Skip to main content

Growth and Crystallization Mechanism of Microcrystalline Silicon Films Produced by Reactive RF Sputtering

  • Chapter
Tetrahedrally-Bonded Amorphous Semiconductors

Part of the book series: Institute for Amorphous Studies Series ((IASS))

Abstract

Hydrogenated microcrystalline silicon is a mixed-phase material consisting of submicron size silicon crystallites embedded into an amorphous matrix1. This new phase material has received increased attention because of its potential application in thin film devices2,3. Such material was first prepared by Veprek and his coworkers4–6 by hydrogen-plasma assisted silicon transport. In this method, the silicon charge, kept at relatively low temperatures, reacts with atomic hydrogen and forms volatile hydrides, which are transported and decomposed on a substrate, kept at higher temperatures. More recently hydrogenated microcrystalline silicon has been prepared by high power glow discharge decomposition of silane, diluted in hydrogen7,8 Material produced by these two methods has been investigated by a number of groups and models regarding the kinetics of growth have been proposed5,8. Limited progress has also been made in the deposition of such material by the method of sputtering3,9,10,11. However, the mechanism of thin film growth and crystallization has only been briefly addressed11.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Veprek, Z. Iqbal and F. A. Sarott, Philos. Mag. B, 11 137 (1982).

    Google Scholar 

  2. Y. Uchida, T. Ichimura, M. Ueno, and H. Haruki, Jap. J. Appl. Phys. 21 L586 (1982).

    Google Scholar 

  3. T. D. Moustakas, H. P. Maruska and R. Friedman, J. Appl. Phys., (in press).

    Google Scholar 

  4. S. Veprek and V. Marecek, Solid State Electronics, 11, 683 (1968).

    Google Scholar 

  5. S. Veprek, Z. Iqbal, H. R. Oswald, F. A. Sarott and J. J. Wagner, J. de Physique, Tome 42, p. C4–251 (1981).

    Google Scholar 

  6. Z. Iqbal and S. Veprek, J. Phys. C., Solid State Phys. JL 15, 377 (1982).

    Google Scholar 

  7. A. Matsuda, T. Yoshida, S. Yamasaki and K. Tanaka, Jap. J. Appl.Phys. 20, L439 (1981).

    Article  CAS  Google Scholar 

  8. A. Matsuda, J. Non-Cryst. Solids, 59–60, 767 (1983).

    Google Scholar 

  9. T. Imara, K. Mogi, A. Hiraki, S. Nakashimer, A. Mitsuishi, Solid State Comm. 40, 161 (1981).

    Google Scholar 

  10. H. Ishida, M. Noder, H. Shimizu, Jap. J. of Appl. Phys. 22, L73 (1983).

    Google Scholar 

  11. T. D. Moustakas, D. A. Weitz, E. B. Prestridge and R. Friedman, In “Plasma Synthesis and Etching of Electronic Materials,” Vol. 38 of Material Research Society (1985).

    Google Scholar 

  12. T..D. Moustakas, In “Semiconductors and Semimetals,” Vol. 21A, (J. I. Pankove Ed.), Chapter 4, Academic Press, New York, 1984.

    Google Scholar 

  13. J. L. Vossen and J. J. Cuomo, In “Thin Film Processes,” (J. L. Vossen and W. Kern Eds.) Chapter 2, Academic Press, New York, 1978.

    Google Scholar 

  14. B. A. Movchan and A. V. Demchishin, Phys. Met. Metalloved, 28, 83 (1969).

    Google Scholar 

  15. J. A. Thornton, J. Vac. Sci. Technol. 11 666 (1974).

    Google Scholar 

  16. J. A. Thornton, Ann. Rev. Mater. Sci., 239 (1977).

    Google Scholar 

  17. T. D. Moustakas, Solar Energy Materials 8 187 (1982).

    Google Scholar 

  18. A. Matsuda, K. Nakagawa, K. Tanaka, M. Matsumura, S. Yamasaki, H. Okushi and S. Iizima, J. Non-Crystall. Solids 35–36, 183 (1980).

    Google Scholar 

  19. E. Kinsbron, M. Sternheim and R. Knoell, Appl. Phys. Lett. 42, 835 (1983).

    Google Scholar 

  20. K. Zellama, P. Germain, S. Squelard, J. C. Bourgoin and P. A. Thomas, J. Appl. Phys. 50, 6995 (1979).

    Google Scholar 

  21. N. Proust, R. Bisaro, J. Magarino, D. Kaplan and K. Zellama, Proc. of the Symposium on Material and New Processing Technologies for Photovoltaics, Vol. 83–11 p. 291 (J.Amick, V. K. Kapur and J. Dietl Eds). The Electrochemical Society, Pennington, N.J. (1983).

    Google Scholar 

  22. V. Koster, Phys. Status Solidi, A 48, 313 (1978).

    Google Scholar 

  23. E. Billig, J. Inst. Metals 83, 53 TT954).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer Science+Business Media New York

About this chapter

Cite this chapter

Moustakas, T.D. (1985). Growth and Crystallization Mechanism of Microcrystalline Silicon Films Produced by Reactive RF Sputtering. In: Adler, D., Fritzsche, H. (eds) Tetrahedrally-Bonded Amorphous Semiconductors. Institute for Amorphous Studies Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-5361-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-5361-2_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-5363-6

  • Online ISBN: 978-1-4899-5361-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics