Skip to main content

Abstract

As a professor at the University of Grenoble, François-Marie Raoult formulated many of the basic laws of physical chemistry. One of these laws provides a definition for so-called ‘ideal solutions’; another one has a much broader content than was at first thought. It is the ‘cryoscopic’ law, which was so named by Raoult himself, from the Greek words χρνος (ice) and σκοπεω (I observe)64. Chemists, however, just saw in it one of the methods of determination of molar masses. It was only when van’t Hoff84 gave an expression for the solvent cryoscopic constant that Raoult’s experimental work gained universal acceptance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

A:

Coefficient of Debye-Höckel theory

a:

Ionic parameter of Debye-Höckel theory

a i :

Activity of particle i

a + :

Ideal activity of ionic substance

B:

Coefficient of Debye-Höckel theory

c:

Molarity (number of moles per liter of solvent)

d:

Density

E:

e.m.f. of one couple

f i :

Rational symmetric activity coefficient of component i

G:

Molar Gibbs function (free enthalpy)

g:

Gibbs function for n molecules or moles

I:

Ionic strength

i:

van’t Hoff coefficient

j:

Lewis cryoscopic variable

L i :

Heat of fusion, component i

l:

Length of wire

ln:

Natural or Napierian logarithm

log:

Decimal or common logarithm

m:

Molality (number of moles per kilogram of solvent)

N:

Number of junctions

R:

Universal ideal gas constant

R g :

Charging resistance

R j :

Resistance of wires

S or S' :

Cross-sectional area of a wire

S f :

Molar melting entropy

T:

Kelvin temperature

T 0i :

Melting point of pure component i

W:

Interaction parameter for regular solutions

X i :

Mole fraction, component i

Z i :

Ionic charge of ith ion

α:

Molecular dissociation coefficient

γ:

Practical dissymmetrical activity coefficient of solute

γ± :

Mean activity coefficient of ions

δ:

Hydrolysis ratio

Δc :

Difference of the molar specific heats of the liquid and the solid component

ΔS :

Entropy of mixing

θ:

Cry oscopic depression (T 01T)

λ:

Cryoscopic constant in molai scale

v:

Total number of ions in the molecule

v i :

Number of ions of type i

v i ' :

Number of ions of the solute common to the solvent of type i

π:

Osmotic pressure

π ' :

Osmotic pressure in milliosmols

ø:

Practical osmotic coefficient

V. References

  1. Abegg, R. Z. Phys. Chem. 20, 207 (1896).

    CAS  Google Scholar 

  2. Adams, L. H. J. Amer. Chem. Soc. 37, 481 (1915).

    Article  CAS  Google Scholar 

  3. Arrhenius, S. Z. Phys. Chem. 1, 631 (1887) and 2, 491 (1888).

    Google Scholar 

  4. Bedfort, J. G. Proc. Roy. Soc. (London) A, 83, 459 (1910).

    Google Scholar 

  5. Blander, M. J. Chem. Phys. 36, 1092 (1962).

    Article  CAS  Google Scholar 

  6. Blander, M. and J. Braunstein, Ann. NY Acad. Sci. 79, 838 (1960).

    Article  CAS  Google Scholar 

  7. Blander, M. and I. J. Yosim. J. Chem. Phys. 39, 2610 (1963).

    Article  CAS  Google Scholar 

  8. Boutaric, A. Bull. Soc. Chim. France, 13, 651 (1913).

    Google Scholar 

  9. Braunstein, J. and K. A. Romberger, Inorg. Chem. 9, 1273 (1970).

    Article  Google Scholar 

  10. Brown, P. G. and J. E. Prue. Proc. Roy. Soc. (London), 232, 320 (1955).

    Article  CAS  Google Scholar 

  11. Bye, J. Bull. Soc. Chim. France 9, 517 (1942).

    CAS  Google Scholar 

  12. Cavallaro, L. RC Accad. Ital. 11, 697 (1940).

    CAS  Google Scholar 

  13. Cohen-Adad, R. and A. P. Rollet, CR Acad. Sci., Paris, 227, 554 (1948) and Publ. Univ. Alger, 1B, 85 (1955).

    Google Scholar 

  14. Cornec, E. Ann. Chim. Phys. 29, 490 (1913).

    CAS  Google Scholar 

  15. Darmois, E. ‘L’activité des solutions électrolytiques’. Actualités. Sci., Paris (Herman) No. 945 (1943)

    Google Scholar 

  16. Darmois, E. Bull Un. Phys., Paris, 260–261, 193 (1933)

    Google Scholar 

  17. Darmois, E. and J.-J. Cessac. CR Acad. Sci., Paris, 191, 1091 (1930)

    Google Scholar 

  18. Darmois, E. and R. Chalin. CR Acad. Sci., Paris, 195, 786 (1932)

    CAS  Google Scholar 

  19. Darmois, E. and J. Zarzycki. CR Acad. Sci., Paris, 234, 95 (1952).

    Google Scholar 

  20. Doucet, J, G. Porta and G. Finiels. CR Acad. Sci., Paris, 270C, 1208 (1970).

    Google Scholar 

  21. Doucet, Y. J. Phys. Radium, 4, 53 (1943).

    Google Scholar 

  22. Doucet, Y. J. Phys. Radium, 4, 204 (1943).

    Article  CAS  Google Scholar 

  23. Doucet, Y. and Mlle J. Defretière. CR Acad. Sci., Paris, 224, 337 (1947).

    CAS  Google Scholar 

  24. Doucet, Y. Bull. Un. Phys., Paris, 361, 76 (1947).

    Google Scholar 

  25. Doucet, Y. J. Phys. Radium, 4, 41 (1943).

    Article  CAS  Google Scholar 

  26. Douglas, T. B. Trans. Amer. Soc. Mech. Engrs, 79, 23 (1957).

    CAS  Google Scholar 

  27. Dworkin, A. S. and M. A. Bredig. J. Phys. Chem. 64, 269 (1960).

    Article  CAS  Google Scholar 

  28. Eichelberger, W. C. J. Amer. Chem. Soc. 56, 799 (1934).

    Article  CAS  Google Scholar 

  29. Eyring, H., T. Ree and N. Hirai. Proc. Nat. Acad. Sci., Wash. 44, 683 (1958).

    Article  CAS  Google Scholar 

  30. Finel, A., P. J. Gardner, R. D. G. Lane and B. Smethurst. Lab. Pract. 14, 446 (1965).

    Google Scholar 

  31. Flood, H., T. Förland and A. Nesland. Acta Chem. Scand. 5, 1193 (1951).

    Article  CAS  Google Scholar 

  32. Flood, H, T. Förland and K. Grjotheim. Z. Anorg. Allgem. Chem. 276, 289 (1954).

    Article  CAS  Google Scholar 

  33. Förland, T. J. Phys. Chem. 59, 152 (1955).

    Article  Google Scholar 

  34. Gaune-Escard, M. J. C. Mathieu and R. Desre. J. Chim. Phys. 9, 1390 and 1397 (1972) and 7–8, 1033 (1973).

    Google Scholar 

  35. Goodwin, H. M. and H. T. Kalmus. Phys. Rev. 28, 1 (1909).

    CAS  Google Scholar 

  36. Grjotheim, K. Thesis, Norges Teckniske Hogskole Trondheim (1956).

    Google Scholar 

  37. Haase, R. Z. Naturf. 8a, 380 (1953).

    CAS  Google Scholar 

  38. Haase, R. J. Phys. Chem. 73, 1160 (1969).

    Article  CAS  Google Scholar 

  39. Haber, F. and F. Lowe. Z. Angexv. Chem. 23, 1393 (1910).

    Article  CAS  Google Scholar 

  40. Harrison, J. P. Thesis, Paris (1956) and CR Acad. Sci., Paris, 241, 298 (1955).

    Google Scholar 

  41. Hovorka, F. and H. Rodebush. J. Amer. Chem. Soc. 47, 1614 (1925).

    Article  CAS  Google Scholar 

  42. Jahr, K. F. and R. Kubens. Z. Elektrochem. 56, 65 (1952).

    CAS  Google Scholar 

  43. Karagunis, G., A. Hawkinson and G. Damköhler. Z. Phys. Chem. 151A, 433 (1930).

    Google Scholar 

  44. Kelley, K. K. Bull. US Bur. Min. No. 476 (1949).

    Google Scholar 

  45. Kentamaa, J. Suomen Kemistilehti, 29, 59 (1956).

    Google Scholar 

  46. Kraus, C. A. and R. A. Vingee. J. Amer. Chem. Soc. 56, 511 (1934).

    Article  CAS  Google Scholar 

  47. Lange, J. Z. Phys. Chem. 177A, 193 (1936).

    Google Scholar 

  48. Lange, J. and J. Berga. Mh. Chem. 81, 921 (1950).

    CAS  Google Scholar 

  49. Lange, J. Z. Phys. Chem. 168A, 147 (1934).

    Google Scholar 

  50. Lemaire, M. Thesis No. 225 (1956), Faculté des Sciences Lyon, France.

    Google Scholar 

  51. Livingston, J., R. Morgan and H. K. Benson. Z. Anorg. Chem. 55, 261 (1908) and J. Amer. Chem. Soc. 29, 1168 (1907).

    Article  Google Scholar 

  52. Livingston, J., R. Morgan and P. T. Owen. Z. Anorg. Chem. 56, 168 (1908) and J. Amer. Chem. Soc. 29, 1439 (1907).

    Article  Google Scholar 

  53. Longuet-Higgins, H. C. Proc. Roy. Soc. (London) A, 205, 247 (1951)

    Article  CAS  Google Scholar 

  54. Loomis, E. H. Phys. Rev. 1, 199 (1893).

    Google Scholar 

  55. Löwenhertz, R. Z. Phys. Chem. 18, 71 (1895).

    Google Scholar 

  56. Lumsden, J. Disc. Faraday Soc. 32, 138 (1961).

    Article  Google Scholar 

  57. Mair, B. J., A. R. Glasgow and F. D. Rossini. J. Res. Nat. Bur. Stand. 26, 591 (1941).

    Article  CAS  Google Scholar 

  58. Meyer, R. and J. Metzger. Bull. Soc. Chim. France, 1, 66 (1967).

    Google Scholar 

  59. Moser, H. Ann. Phys., Lpz. 5, 343 (1929).

    Google Scholar 

  60. Moulin, M. J. Chim. Phys. 8, 321 (1910).

    CAS  Google Scholar 

  61. Müller, H. Ann. Chim. 8, 143 (1937).

    Google Scholar 

  62. Nernst, W. and R. Abegg. Z. Phys. Chem. 15, 681 (1894).

    CAS  Google Scholar 

  63. Petit, G. La Cryoscopie à Haute Température. Masson: Paris (1965).

    Google Scholar 

  64. Ponsot, A. CR Acad. Sci., Paris, 118, 977 (1895).

    Google Scholar 

  65. Potier, A. CR Acad. Sci., Paris, 240, 1080 (1955).

    CAS  Google Scholar 

  66. Prigogine, I. and R. Defay, Chemical Thermodynamics. Longmans Green: New York (1954).

    Google Scholar 

  67. Randall, M. and A. P. Vanselow. J. Amer. Chem. Soc. 46, 2418 (1924).

    Article  CAS  Google Scholar 

  68. Randall, M. and G. N. Scott. J. Amer. Chem. Soc. 49, 647 (1927).

    Article  CAS  Google Scholar 

  69. Raoult, F. M. CR Acad. Sci., Pans, 101, 1056 (1885).

    Google Scholar 

  70. Raoult, F. M. Ann. Chim. (Phys.), 6, 289 (1886).

    Google Scholar 

  71. Raoult, F. M. Bull. Soc. Chim. France, 3, 21 (1899).

    Google Scholar 

  72. Raoult, F. M. Ann. Chim. (Phys.). 2, 99 and 115 (1884).

    Google Scholar 

  73. Reiss, H., J. L. Katz and O. J. Kleppa. J. Chem. Phys. 36, 144 (1962).

    Article  CAS  Google Scholar 

  74. Robertson, C. and V. K. La Mer. J. Phys. Chem. 35, 1953 (1931).

    Article  CAS  Google Scholar 

  75. Roloff, M. Z. Phys. Chem. 18, 572 (1895).

    CAS  Google Scholar 

  76. Rüdorff, F. Ann. Phys., Lpz. 114, 63 (1861); 116, 55 (1862) and 122, 337 (1864).

    Article  Google Scholar 

  77. Sabbah, R. Thesis. University of Marseille (France) (1965).

    Google Scholar 

  78. Scatchard, G. and S. Prentiss. J. Amer. Chem. Soc. 54, 2696 (1932).

    Article  CAS  Google Scholar 

  79. Scatchard, G., B. Vonnegut and D. W. Beaumont. J. Chem. Phys. 33, 1292 (1960).

    Article  CAS  Google Scholar 

  80. Schwab, F. W. and E. Wichers. J. Res. Nat. Bur. Stand. 34, 33 (1945).

    Article  Google Scholar 

  81. Solomons, C. and G. J. Janz, US Dept. Comm., Wash., Publ. No. 131499 (1957) and Rev. Sci. Instrum.29, 302(l958).

    Google Scholar 

  82. Souchay, P. Bull Soc. Chim. France, 15, 143 (1948).

    Google Scholar 

  83. Stokes, R. H. and R. A. Robinson. J. Amer. Chem. Soc. 70, 1870 (1948).

    Article  CAS  Google Scholar 

  84. Stortenbecker, W. Z. Phys. Chem. 10, 183 (1892).

    Google Scholar 

  85. Taylor, W. J. and F. D. Rossini. J. Res. Nat. Bur. Stand. 32, 197 (1944).

    Article  CAS  Google Scholar 

  86. Temkin, M. Acta Phys.-Chim. URSS.. 20, 411 (1945).

    CAS  Google Scholar 

  87. Vallet, C. Thesis. University of Marseille (France) (1970).

    Google Scholar 

  88. van Artsdalen, E. R. J. Phys. Chem. 72, 4155 (1968).

    Article  Google Scholar 

  89. van’t Hoff, J. H. Z. Phys. Chem. 1, 481 (1887).

    Google Scholar 

  90. Vilcu, R. and C. Misdolea. J. Chem. Phvs. 46, 906 (1967).

    Article  CAS  Google Scholar 

  91. von Halban, H. and G. Kortüm. Z. Phys. Chem. 170A, 351 (1934).

    Google Scholar 

  92. Waiden, P. Ber. Dtsch. Chem. Ges. 34, 4192 (1901).

    Google Scholar 

  93. White, W. P. J. Phys. Chem. 24, 393 (1920).

    Article  CAS  Google Scholar 

  94. White, W. P. J. Amer. Chem. Soc. 56, 20 (1934).

    Article  CAS  Google Scholar 

  95. Wood, R. H., R. K. Vicker and R. W. Kreis. J. Phys. Chem. 75, 2313 (1971).

    Article  CAS  Google Scholar 

  96. Zarzycki, J. Thesis. University of Paris (1953).

    Google Scholar 

  97. Zarzycki, J. J. Phys. Radium, 19, 13A (1958).

    Article  Google Scholar 

  98. Zawidski, J. Ber. Dtsch. Chem. Ges. 37, 2294 (1904).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1968 Springer Science+Business Media New York

About this chapter

Cite this chapter

Doucet, Y. (1968). Part 2. Cryoscopy. In: Le Neindre, B., Vodar, B. (eds) Experimental Thermodynamics Volume II. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-6569-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-6569-1_25

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-6263-8

  • Online ISBN: 978-1-4899-6569-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics