Skip to main content

Evaluating Bioassessment Designs and Decision Thresholds Using Simulation Techniques

  • Chapter
  • First Online:
Application of Threshold Concepts in Natural Resource Decision Making

Abstract

Natural resource managers face numerous choices when developing bioassessment programs but seldom have the opportunity to compare the performance of alternative designs. As a result, managers often lack a basis for establishing decision thresholds based on their objectives for evaluating resource condition, accounting for uncertainty, and controlling costs. In this chapter, we illustrate how simulation techniques may be used to optimize bioassessment decision thresholds and sampling designs with a case study of benthic macroinvertebrate communities in Shenandoah National Park, USA. We evaluated the effects of sampling effort (6 levels) and taxonomic resolution (family vs. genus) on the sensitivity of a commonly used index of stream condition (Macroinvertebrate Biotic Integrity Index, MBII) to classify resource condition as affected by ecological change. We computed expected utility values to compare decision thresholds, which integrated statistical power and differential risk tolerance for misclassification (i.e., type I and II error rates). Our analysis revealed important differences among bioassessment designs. MBII sensitivity increased with sampling effort, but improvements were modest across the highest sampling levels. Genus-level assessments were generally most sensitive to ecological change, even though precision increased at the family level due to decreased variation in reference communities. However, the sensitivity-cost relationship revealed no single, optimal combination of taxonomic resolution and sampling effort. Rather, we found that for a given cost, equivalent sensitivities could be obtained from larger samples at the family-level or smaller samples at the genus level. An analysis of expected utility demonstrated that the optimal decision threshold depends on prior probability of resource condition, i.e., reference, early warning, or impaired. We conclude that simulation methods provide a flexible approach to evaluate and optimize bioassessment designs and decision thresholds based on objective-specific utility values.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andersen, T., J. Carstensen, E. Hernández-García, and C. M. Duarte. 2009. Ecological thresholds and regime shifts: Approaches to identification. Trends in Ecology and Evolution 24:49–57.

    Article  Google Scholar 

  • Bailey, R. C., R. H. Norris, and T. B. Reynoldson. 2001. Taxonomic resolution of benthic macroinvertebrate communities in bioassessments. Journal of the North American Benthological Society 20:280–286.

    Article  Google Scholar 

  • Brown, M. T., and M. B. Vivas. 2005. Landscape development intensity index. Environmental Monitoring and Assessment 101:289–309.

    Article  Google Scholar 

  • Burton, J., and J. Gerritsen. 2003. A stream condition index for Virginia non-coastal streams. Washington, D.C.: U. S. Environmental Protection Agency.

    Google Scholar 

  • Cade, B. S., and B. R. Noon. 2003. A gentle introduction to quantile regression for ecologists. Frontiers in Ecology and Evolution 1:412–420.

    Article  Google Scholar 

  • Cao, Y., and C. P. Hawkins. 2005. Simulating biological impairment to evaluate the accuracy of ecological indicators. Journal of Applied Ecology 42:954–965.

    Article  Google Scholar 

  • Capitulo, A. R., M. Tangorra, and C. Ocon. 2001. Use of benthic macroinvertebrates to assess the biological status of Pampean streams in Argentina. Aquatic Ecology 35:109–119.

    Article  CAS  Google Scholar 

  • Clarke, R. T., M. T. Furse, R. J. M. Gunn, J. M. Winder, and J. F. Wright. 2002. Sampling variation in macroinvertebrate data and implications for river quality indices. Freshwater Biology 47:1735–1751.

    Article  Google Scholar 

  • Clarke, R. T., A. Lorenz, L. Sandin, A. Schmidt-Kloiber, J. Strackbein, N. T. Kneebone, and P. Haase. 2006. Effects of sampling and sub-sampling variation using the STAR-AQEM sampling protocol on the precision of macroinvertebrate metrics. Hydrobiologia 566:441–459.

    Article  Google Scholar 

  • Courtemanch, D. L. 1996. Commentary on the subsampling procedures used for rapid bioassessments. Journal of the North American Benthological Society 15:381–385.

    Article  Google Scholar 

  • Dale, V.H., and S.C. Beyeler 2001. Challenges in the development and use of ecological indicators. Ecological Indicators 1:3–10.

    Google Scholar 

  • Field, S. A., A. J. Tyre, N. Jonzen, J. R. Rhodes, and H. P. Possingham. 2004. Minimizing the cost of environmental management decisions by optimizing statistical thresholds. Ecology Letters 7:669–675.

    Article  Google Scholar 

  • Gerritsen, J., J. Burton, and M.T. Barbour 2000. A stream condition index for West Virginia wadeable streams. Tetra Tech, Inc., Owings Mills, Maryland. Prepared for West Virgiia Department of Environmental Protection, Charleston, N.C. http://www.dep.state.WV.US/Docs/536WV-Index.pdf.

  • Gregory, R. S., and R. L. Keeney. 2002. Making smarter environmental management decisions. Journal of the American Water Resources Association 38:1601–1612.

    Article  Google Scholar 

  • Growns, J. E., B. C. Chessman, J. E. Jackson, and D. G. Ross. 1997. Rapid assessment of Australian rivers using macroinvertebrates: Cost and efficiency of six methods of sample processing. Journal of the North American Benthological Society 16:682–693.

    Article  Google Scholar 

  • Hauer, F. R., and V. H. Resh. 2006. Macroinvertebrates. In Methods in stream ecology, eds F. R. Hauer and G. A. Lambert, 435–463. San Diego: Elsevier.

    Google Scholar 

  • Hawkins, C. P., R. H. Norris, J. N. Hogue, and J. W. Feminella. 2000. Development and evaluation of predictive models for measuring the biological integrity of streams. Ecological Applications 10:1456–1477.

    Article  Google Scholar 

  • Hawkins, C. P., Y. Cao, and B. Roper. 2010. Methods of predicting reference condition biota affects the performance and interpretation of ecological indices. Freshwater Biology 55:1066–1085.

    Article  Google Scholar 

  • Hering, D., O. Moog, L. Sandin, and P. F. Verdonschot. 2004. Overview and application of the AQEM assessment system. Hydrobiologia 516:1–20.

    Article  Google Scholar 

  • Herlihy, A. T., D. P. Larsen, S. G. Paulsen, N. S. Urquhart, and B. J. Rosenbaum. 2000. Designing a spatially bananced, randomized site selection process for regional stream surveys: The EMAP mid-Atlantic pilot study. Environmental Monitoring and Assessment 63:95–113.

    Article  CAS  Google Scholar 

  • Hitt, N. P., and P. L. Angermeier. 2008. River-stream connectivity affects fish bioassessment performance. Environmental Management 42:132–150.

    Article  Google Scholar 

  • Keeney, R. L. 1992. Value-focused thinking, a path to creative decision-making. Cambridge: Harvard University Press.

    Google Scholar 

  • Kennen, J. G., K. Rvia-Murray, and K. M. Beaulieu. 2010. Determining hydrologic factors that influence stream macroinvertebrate assemblages in the northeastern US. Ecohydrology 3:88–106.

    Google Scholar 

  • Kery, M., J. A. Royle, M. Plattner, and R. M. Dorazio. 2009. Species richness and occupancy estimation in communities subject to temporal emigration. Ecology 90:1279–1290.

    Article  Google Scholar 

  • King, R. S., and C. J. Richardson. 2002. Evaluating subsampling approaches and macroinvertebrate taxonomic resolution for wetland bioassessment. Journal of the North American Benthological Society 21:150–171.

    Article  Google Scholar 

  • Klemm, D. J., K. A. Blocksom, W. T. Thoeny, F. A. Fulk, A. T. Herlihy, P. R. Kaufmann, and S. M. Cormier. 2002. Methods development and use of macroinvertebrates as indicators of ecological conditions for streams in the mid-Atlantic Highlands region. Environmental Monitoring and Assessment 78:169–212.

    Article  Google Scholar 

  • Klemm, D. J., K. A. Blocksom, F. A. Fulk, A. T. Herlihy, R. M. Hughes, P. R. Kaufmann, D. V. Peck, J. L. Stoddard, W. T. Thoeny, M. B. Griffith, and W. S. Davis. 2003. Development and evaluation of a macroinvertebrate biotic integrity index (MBII) for regionally assessing mid-Atlantic highlands streams. Environmental Management 31:656–669.

    Article  Google Scholar 

  • Koenker, R. 2010. quantreg: Quantile regression. R package version 4.50. http://CRAN.R-project.org/package=quantreg. Last accessed on July 11, 2011.

  • Koenker, R., and K. F. Hallock. 2001. Quantile regression. Journal of Economic Perspectives 15:143–156.

    Article  Google Scholar 

  • Lane, C. R., and M. T. Brown. 2006. Energy-based land use predictors of proximal factors and benthic diatom composition in Florida freshwater marshes. Environmental Monitoring and Assessment 117:433–450.

    Article  CAS  Google Scholar 

  • Lazorchak, J. M., D. J. Klemm, and D. V. Peck, eds. 1998. Environmental monitoring and assessment program—surface waters: Field operations and methods for measuring ecological condition of wadeable streams. EPA 620/R-94/004F. Cincinnati: U.S. Environmental Protection Agency.

    Google Scholar 

  • Lenat, D. R. 1993. A biotic index for the southeastern United States: Derivation and list of tolerance values, with criteria for assigning water quality ratings. Journal of the North American Benthological Society 12:279–290.

    Article  Google Scholar 

  • Lenat, D. R., and V. H. Resh. 2001. Taxonomy and stream ecology—the benefits of genus- and species-level identifications. Journal of the North American Benthological Society 20:287–298.

    Article  Google Scholar 

  • Lynch, D. D. 1987. Hydrologic conditions and trends in Shenandoah National Park, Virginia, 1983–1984. Water Resources Investigation Report 87–4131. Richmond: US Geological Survey.

    Google Scholar 

  • Mack, J. J. 2006. Landscape as a predictor of wetland condition: An evaluation of the landscape development intensity index (LDI) with a large reference wetland dataset from Ohio. Environmental Monitoring and Assessment 120:221–241.

    Article  Google Scholar 

  • MacKenzie, D. I., and W. L. Kendall. 2002. How should detection probability be incorporated into estimates of relative abundance? Ecology 83:2387–2397.

    Article  Google Scholar 

  • Manly, B. F. 2008. Statistics for environmental science and management. 2nd ed. Boca Raton: Chapman and Hall/CRC.

    Google Scholar 

  • Marchant, R. 2007. The use of taxonomic distinctness to assess environmental disturbance of insect communities from running water. Freshwater Biology 52:1634–1645.

    Article  Google Scholar 

  • Marshall, M., and B. Piekielek. 2007. Eastern Rivers and Mountains Network ecological monitoring plan. Natural Resource Report NPS/ERMN/NRR-2007/017.

    Google Scholar 

  • Marshall, J. C., A. L. Steward, and B. D. Harch. 2006. Taxonomic resolution and quantification of freshwater macroinvertebrate samples from an Australian dryland river: The benefits and costs of using abundance data. Hydrobiologia 572:171–194.

    Article  Google Scholar 

  • Martin, J., M. C. Runge, J. D. Nichols, B. C. Lubow, and W. L. Kendall. 2009. Structured decision making as a conceptual framework to identify thresholds for conservation management. Ecological Applications 19:1079–1090.

    Article  Google Scholar 

  • Mazor, R. D., T. B. Reynoldson, D. M. Rosenberg, and V. H. Resh. 2006. Effects of biotic assemblage, classification, and assessment method on bioassessment performance. Canadian Journal of Fisheries and Aquatic Sciences 63:394–411.

    Article  Google Scholar 

  • McCarrondand, E., and R. Frydenburg. 2005. Using the human disturbance gradient to develop bioassessment procedures in estuaries. Pages 481–492 In Estuarine indicators, ed S. A. Bortone, 481–492. Boca Raton: CRC Press.

    Google Scholar 

  • McCune, B., and J. B. Grace. 2002. Analysis of ecological communities. Geneden Beach: MJM Software Design.

    Google Scholar 

  • McElravy, E. P., G. A. Lamberti, and V. H. Resh. 1989. Year-to-year variation in the aquatic macroinvertebrate fauna of a northern California stream. Journal of the North American Benthological Society 8:51–63.

    Article  Google Scholar 

  • Merritt, R. W., and K. W. Cummins. 1996. An introduction to the aquatic insects of North America. 3rd ed. Dubuque: Kendall/Hunt Publishing Co.

    Google Scholar 

  • Moeykens, M. D., and J. R. Voshell, Jr. 2002. Studies of benthic macroinvertebrates for the Shenandoah National Park Long-term monitoring systems: Statistical analysis of LTEMS Aquatic Dataset from 1986 to 2000 on water chemistry, habitat, and macroinvertebrates. Virginia Technical Resport No. 208–11-110A-007–374-1. Blacksburg: Virginia Tech University.

    Google Scholar 

  • Moulton, S. R., II, J. G. Kennen, R. M. Goldstein, and J. A. Hambrook. 2002. Revised protocols for sampling algae, invertebrate, and fish communities in the National Water-Quality Assessment Program. U.S. Geological Survey Open-File Report 02–150.

    Google Scholar 

  • Morse, J. C., Y. J. Bae, G. Munkhjargal, N. Sangpradub, K. Tanida, T. S. Vshivhova, B. Wang, L. Yang, and C. M. Yule. 2007. Freshwater biomonitoring with macroinvertebrates in east Asia. Frontiers in Ecology and the Environment 5:33–42.

    Article  Google Scholar 

  • New, T. R. 1996. Taxonomic focus and quality control in insect surveys for biodiversity conservation. Australian Journal of Entomology 35:97–106.

    Article  Google Scholar 

  • Nichols, J. D., and B. K. Williams. 2006. Monitoring for conservation. Trends in Ecology and Evolution 21:668–673.

    Article  Google Scholar 

  • Nichols, S. J., W. A. Robinson, and R. H. Norris. 2006. Sample variability influences on the precision of predictive bioassessment. Hydrobiologia 572: 215–233.

    Article  Google Scholar 

  • Odum, H. T. 1988. Self-organization, transformity, and information. Science 242:1132–1139.

    Article  CAS  Google Scholar 

  • Odum, H. T. 1996. Environmental accounting: Energy and decision making. New York: Wiley.

    Google Scholar 

  • Ollis, D. J., H. F. Dallas, K. J. Esler, and C. Boucher. 2006. Bioassessment of the ecological integrity of river ecosystems using aquatic macroinvertebrates: An overview with a focus on South Africa. African Journal of Aquatic Sciences 31:205–227.

    Article  Google Scholar 

  • Ostermiller, J. D., and C. P. Hawkins. 2004. Effects of sampling error on bioassessments of stream ecosystems: Application to RIVPACS-type models. Journal of the North American Benthological Society 23:363–382.

    Article  Google Scholar 

  • Plafkin, J. L., M. T. Barbour, K. D. Porter, S. K. Gross, and R. M. Hughes. 1989. Rapid bioassessment protocols for use in streams and rivers, benthic macroinvertebrates and fish. Washington, D.C.: U. S. Environmental Protection Agency.

    Google Scholar 

  • Pond, G.J., M.E. Passmore, F.A. Borsuk, L. Reynolds, and C.J. Rose. 2008. Downstream effects of mountaintop coal mining: comparing biological conditions using family- and genus-level macroinvertebrate bioassessment tools. Journal of the North American Benthological Society 27:717–737.

    Google Scholar 

  • Purcell, A. H., D. W. Bressler, M. J. Paul, M. T. Barbour, E. T. Rankin, J. L. Carter, and V. H. Resh. 2009. Assessment tools for urban catchments: Developing biological indicators based on benthic macroinvertebrates. Journal of the American Water Resources Association 45:306–319.

    Article  Google Scholar 

  • Qian, S. S., R. S. King, and C. J. Richardson. 2003. Two statistical methods for the detection of environmental thresholds. Ecological Modelling 166:87–97.

    Article  CAS  Google Scholar 

  • Quinn, J. M., and C. W. Hickey. 1990. The magnitude of the effects of substrate particle size, recent flooding, and catchment development on benthic invertebrates in 88 New Zealand rivers. New Zealand Journal of Marine and Freshwaters 24:411–427.

    Article  Google Scholar 

  • Reynoldson, T. B., R. H., Norris, V. H. Resh, K. E. Day, and D. M. Rosenberg. 1997. The reference condition: A comparison of multimetric and multivariate approaches to assess water quality impairment using benthic macroinvertebrates. Journal of the North American Benthological Society 16:833–852.

    Article  Google Scholar 

  • Roy, A. H., A. D. Rosemond, M. J. Paul, D. S. Leigh, and J. B. Wallace. 2003. Stream macroinvertebrate response to catchment urbanization (Georgia, USA). Freshwater Biology 48:329–346.

    Article  Google Scholar 

  • Scharf, F. S., F. Juanes, and M. Sutherland. 1998. Inferring ecological relationships from the edges of scatter diagrams: Comparison of regression techniques. Ecology 79: 448–460.

    Article  Google Scholar 

  • Snyder, C. D., J. A. Young, R. Villella, and D. P. Lemarie. 2003. Influences of upland and riparian land use patterns on stream biotic integrity. Landscape Ecology 18:647–664.

    Article  Google Scholar 

  • Sonderegger, D. L., H. Wang, W. H. Clements, and B. R. Noon. 2009. Using SiZer to detect thresholds in ecological data. Frontiers in Ecology and the Environment 7:190–195.

    Article  Google Scholar 

  • Sovell, L. A., and B. Vondracek. 1999. Evaluation of the fixed-count method for Rapid Bioassessment Protocol III with benthic macroinvertebrate metrics. Journal of the North American Benthological Society 18:420–426.

    Article  Google Scholar 

  • Summers, J. K., and K. E. Tonnessen. 1998. Linking monitoring and effects research: EMAP’s intensive site network program. Environmental Monitoring and Assessment 51:369–380.

    Article  Google Scholar 

  • Van Sickle, J., C. P. Hawkins, D. P. Larsen, and A. T. Herlihy. 2005. A null model for the expected macroinvertebrate assemblage in streams. Journal of the North American Benthological Society 24:178–191.

    Article  Google Scholar 

  • Van Sickle, J., D. P. Larsen, and C. P. Hawkins. 2007. Exclusion of rare taxa affects performance of the O/E index in bioassessments. Journal of the North American Benthological Society 26:319–331.

    Article  Google Scholar 

  • Vinson, M. R., and C. P. Hawkins. 1996. Effects of sampling area and subsampling procedures on comparisons of taxa richness among streams. Journal of the North American Benthological Society 15:392–399.

    Article  Google Scholar 

  • Wagner, R., T. Dapper, and H. H. Schmidt. 2000. The influence of environmental variables on the abundance of aquatic insects: A comparison of ordination and artificial neural networks. Hydrobiologia 422/423:143–152

    Article  Google Scholar 

  • Waite, I. R., A. t. Herlihy, D. P. Larsen, and D. J. Klemm. 2000. Comparing strengths of geographic and nongeographic classifications of stream benthic macroinvertebrates in the mid-Atlantic Highlands, USA. Journal of the North American Benthological Society 19:429–441.

    Article  Google Scholar 

  • Waite, I. R., A. T. Herlihy, D. P. Larsen, N. S. Urquhart, and D. J. Klemm. 2004. The effects of macroinvertebrate taxonomic resolution in large landscape bioassessments: An example from the mid-Atlantic Highlands, U.S.A. Freshwater Biology 49:474–489.

    Article  Google Scholar 

  • Wang, L., J. Lyons, P. Kanehl, and R. Gatti. 1997. Influences of watershed land use on habitat quality and biotic integrity in Wisconsin streams. Fisheries 22:6–12.

    Article  Google Scholar 

  • Yoder, C. O., and E. T. Rankin. 1998. The role of biological indicators in a state water quality management process. Environmental Monitoring and Assessment 51:61–88.

    Article  CAS  Google Scholar 

  • Young, J. A., J., G. Fleming, W. Cass, and C. Lea. 2009. Vegetation of Shenandoah National Park in Relation to Environmental Gradients, Version 2.0. Technical Report NPS/NER/NRTR—2009/142. Philadelphia: National Park Service.

    Google Scholar 

  • Yuan, L. L. 2004. Assigning macroinvertebrate tolerance classifications using generalized additive models. Freshwater Biology 49:662–677.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig D. Snyder .

Editor information

Editors and Affiliations

Appendix A

Appendix A

Ecological characteristics of macroinvertebrate taxa collected in Shenandoah National Park. We report information required to compute the MBII, results of taxon-specific dose-response models, and the results of capture probability models. Filter-feeders (1 if filter-feeder, blank if other) and pollution tolerance values (PTV) are required to calculate two of the seven MBII metrics. Feeding habitats were determined from Merritt and Cummins (1996) and PTV values were taken from Klemm et al. (2002). For the dose-response models, we report the proportional change in taxon abundance between LDI values of 0 (reference) and 600 (P Change), a measure of the relative sensitivity of each taxon to the LDI stress gradient simulated. For example, a proportional change value of “− 1” indicates increasing LDI from 0 to 600 resulted in local extirpation, and a value of “2” indicates a doubling of density. For capture probability, we report (1) the results of logistic regression models of capture probability on total community density (“Model”), and (2) the observed capture probability (“Observed”) determined from 15 years of historical monitoring data. For taxa whose probability of capture was significantly related to total community density, we incorporated the logistic model parameters into simulations; otherwise, we used the observed capture probability. For the “model” capture probability, we report the log-odds of an increase in density of 500 individuals. For example, log-odds value of “2” indicates that the probability of capture doubled with an increase in total density of 500 individuals. For “observed” we simply report the ratio of the number of historical samples where the taxon was captured by the total number of samples. Both modeled and observed capture probabilities were site-specific.

Taxon

MBII metric characteristics

Dose-response models

Capture probabillity models

Hazel River

Paine Rub

Filter feeders

PTV

P change

Model

Obs.

Model

Obs.

Class Insecta

       

  Order Plecoptera

       

    Family Pteronarcyidae

 

4

     

      Genus Pteronarcys

 

4

− 1.00

 

0.92

  

    Family Peltoperlidae

 

2

     

      Genus Peltoperla

 

3

− 0.40

   

0.13

      Genus Tallaperla

 

1

− 0.73

 

0.85

3.03

0.93

    Family Nemouridae

 

4

     

      Genus Amphinemura

 

5

− 0.09

 

0.23

5.80

0.87

      Genus Prostoia

 

4

     

    Family Perlidae

 

3

     

      Genus Paragnetina

 

3

− 0.21

 

0.38

  

      Genus Agnetina

 

2

0.09

 

0.08

  

      Genus Acroneuria

 

3

− 0.27

 

1.00

 

0.73

      Genus Eccoptura

 

3

− 0.18

 

0.15

 

0.53

      Genus Perlesta

 

4

− 0.74

 

0.23

 

0.47

      Genus Hansonoperla

 

2

     

    Family Perlodidae

 

2

     

      Genus Yugus

 

3

− 0.50

  

1.90

0.13

      Genus Remenus

 

2

− 0.40

   

0.13

      Genus Isoperla

 

3

− 0.66

 

0.85

 

0.07

      Genus Malirekus

 

3

     

    Family Chloroperlidae

 

1

     

      Genus Alloperla

 

1

0.07

2.8

0.08

  

      Genus Haploperla

 

2

− 0.63

 

0.54

 

0.07

      Genus Sweltsa

 

2

− 0.96

 

0.31

3.17

0.40

      Genus Suwallia

 

1

− 1.00

 

0.15

 

0.13

    Family Taeniopterygidae

 

3

     

      Genus Oemopteryx

 

3

     

      Genus Taeniopteryx

 

3

     

    Family Leuctridae

 

2

     

      Genus Leuctra

 

2

− 0.52

 

1.00

2E+20

1.00

  Order Ephemeroptera

       

    Family Ephemeridae

 

2

     

      Genus Ephemera

 

2

− 0.56

 

0.38

  

    Family Ephemerellidae

 

3

     

      Genus Serratella

 

3

− 0.69

 

0.62

  

      Genus Timpanoga

 

3

− 0.84

2.8

0.08

  

      Genus Drunella

 

3

− 0.80

 

1.00

1.24

0.07

      Genus Ephemerella

 

2

− 0.38

1.44

0.92

3.84

0.87

      Genus Eurylophella

 

3

− 0.19

 

0.15

 

0.20

    Family Ameletidae

 

4

     

      Genus Ameletus

 

4

− 0.77

 

0.38

1.80

0.67

    Family Leptophlebiidae

 

3

     

      Genus Paraleptophlebia

 

3

− 0.75

 

0.62

2.79

0.47

      Genus Habrophlebia

 

2

− 0.15

 

0.08

 

0.53

      Genus Habrophlebiodes

 

4

− 0.64

 

0.69

 

0.33

      Genus Leptophlebia

 

4

     

    Family Baetidae

       

      Genus Baetis

 

3

− 0.55

3E+23

1.00

 

0.80

      Genus Callibaetis

 

4

     

      Genus Centroptilum

 

2

− 0.67

 

0.08

  

    Family Heptageneidae

 

4

     

      Genus Stenonema

 

4

− 0.53

 

0.85

1.26

0.53

      Genus Stenacron

 

4

− 0.40

   

0.20

      Genus Epeorus

 

4

− 0.84

 

1.00

9.19

0.93

      Genus Cinygmula

 

2

− 0.58

2.09

0.62

 

0.13

      Genus Leucrocuta

 

3

− 0.49

 

0.38

 

0.40

      Genus Heptagena

 

4

− 0.50

 

0.15

  

      Genus Rhithrogena

 

4

     

    Family Isonychiidae

1

2

     

      Genus Isonychia

1

2

0.42

 

0.08

  

  Order Odonata

 

5

     

    Family Gomphidae

 

5

     

      Genus Stylogomphus

 

3

− 0.67

 

0.08

  

      Genus Lanthus

 

4

− 0.87

2.72

0.77

1.69

0.33

      Genus Progomphus

 

4

     

      Genus Gomphus

 

5

     

    Family Aeshnidae

 

6

     

      Genus Boyeria

 

6

− 0.67

 

0.08

  

    Family Calopterygidae

 

5

     

      Genus Calopteryx

 

5

     

    Family Coenagrionidae

 

5

− 0.16

1.95

0.08

  

      Genus Argia

 

5

     

  Order Hemiptera

       

    Family Veliidae

 

7

     

      Genus Microvelia

 

7

8.67

   

0.07

      Genus Rhagovelia

 

7

     

  Order Megaloptera

       

    Family Corydalidae

 

5

     

      Genus Corydalus

 

6

− 0.07

1E+46

0.08

  

      Genus Nigronia

 

3

− 0.09

 

1.00

4.06

0.73

  Order Trichoptera

       

    Family Hydroptilidae

 

4

     

      Genus Hydroptila

 

5

1.27

2.80

0.38

1.24

0.07

    Family Helicopsychidae

 

3

     

      Genus Helicopsyche

 

3

     

    Family Hydropsychidae

1

4

     

      Genus Hydropsyche

1

4

− 0.39

 

1.00

 

0.13

      Genus Cheumatopsyche

1

6

− 0.29

 

0.46

1.24

0.07

      Genus Diplectrona

1

4

− 0.41

2.99

1.00

4.42

0.87

    Family Rhyacophilidae

 

3

     

      Genus Rhyacophila

 

3

− 0.60

2.99

1.00

2.50

0.67

    Family Philopotamidae

 

3

     

      Genus Chimarra

 

4

     

      Genus Wormaldia

 

1

− 0.55

69.20

0.08

 

0.20

      Genus Dolophilodes

 

3

− 0.85

 

0.92

1.76

0.60

    Family Psychomyiidae

 

2

     

      Genus Lype

 

3

     

      Genus Psychomyia

 

2

     

    Family Leptoceridae

 

4

     

      Genus Triaenodes

 

4

0.61

  

1.22

0.07

    Family Odontoceridae

       

      Genus Psilotreta

 

1

1.18

2.13

0.46

  

    Family Brachycentridae

1

      

      Genus Micrasema

1

4

− 0.30

2.73

0.23

1.24

0.07

      Genus Brachycentrus

1

4

− 0.67

12.68

0.23

  

      Genus Adicrophleps

       

    Family Lepidostomatidae

       

      Genus Lepidostoma

 

3

− 0.38

 

0.54

 

0.60

    Family Glossosomatidae

       

      Genus Glossosoma

 

3

− 0.97

 

0.62

 

0.33

      Genus Agapetus

 

3

1.51

 

0.69

  

    Family Limnephilidae

 

3

     

      Genus Pycnopsyche

 

5

0.67

 

0.08

38.55

0.07

    Family Goeridae

       

      Genus Goera

 

1

− 1.00

 

0.08

  

    Family Ueniodae

1

      

      Genus Neophylax

1

3

− 0.31

31.98

1.00

 

0.40

    Family Polycentropodidae

1

      

      Genus Neureclipsis

1

5

− 0.68

2.80

0.08

  

      Genus Nyctiophylax

1

4

− 0.72

 

0.08

 

0.07

      Genus Polycentropus

1

5

− 0.68

1.68

0.69

2.45

0.87

    Family Molannidae

       

      Genus Molanna

       

  Order Coleoptera

       

    Family Psephenidae

       

      Genus Psephenus

 

5

− 0.26

 

0.92

 

0.40

      Genus Ectopria

 

3

− 0.08

 

0.23

38.55

0.07

    Family Dryopidae

       

      Genus Helichus

 

6

0.50

 

0.23

1.24

0.07

    Family Elmidae

       

      Genus Stenelmis

 

6

2.56

5.83

0.46

 

0.13

      Genus Optioservus

 

4

0.72

2.06

0.77

 

0.20

      Genus Promoresia

 

3

− 0.75

 

0.62

1.11

0.07

      Genus Oulimnius

 

3

− 0.32

31.98

1.00

2.85

0.87

      Genus Gonielmas

 

4

0.67

  

1.24

0.07

    Family Ptilodactylidae

       

      Genus Anchytarsus

 

5

0.60

2.80

0.08

  

  Order Diptera

       

    Family Blephariceridae

       

      Genus Blepharicera

 

4

− 0.50

3.36

0.77

 

0.07

    Family Tipulidae

       

      Genus Tipula

 

6

− 0.50

 

0.15

 

0.13

      Genus Antocha

 

4

− 0.81

2.99

1.00

 

0.04

      Genus Dicranota

 

5

0.92

 

0.77

 

0.20

      Genus Hexatoma

 

5

− 0.29

3.03

0.85

10.18

0.87

      Genus Pilaria

 

4

− 0.33

   

0.07

      Genus Ormosia

 

5

− 0.43

 

0.08

  

      Genus Erioptera

 

3

− 0.50

 

0.08

  

    Family Psychodidae

       

    Family Dixidae

       

      Genus Dixa

 

6

− 0.51

 

0.15

 

0.13

    Family Simulidae

1

      

      Genus Prosimulium

1

5

− 0.93

4.76

0.38

13.31

0.40

      Genus Simulium

1

5

1.66

68.2

0.92

5.24

0.80

    Family Chironomidae

 

6

0.43

 

1.00

 

1.00

    Family Ceratopogoniidae

 

6

1.45

7E+170

0.92

3.85

0.53

    Family Tabanidae

 

6

0.00

   

0.07

    Family Athericidae

       

      Genus Atherix

 

4

0.28

2.80

0.08

  

    Family Empididae

       

      Genus Hemerodromia

 

6

0.50

4.07

0.38

 

0.53

      Genus Chelifera

 

6

2.37

 

0.54

38.55

0.07

      Genus Wiedemannia

 

6

1.00

   

0.07

      Genus Clinocera

 

6

− 0.83

3.63

0.23

 

0.13

      Genus Oreogeton

 

6

0.71

  

1.24

0.07

Non-Insect Taxa

       

Class Arachnida

       

  Order Hydracarina

       

Class Gastropoda

       

  Order Mesogastropoda

       

    Family Pleuroceridae

 

5

9.88

2.72

0.46

  

Class Bivalvia

1

      

  Order Veneroida

       

    Famlly Sphaeriidae

1

8

0.00

 

0.15

  

Class Turbellaria

       

  Order Tricladida

       

    Family Planariidae

 

1

0.00

4E+23

0.15

 

0.20

Class Oligochaeta

 

8

0.42

6E+6

0.85

1E+33

0.60

Class Crustacea

       

  Order Amphipoda

       

    Family Gammaridae

 

6

1.50

   

0.47

  Order Decapoda

       

    Family Cambaridae

       

      Genus Cambarus

    

0.15

 

0.60

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Snyder, C., Hitt, N., Smith, D., Daily, J. (2014). Evaluating Bioassessment Designs and Decision Thresholds Using Simulation Techniques. In: Guntenspergen, G. (eds) Application of Threshold Concepts in Natural Resource Decision Making. Springer, New York, NY. https://doi.org/10.1007/978-1-4899-8041-0_9

Download citation

Publish with us

Policies and ethics