. A. (1971) Phys. Rev., 4, 3159.

    Article  Google Scholar 

  12. Iyengar, P. K. and Bhargava, S. C. (1971) Phys. Stat. Sol. B, 46, 117.

    Article  ADS  Google Scholar 

  13. Coey, J. M. D. and Sawatzky, G. A. (1971) Phys. Stat. Sol. B, 44, 673.

    Article  ADS  Google Scholar 

  14. Pettit, G. A. and Forester, O. W. (1971) Phys. Rev. B, 4, 3912.

    Article  ADS  Google Scholar 

  15. Gilleo, M. A. and Geller, S. (1958) Phys. Rev., 110, 73.

    Article  ADS  Google Scholar 

  16. van Loef, J. J. (1968) J. Appl Phys., 39, 1258.

    Article  ADS  Google Scholar 

  17. Lyubutin, I. S. and Lyubutina, L. G. (1971) Soviet Physics-Crystallography, 15, 708.

    Google Scholar 

  18. Lyubutin, I. S., Belyaev, L. M., Vishnyakov, Y. S., Dmitrieva, T. V., Dodokin, A. P., Dubossarskaya, V. P. and Shylakhina, L. P. (1970) Soviet Physics-JETP, 31, 647.

    ADS  Google Scholar 

  19. Stachel, M., Hufner, S., Crecelius, G. and Quitmann, D. (1969) Phys. Rev., 186, 355.

    Article  ADS  Google Scholar 

  20. Nowik, I. and Ofer, S. (1967) Phys. Rev., 153, 409.

    Article  ADS  Google Scholar 

  21. Bauminger, E. R., Nowik, I. and Ofer, S. (1967) Phys. Letters, 29A, 328.

    ADS  Google Scholar 

  22. Atzmony, U., Bauminger, E. R., Mustachi, A., Nowik, I., Ofer, S. and Tassa, M. (1969) Phys. Rev., 179, 514.

    Article  ADS  Google Scholar 

  23. Goldanskii, V. I., Trukhtanov, V. A., Devisheva, M. N. and Belov, V. F. (1965) ZETF Letters, 1, 19.

    ADS  Google Scholar 

  24. Belov, K. P. and Lyubutin, I. S. (1966) Soviet Physics-JETP, 22, 518.

    ADS  Google Scholar 

  25. Ruby, S. L., Evans, B. J. and Hafner, S. S. (1968) Solid State Comm., 6, 277.

    Article  ADS  Google Scholar 

  26. Ullrich, J. F. and Vincent, D. H. (1967) Phys. Letters, 25A, 731.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1976 T. C. Gibb

About this chapter

Cite this chapter

Gibb, T.C. (1976). Oxides and Related Systems. In: Principles of Mössbauer Spectroscopy. Studies in Chemical Physics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-3023-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-3023-1_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-412-13960-4

  • Online ISBN: 978-1-4899-3023-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics