Skip to main content

Abstract

Bioenergy crop harvesting is a critical operation affecting bioenergy supply logistics. It includes the tasks of cutting, gathering, and conditioning of bioenergy crop so as to make it suitable for subsequent operations. Harvesting represents a significant amount of biomass cost at the farm gate. This chapter reviews and discusses harvesting technologies for four major bioenergy crop alternatives: energy grasses (Miscanthus and switchgrass), short rotation woody crops (willow, poplar), green crops (energy cane, sorghum, sugar cane), and agricultural crop residue (corn stover, orchard residue). It describes crop characteristics important for designing harvesting machinery and different machinery options used for harvesting promising bioenergy crops. It also describes the functional processes involved in a crop-specific harvesting operation and compares their operational principles. The harvesting machinery performance data are compiled to facilitate equipment selection. Finally, this chapter discusses observed limitations of the machinery evaluated and future challenges to be addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Salassi ME, Barker FG (2008) Reducing harvest costs through coordinated sugar cane harvest and transport operations in Louisiana. J Assoc Sugar Cane Technologists 28:32–41

    Google Scholar 

  2. Shinners KJ, Boettcher GC, Muck RE, Weimer PJ, Casler MD (2010) Harvest and storage of two perennial grasses as biomass feedstocks. Trans ASABE 53(2):359–370

    Article  Google Scholar 

  3. Wright LL, Eaton LM, Perlack RD, Stokes BJ (2012) Woody biomass. In: Ali S (ed) Comprehensive renewable energy. Elsevier, Oxford, pp 263–291

    Chapter  Google Scholar 

  4. Bassam NE, Huisman W (2001) Harvesting and storage of Miscanthus. In: Jones MB, Walsh M (eds) Miscanthus: for energy and fiber. Earthscan Publishing Inc., London, pp 86–108

    Google Scholar 

  5. Grift TE, Miao Z, Phillips JW, Mathanker SK (2013) Energy and pressure requirement for compression of Miscanthus x giganteus to an extreme density. Biosyst Eng 114:21–25

    Article  Google Scholar 

  6. Chen Y, Gratton JL, Liu J (2004) Power requirements of hemp cutting and conditioning. Biosyst Eng 87(4):417–424

    Article  Google Scholar 

  7. Lewandowski I, Heinz A (2003) Delayed harvest of Miscanthus—influences on biomass quantity and quality and environmental impacts of energy production. Eur J Agron 19:45–63

    Article  Google Scholar 

  8. Shinners KJ, Binversie BN, Savoie P (2003) Whole-plant corn harvesting for biomass: comparison of single-pass and multiple-pass harvest systems. ASAE Paper No. 036089. ASAE, St. Joseph, MI

    Google Scholar 

  9. Liu Q, Mathanker SK, Zhang Q, Hansen AC (2012) Biomechanical properties of Miscanthus stems. Trans ASABE 55(4):1125–1131

    Article  Google Scholar 

  10. Igathinathane C, Womac AR, Sokhansanj S (2010) Corn stalk orientation effect on mechanical cutting. Biosyst Eng 107(2):97–106

    Google Scholar 

  11. Kaack K, Schwarz KU (2001) Morphological and mechanical properties of Miscanthus in relation to harvesting, lodging, and growth conditions. Ind Crops Prod 14:145–154

    Article  Google Scholar 

  12. Yu M, Womac AR, Igathinathane C, Ayers PD, Buschermohle MJ (2006) Switchgrass ultimate stresses at typical biomass conditions available for processing. Biomass Bioenergy 30:214–219

    Article  Google Scholar 

  13. Womac AR, Yu M, Igathinathane C, Ye P, Hayes D, Narayan S, Sokhansanj S, Wright L (2005) Shearing characteristics of biomass for size reduction. ASAE Paper No. 056058. ASAE, St. Joseph, MI

    Google Scholar 

  14. O’Dogherty MJ (1982) A review of research on forage chopping. J Agric Eng Res 27:267–289

    Article  Google Scholar 

  15. Persson S, ASAE (1987) Mechanics of cutting plant material. ASAE, St. Joseph, MI

    Google Scholar 

  16. Srivastava AK, Goering CE, Rohrbach PR, Buckmaster DR (2006) Hay and harvesting. In: Engineering principles of agricultural machine, 2nd edn. ASABE, St. Joseph, MI, p 325–402

    Google Scholar 

  17. Tuck CR, O’Dogherty MJ, Baker DE, Gale GE (1991) Laboratory studies of the performance characteristics of mowing mechanisms. J Agric Eng Res 50:61–80

    Article  Google Scholar 

  18. O’Dogherty MJ, Gale GE (1986) Laboratory studies of the cutting of grass stems. J Agric Eng Res 35(2):115–129

    Article  Google Scholar 

  19. Johnson PC (2012) Energy requirements and productivity of machinery used to harvest herbaceous energy crops [Thesis]. University of Illinois, Urbana-Champaign (IL)

    Google Scholar 

  20. Kroes S, Harris H (1996) Cutting forces and energy during an impact cut of sugar cane stalks. Paper 96A-035. EurAgEng ‘96

    Google Scholar 

  21. CIGR (1999) CIGR Handbook of Agricultural Engineering, Volume III Plant Production Engineering, Chapter 1 Machines for Crop Production, 1.6. Harvesters and Threshers, Part 1.6.8–1.6.10 Harvesters and Threshers: Forage Crops. ASABE, St. Joseph, MI, p 348–380

    Google Scholar 

  22. Rotz CA, Shinners KJ (2007) Hay harvest and storage. In: Barnes RF, Nelson CJ, Moore KJ, Collins M (eds) Forage: the science of grassland agriculture. Blackwell Publishing Inc., London, pp 601–616

    Google Scholar 

  23. Brownell DK, Liu J, Hilton JW, Richard TL, Cauffman GR, Macafee BR (2012) Evaluation of two forage harvesting systems for herbaceous biomass harvesting. Trans ASABE 55(5):1651–1658

    Article  Google Scholar 

  24. Seixas F, Laércio C, Rummer RB (2006) Harvesting short-rotation woody crops (SRWC) for energy. Biomassa Energia 3(1):1–16

    Google Scholar 

  25. Canto JL, Klepac J, Rummer B, Savoie P, Seixas F (2011) Evaluation of two round baling systems for harvesting understory biomass. Biomass Bioenergy 35(5):2163–2170

    Article  Google Scholar 

  26. Lavoie F, Savoie P, Amours LD, Joannis H (2007) Development and field performance of a willow cutter-shredder-baler. In: Proceedings of the international conference on crop harvesting and processing, 11–14 February 2007 (Louisville, Kentucky USA). ASABE Publication Number 701P0307e. ASABE, St. Joseph, MI

    Google Scholar 

  27. Price R, Larsen J, Peters A (2007) Development of an optical yield monitor for sugar cane harvesting. ASABE Paper No. 071049. ASABE, St. Joseph, MI

    Google Scholar 

  28. Braunbeck O, Bauen A, Rosillo-Calle F, Cortez L (1999) Prospects for green cane harvesting and cane residue use in Brazil. Biomass Bioenergy 17(6):495–506

    Article  Google Scholar 

  29. Hartley BE, Gibson JD, Thomasson JA, Searcy SW (2011) Machine performance of forage harvesting equipment on high-tonnage Sorghum. ASABE Paper No. 1111549. ASABE, St. Joseph, MI

    Google Scholar 

  30. Mislevy P, Fluck RC (1992) Harvesting operations and energetics of tall grasses for biomass energy production: a case study. Biomass Bioenergy 3(6):381–387

    Article  Google Scholar 

  31. Kim S, Dale BE (2003) Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenergy 26:361–375

    Article  Google Scholar 

  32. Shinners KJ, Binversie BN, Muck RE, Weimer PJ (2007) Comparison of wet and dry corn stover harvest and storage. Biomass Bioenergy 31(4):211–221

    Article  Google Scholar 

  33. Shinners KJ, Boettcher GC, Hoffman DS, Munk JT, Muck RE, Weimer PJ (2009) Single-pass harvest of corn grain and stover: performance of three harvester configurations. Trans ASABE 52(1):51–60

    Article  Google Scholar 

  34. AGCO (2013) AGCO developed combine-baler baling corn stover. http://hayandforage.com/harvesting/combine-baler-same-pass-biomass-baling

  35. ISU (2013) Photo Courtesy Department of Agricultural and Biosystems Engineering. Iowa State University, Ames, IA

    Google Scholar 

  36. Shinners KJ, Bennett RG, Hoffman DS (2012) Single- and two-pass corn grain and stover harvesting. Trans ASABE 55(2):341–350

    Article  Google Scholar 

  37. Spinelli R, Magagnotti N, Magagnotti N, Nati C, Cantini C, Sani G, Picchi G, Biocca M (2011) Integrating olive grove maintenance and energy biomass recovery with a single-pass pruning and harvesting machine. Biomass Bioenergy 35(2):808–813

    Article  Google Scholar 

  38. Spinelli R, Picchi G (2010) Industrial harvesting of olive tree pruning residue for energy biomass. Bioresour Technol 101(2):730–735

    Article  CAS  PubMed  Google Scholar 

  39. Rotz CA, Muhtar HA (1992) Rotary power requirements for harvesting and handling equipment. Appl Eng Agric 8(6):751–757

    Article  Google Scholar 

  40. Mathanker SK, Maughan JD, Hansen AC, Grift TE, Ting KC (2014) Sensing miscanthus swath volume for maximizing baler throughput rate. Trans ASABE (in review)

    Google Scholar 

  41. Mathanker SK, Hansen AC, Grift TE, Ting KC (2014) Sensing miscanthus stem bending force for maximizing throughput rate in a disk mower-conditioner. Trans ASABE 57 (in press)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil K. Mathanker Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mathanker, S.K., Hansen, A.C. (2014). Harvesting System Design and Performance. In: Shastri, Y., Hansen, A., Rodríguez, L., Ting, K. (eds) Engineering and Science of Biomass Feedstock Production and Provision. Springer, New York, NY. https://doi.org/10.1007/978-1-4899-8014-4_5

Download citation

Publish with us

Policies and ethics