Skip to main content

Contrasts in the Solution Drag Reduction Characteristics of Polymeric Solutions and Micellar Systems

  • Conference paper
Viscous Drag Reduction

Abstract

Solution drag reduction displays such a variety of unusual flow phenomena that it is desirable from the needs of the experimentalist, theoretician, and engineer, to describe, identify, and classify the features of categories of solution drag reduction behavior observed in real fluids. This paper develops information useful to the eventual formulation of a structuring scheme embodying hierarchies of solution drag reduction behavior. Three categories of behavior have been discovered in micellar-type systems. Four categories of behavior can be identified in polymeric-type systems. Their characteristics are discussed in detail. The morphology of micellar-type drag reducer systems is also discussed, and estimates are presented of morphological parameters for conditions corresponding to the threshold shear stress where maximum drag reduction activity occurs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Patterson, G. K., Zakin, J. L., and Rodri ez, J. M., “Drag Reduction,” I.E.C. Fundamentals (in press).

    Google Scholar 

  2. Hershey, H. C. and Zakin, J. L., “Existence of Two Types of Drag Reduction in Pipe Flow of Dilute Polymer Solutions,” Ibid, 6, 3, 381 (1967).

    Google Scholar 

  3. Savins, J. G., “Method of Decreasing Friction Loss in Turbulent Liquids,” U. S. Patent No. 3, 361, 213 (1968).

    Google Scholar 

  4. Savins, J. G., “Drag Reduction Characteristics of Solutions of Macromolecules in Turbulent Pipe Flow,” Soc. Petr. Engr. Jnl. l. 4, 3, 203 (1964)

    Google Scholar 

  5. Savins, J. G., “Drag Reduction Characteristics of Solutions of Macromolecules in Turbulent Pipe Flow,” Trans. A. I. M. E., 231 11, 203 (1949).

    Google Scholar 

  6. Savins, J. G., “A Stress Controlled Drag Reduction Phenomenon,” Rheo. Acta, 6, 4, 323 (1967).

    Article  Google Scholar 

  7. Booij, H. L., Association Colloids, Ch. H. R. Kruyt, Editor, Colloid Science II

    Google Scholar 

  8. Pilpel, N., “Viscoelasticity in Aqueous Part 4,” Trans. Faraday Soc., 62, 526

    Google Scholar 

  9. Lodge, A. S., Elastic Liquids, Academic

    Google Scholar 

  10. Ferry, J. D., Viscoelastic Properties of Polymers, John Wiley, New York (1961).

    Google Scholar 

  11. Pilpel, N., “Viscoelasticity in Aqueous Soap Solutions, Part 3,” Trans. Faraday Soc., 62, 1015 (1966).

    Article  Google Scholar 

  12. McBain, M. E. L. and Hutchinson, E., Solubilization and Related Phenomena, Academic Press Inc., New York (1955).

    Google Scholar 

  13. Pilpel, N., “On Gel Formulation in Soaps,” Jnl. Colloid Sci., 2, 285 (1954).

    Article  Google Scholar 

  14. Savins, J. G., Fluid Rheological Measurements, 408–463, In: F. D. Snell and C. L. Hilton, Editors, Encyclopedia of Industrial Chemical Analysis, III, John Wiley, New York (1966).

    Google Scholar 

  15. Savins, J. G. and Cox, D. B., “Pumpability of Rheologically Complex Oils Below the Pour Point,” Fuel, XLII, 363 (1963).

    Google Scholar 

  16. Nikuradse, J., “The Laws Governing the Turbulent Flow in Smooth Pipes,” Research Paper No. 356, Supplement to “Research in Engineering Field,” Forsch. auf dem Geb. des Ingen. Ed. B, 3 (Sept-Oct.) (1932).

    Google Scholar 

  17. Dodge, D. W. and Metzner, A. B., “Turbulent Flow of Non-Newtonian Systems,” A. I. Ch. E. Jnl., 5, 189 (1959).

    Article  Google Scholar 

  18. Metzner, A. B. and Park, M. G., “Turbulent Flow Characteristics of Viscoelastic Fluids,” Jnl. Fluid Mech., 20, 291 (1964).

    Article  Google Scholar 

  19. Toms, B. A., “Some Observations on the Flow of Linear Polymer Solutions Through Straight Tubes at Large Reynolds Numbers,” Proc. First International Congress on Rheology, 135, (1949).

    Google Scholar 

  20. Savins, J. G., “Some Comments on Pumping Requirements for Non-Newtonian Fluids,” Jnl. Inst. Petr., 47, 329 (1961).

    Google Scholar 

  21. Shaver, R. G., “Turbulent Flow of Pseudoplastic Fluids in Straight Cylindrical Tubes,” PhD Thesis, MIT (1957).

    Google Scholar 

  22. Saffman, P. G., “On the Stability of Laminar Flow of a Dusty Gas,” Jnl. Fluid Mech., 13, 120 (1962).

    Article  MATH  MathSciNet  Google Scholar 

  23. Virk, P. S., “The Toms Phenomenon-Turbulent Pipe Flow of Dilute Polymer Solutions,” D. S. Thesis, MIT (1966).

    Google Scholar 

  24. Fabula, A. G., Lumley, J. L., and Taylor, W. D., “A Molecular Viscoelasticity Interpretation of the Wall Shear Stress Threshold in the Toms Effect,” AD 620143 (1965).

    Google Scholar 

  25. Hershey, H. C. and Zakin, J. L., “A Study of the Turbulent Drag Reduction of Solutions of High Polymers in Organic Solvents,” Preprint 21B, A. I. Ch. E. Meeting, Philadelphia, Pa., Dec. 7, 1965.

    Google Scholar 

  26. Hershey, H. C., personal communication.

    Google Scholar 

  27. Dodge, D. W., “Turbulent Flaw of Non-Newtonian Fluids in Smooth Round Tubes,” PhD Thesis, Univ. of Delaware (1958).

    Google Scholar 

  28. Park, M., “Turbulent Flow and Normal Stresses of Viscoelastic Fluids,” MS Thesis, Univ. of Delaware (1964).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1969 Springer Science+Business Media New York

About this paper

Cite this paper

Savins, J.G. (1969). Contrasts in the Solution Drag Reduction Characteristics of Polymeric Solutions and Micellar Systems. In: Wells, C.S. (eds) Viscous Drag Reduction. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-5579-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-5579-1_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-5581-4

  • Online ISBN: 978-1-4899-5579-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics