Skip to main content

Abstract

The Quantum Hall effect and the quantum interference phenomena in mesoscopic systems are two prominent examples of quantum transport in semiconductors. In the past, they have mostly been studied using DC or low-frequency measuring techniques [1,2]. The use of high-frequency electric fields, however, is of particular interest if the product ωτ ϕ 1 [3–6] where 1/τ ϕ is the phase breaking rate which determines the phase coherence of the wave function. High-frequency experiments regarding the integer Quantum Hall effect (IQHE) are summarized in [7]. In the microwave range they were performed by two groups [8,9]. Recently, more detailed data about the Hall plateau width and the disappearance of the plateaus at high frequencies were published [10, 11]. In quantum wires high-frequency effects were studied using narrow silicon MOSFETs and GaAs epitaxial layers [6] and metal films [5,12]. In the first experiments on heterostructure quantum wires [13] the influence of a microwave field on the weak electron localization (WEL) and the universal conductance fluctuations (UCF) was studied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.E. Prange, S.M. Girvin, The Quantum Hall Effect, Springer, Heidelberg (1987)

    Book  Google Scholar 

  2. Physics and Technology of Submicron Structures, H. Heinrich, G. Bauer, F. Kuchar, eds., Springer Series in Solid State Sciences 83 (1988)

    Google Scholar 

  3. B L. Altshuler, A G. Aronov, D.E. Khmel’nitskii, Sol. St. Commun. 39, 619 (1981)

    Article  ADS  Google Scholar 

  4. D E. Khmelnitskii, Physica 126 B, 235 (1984)

    Google Scholar 

  5. J. Liu, N. Giordano, Springer Proc. in Physics 28, 159 (1988)

    Article  Google Scholar 

  6. A.A. Bykov, G.M. Gusev, Z.D. Kvon, D.I. Lybyshev, and V.P. Migal, JETP Lett. 49, 13 (1989)

    ADS  Google Scholar 

  7. F. Kuchar, R. Meisels, K.Y. Lim, P. Pichler, G. Weimann, and W. Schlapp, Physica Scripta 19, 79 (1987)

    Article  Google Scholar 

  8. F. Kuchar, R. Meisels, G. Weimann, W. Schlapp, Phys. Rev. B 33, 2965 (1986)

    Article  ADS  Google Scholar 

  9. V.A. Volkov, D.V. Galchenkov, L.A. Galchenkov, I.M. Grodnenskii, O.R. Matov, S.A. Mikhailov, A.P. Senichkin, and K.V. Starostin, JETP Lett. 43, 328 (1986)

    ADS  Google Scholar 

  10. L.A. Galchenkov, I.M. Grodnenskii, M.V. Kostovetskii, O.R. Matov, JETP Lett. 46, 542 (1988)

    ADS  Google Scholar 

  11. K.Y. Lim, I. Auer, F. Kuchar, G. Weimann, W. Schlapp, A. Forchel, A. Menschig, Surf. Sc, in print

    Google Scholar 

  12. P.E. Lindelof, S. Wang, Phys. Rev. Lett. 59,1156 (1987)

    Article  ADS  Google Scholar 

  13. F. Kuchar, J. Lutz, K.Y. Lim, G. Weimann, W. Schlapp, A. Forchel, A. Menschig, Extended Abstracts, Symposium “New Phenomena in Mesoscopic Structures”, p. 200, Hawaii (1989)

    Google Scholar 

  14. H.P. Wei, D.C. Tsui, M.A. Paalanen, A.M.M. Pruisken, Phys. Rev. Lett. 61, 1294 (1988)

    Article  ADS  Google Scholar 

  15. S. Washburn, R.A. Webb, Adv. in Phys. 35, 375 (1986)

    Article  ADS  Google Scholar 

  16. V. Fal’ko, Europhys. Lett. 8, 785 (1989)

    Article  ADS  Google Scholar 

  17. F. Kuchar, Adv. Sol. St. Phys. 28, 45 (1988)

    Article  Google Scholar 

  18. R. Meisels, F. Kuchar, Z. Phys. 67, 443 (1987)

    Article  Google Scholar 

  19. T.J. Thornton, M.L. Roukes, A. Scherer, B.P. van de Gaag, Phys. Rev. Lett. 63, 2128 (1989)

    Article  ADS  Google Scholar 

  20. A. Menschig, A. Forchel, B. Roos, R. Germann, K. Pressel, W. Heuring, D. Grützmacher, submitted to Appl. Phys. Lett.

    Google Scholar 

  21. B. Kramer, Y. Ono, T. Ohtsuki, Springer Ser. Sol. St. Sci. 87, 24 (1989)

    Google Scholar 

  22. B. Huckestein, W. Apel, B. Kramer, Springer Ser. in Sol. St. Sc, in print

    Google Scholar 

  23. J. Lutz, F. Kuchar, A. Menschig, A. Forchel, D. Grützmacher, P. Benton, S.P. Beaumont, and C.D.W. Wilckinson, Proc. 20th ICPS, Thessaloniki, in print (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kuchar, F. et al. (1991). High-Frequency Quantum Transport. In: Kramer, B. (eds) Quantum Coherence in Mesoscopic Systems. NATO ASI Series, vol 254. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-3698-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-3698-1_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-3700-1

  • Online ISBN: 978-1-4899-3698-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics