Skip to main content

Nonlinear Modulational Instability of an Electromagnetic Pulse in a Neutral Plasma

  • Chapter
Directions in Electromagnetic Wave Modeling
  • 207 Accesses

Abstract

Using the propagation of an intense electromagnetic pulse through a neutral plasma as a model, we demonstrate how one can obtain information about the nonlinear behavior of modulated waves. Assuming no resonant instabilities, the envelope can be shown to evolve over long time scales according to a vector form of the well-known cubic nonlinear Schroedinger (NLS) equation. In the weakly relativistic regime, three distinct nonlinear effects contribute terms cubic in the amplitude and thus can be of comparable magnitude: ponderomotive forces, relativistic corrections, and harmonic generation. Modulational stability of any given system is shown to depend on polarization, frequency, composition, and these dependences are given. In the special case of a cold positron-electron plasma, the model is strictly modulationally stable for both linear and circular polarization. However the presence of an ambient magnetic field can make a decisive difference. Now modulational instability can arise within a broad range of frequencies and values of Bq, m particular for a pure positron-electron plasma. For the case of intensely propagating (relativistic) EM plane plasma waves, we find that the circularly-polarized waves are modulationally unstable under a range of conditions. We use a unified approach which illustrates how the modulational instability changes as one moves from the weakly relativistic case to the fully relativistic case. And we are able to give the first self-consistent calculation of the modulational instability properties of a slowly-modulated, fully relativistic envelope. Modulated, intensely propagating EM waves couple (in general) to longitudinal motions via the ponderomotive force. The effect of longitudinal motions is comparable to that of relativistic nonlinearities. A correct and proper expansion procedure requires solution of all the field equations up to the appropriate order, including the longitudinal equations. In particular, in the extreme relativistic limit of either an electron-positron or ion-electron plasma, waves with frequencies below twice the relativistic plasma frequency ω p , where ω 2 p ≡ 4πe 2 n 0(1/( 0) + 1/(MΓ0)), are unstable. Growth occurs on a very short timescale comparable to the time for a wave packet to move past a fixed point. (This timescale is much shorter than that for spreading of the wave packet due to linear dispersion.)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Max, C.: Phys. Fluids 16, 1277; ibid. 1480 (1973).

    Article  ADS  Google Scholar 

  2. Chian, A. and Kennel, C.: Astrophys. & Sp. Sci. 97, 9 (1983).

    Article  ADS  Google Scholar 

  3. Mofiz, U.A., DeAngelis, U. & Forlani, A. 1984 Plasma Physics and Controlled Fusion 26, 1099.

    Google Scholar 

  4. Mofiz, U.A., DeAngelis, U. & Forlani, A. 1985 Phys. Rev. A 31, 951.

    Article  ADS  Google Scholar 

  5. Mofiz, U.A. and Podder, J., 1987 Phys. Rev. A 36, 1811.

    Article  ADS  Google Scholar 

  6. Kates, R. and Kaup, D.J., 1989 J. Plasma Physics (GB) 41, 507.

    Article  ADS  Google Scholar 

  7. Gil, J.: 1986, Astroph. J. 308, 691.

    Article  ADS  Google Scholar 

  8. Smirnova, T.V., Soglasnov, V.A., Popov, M.V. & Novikov, A.Yu: 1986 Sov. Astron. 30, 51.

    ADS  Google Scholar 

  9. Smirnova, 1988 Sov. Astron. Lett. 14, 20.

    ADS  Google Scholar 

  10. Kates, R. and Kaup, D.J., 1989 J. Plasma Physics (GB) 41, 521.

    Article  ADS  Google Scholar 

  11. Kates, R., Ann. Phys. 1981 132, 1.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. Van Dyke, M. 1964 Perturbations in Fluid Mechanics, Academic Press, N.Y.

    Google Scholar 

  13. Nayfeh, A. 1981 Introduction to Perturbation Techniques, Wiley.

    MATH  Google Scholar 

  14. Kozlov, V., Litvak, A., and Suvarov, E., 1979 Sov. Phys. JETP 49 75.

    ADS  Google Scholar 

  15. Akhiezer, A.L., et al.: 1975, Plasma Electrodynamics, Pergammon, Oxford, Chapter 5.

    Google Scholar 

  16. Luenow, W.:1968, Plasma Phys. 10, 973.

    Article  ADS  Google Scholar 

  17. Ruderman M. and Sutherland, P.: 1975, Astrophys. J. 196, 51.

    Article  ADS  Google Scholar 

  18. Arons J. and Scharlemann, E.:1979, Astrophys, J. 231, 854.

    Article  ADS  Google Scholar 

  19. Rickett, B.: 1975 Astrophys. J. 197, 185.

    Article  ADS  Google Scholar 

  20. Cordes, J.: 1979, Space Sci Rev. 24 567.

    Article  ADS  Google Scholar 

  21. Karpman, V. and Krushkal, E.:1969, Soviet Phys. JETP 28, 277.

    ADS  Google Scholar 

  22. Luenow, W.:1968, Plasma Phys. 10, 973.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kaup, D.J. (1991). Nonlinear Modulational Instability of an Electromagnetic Pulse in a Neutral Plasma. In: Bertoni, H.L., Felsen, L.B. (eds) Directions in Electromagnetic Wave Modeling. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-3677-6_55

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-3677-6_55

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-3679-0

  • Online ISBN: 978-1-4899-3677-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics