Skip to main content

Aging-Related Changes in Cell Death and Cell Survival Pathways and Implications for Heart Failure Therapy

  • Chapter
  • First Online:
Aging and Heart Failure

Abstract

Underlying the aging process is a lifelong accumulation of molecular damage. When DNA damage is too extensive to be repaired or when the repairing cascades are impaired, e.g., during chronic oxidative stress associated with aging, apoptosis occurs. A very low, albeit elevated, rate of apoptosis can be an important factor in the pathogenesis of heart failure, making it a potential target for therapy. Necrosis is even more prominent in failing human hearts than apoptosis.

Autophagy is an essential and protective pathway in the heart. However, during aging, the rate of protective autophagy declines. The progressive inhibition of autophagy in the aging heart is in part attributed to intralysosomal accumulation of lipofuscin. Cross-linked polymeric lipofuscin cannot be degraded by lysosomal hydrolases and leads to preferential allocation of lysosomal enzymes to lipofuscin-loaded lysosomes at the expense of active autolysosomes. Impaired autophagy further stimulates accumulation of damaged mitochondria, which are deficient in ATP production and which produce large amounts of reactive oxygen species (ROS). Moreover, oxidatively modified cytosolic proteins form large indigestible aggregates, enhancing lipofuscinogenesis and sensitizing cardiomyocytes to undergo apoptosis/necrosis, eventually leading to heart failure.

Pharmacological inhibition of apoptosis and necrosis improves heart function and survival. Currently used drugs in heart failure therapy, such as ACE-inhibitors and β-adrenergic receptor blockers, prevent apoptosis. However, complete inhibition of apoptosis might have adverse effects. Furthermore, compounds that “supplement” the decreased levels of autophagy during aging, such as AMPK activators, mTOR inhibitors, and/or sirtuin activators, might be of great value in heart failure therapy by preventing apoptosis and necrosis and stimulating cardiomyocyte survival. However, the dosing should be carefully set in order to avoid excessive autophagic cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACE:

Angiotensin-converting enzyme

AMPK:

AMP-activated protein kinase

AR:

Adrenergic receptor

ARC:

Apoptosis repressor with caspase recruitment domain

ATG:

Autophagy-related genes

ER:

Endoplasmic reticulum

FOXO:

Forkhead box protein O

MPTP:

Mitochondrial permeability transition pore

mTOR:

Mammalian target of rapamycin

References

  1. Kirkwood TB. Understanding the odd science of aging. Cell. 2005;120:437–47.

    Article  CAS  PubMed  Google Scholar 

  2. Haigis MC, Yankner BA. The aging stress response. Mol Cell. 2010;40:333–44.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Martinet W, Knaapen MW, De Meyer GRY, Herman AG, Kockx MM. Elevated levels of oxidative DNA damage and DNA repair enzymes in human atherosclerotic plaques. Circulation. 2002;106:927–32.

    Article  CAS  PubMed  Google Scholar 

  4. Harman D. Aging: a theory based on free radical and radiation chemistry. J Gerontol. 1956;11:298–300.

    Article  CAS  PubMed  Google Scholar 

  5. Wang JC, Bennett M. Aging and atherosclerosis: mechanisms, functional consequences, and potential therapeutics for cellular senescence. Circ Res. 2012;111:245–59.

    Article  CAS  PubMed  Google Scholar 

  6. Chiong M, Wang ZV, Pedrozo Z, Cao DJ, Troncoso R, Ibacache M, et al. Cardiomyocyte death: mechanisms and translational implications. Cell Death Dis. 2011;2:e244.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. de Freitas EV, Batlouni M, Gamarsky R. Heart failure in the elderly. J Geriatr Cardiol. 2012;9:101–7.

    Article  PubMed Central  PubMed  Google Scholar 

  8. van Empel VP, Bertrand AT, Hofstra L, Crijns HJ, Doevendans PA, De Windt LJ. Myocyte apoptosis in heart failure. Cardiovasc Res. 2005;67:21–9.

    Article  PubMed  Google Scholar 

  9. Mani K. Programmed cell death in cardiac myocytes: strategies to maximize post-ischemic salvage. Heart Fail Rev. 2008;13:193–209.

    Article  PubMed  Google Scholar 

  10. Wencker D, Chandra M, Nguyen K, Miao W, Garantziotis S, Factor SM, et al. A mechanistic role for cardiac myocyte apoptosis in heart failure. J Clin Invest. 2003;111:1497–504.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Whelan RS, Kaplinskiy V, Kitsis RN. Cell death in the pathogenesis of heart disease: mechanisms and significance. Annu Rev Physiol. 2010;72:19–44.

    Article  CAS  PubMed  Google Scholar 

  12. Vanlangenakker N, Vanden Berghe T, Krysko DV, Festjens N, Vandenabeele P. Molecular mechanisms and pathophysiology of necrotic cell death. Curr Mol Med. 2008;8:207–20.

    Article  CAS  PubMed  Google Scholar 

  13. Kroemer G, Galluzzi L, Brenner C. Mitochondrial membrane permeabilization in cell death. Physiol Rev. 2007;87:99–163.

    Article  CAS  PubMed  Google Scholar 

  14. Nakayama H, Chen X, Baines CP, Klevitsky R, Zhang X, Zhang H, et al. Ca2+- and mitochondrial-dependent cardiomyocyte necrosis as a primary mediator of heart failure. J Clin Invest. 2007;117:2431–44.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Baines CP, Kaiser RA, Purcell NH, Blair NS, Osinska H, Hambleton MA, et al. Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature. 2005;434:658–62.

    Article  CAS  PubMed  Google Scholar 

  16. Nakagawa T, Shimizu S, Watanabe T, Yamaguchi O, Otsu K, Yamagata H, et al. Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature. 2005;434:652–8.

    Article  CAS  PubMed  Google Scholar 

  17. Guerra S, Leri A, Wang X, Finato N, Di Loreto C, Beltrami CA, et al. Myocyte death in the failing human heart is gender dependent. Circ Res. 1999;85:856–66.

    Article  CAS  PubMed  Google Scholar 

  18. Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell. 2008;132:27–42.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Martinet W, Agostinis P, Vanhoecke B, Dewaele M, De Meyer GRY. Autophagy in disease: a double-edged sword with therapeutic potential. Clin Sci (Lond). 2009;116:697–712.

    Article  CAS  Google Scholar 

  20. Gottlieb RA, Finley KD, Mentzer Jr RM. Cardioprotection requires taking out the trash. Basic Res Cardiol. 2009;104:169–80.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Dutta D, Calvani R, Bernabei R, Leeuwenburgh C, Marzetti E. Contribution of impaired mitochondrial autophagy to cardiac aging: mechanisms and therapeutic opportunities. Circ Res. 2012;110:1125–38.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Hamacher-Brady A, Brady NR, Logue SE, Sayen MR, Jinno M, Kirshenbaum LA, et al. Response to myocardial ischemia/reperfusion injury involves Bnip3 and autophagy. Cell Death Differ. 2007;14:146–57.

    Article  CAS  PubMed  Google Scholar 

  23. Nakai A, Yamaguchi O, Takeda T, Higuchi Y, Hikoso S, Taniike M, et al. The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nat Med. 2007;13:619–24.

    Article  CAS  PubMed  Google Scholar 

  24. Taneike M, Yamaguchi O, Nakai A, Hikoso S, Takeda T, Mizote I, et al. Inhibition of autophagy in the heart induces age-related cardiomyopathy. Autophagy. 2010;6:600–6.

    Article  CAS  PubMed  Google Scholar 

  25. Inuzuka Y, Okuda J, Kawashima T, Kato T, Niizuma S, Tamaki Y, et al. Suppression of phosphoinositide 3-kinase prevents cardiac aging in mice. Circulation. 2009;120:1695–703.

    Article  CAS  PubMed  Google Scholar 

  26. Hua Y, Zhang Y, Ceylan-Isik AF, Wold LE, Nunn JM, Ren J. Chronic Akt activation accentuates aging-induced cardiac hypertrophy and myocardial contractile dysfunction: role of autophagy. Basic Res Cardiol. 2011;106:1173–91.

    Article  CAS  PubMed  Google Scholar 

  27. Wohlgemuth SE, Julian D, Akin DE, Fried J, Toscano K, Leeuwenburgh C, et al. Autophagy in the heart and liver during normal aging and calorie restriction. Rejuvenation Res. 2007;10:281–92.

    Article  CAS  PubMed  Google Scholar 

  28. Salminen A, Hyttinen JM, Kauppinen A, Kaarniranta K. Context-Dependent Regulation of Autophagy by IKK-NF-kappaB Signaling: Impact on the Aging Process. Int J Cell Biol. 2012;2012:849541.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Brunk UT, Terman A. The mitochondrial-lysosomal axis theory of aging: accumulation of damaged mitochondria as a result of imperfect autophagocytosis. Eur J Biochem. 2002;269:1996–2002.

    Article  CAS  PubMed  Google Scholar 

  30. De Meyer GRY, De Keulenaer GW, Martinet W. Role of autophagy in heart failure associated with aging. Heart Fail Rev. 2010;15:423–30.

    Article  PubMed  Google Scholar 

  31. Shih H, Lee B, Lee RJ, Boyle AJ. The aging heart and post-infarction left ventricular remodeling. J Am Coll Cardiol. 2011;57:9–17.

    Article  PubMed  Google Scholar 

  32. Gottlieb RA, Carreira RS. Autophagy in health and disease. 5. Mitophagy as a way of life. Am J Physiol Cell Physiol. 2010;299:C203–10.

    Article  CAS  PubMed  Google Scholar 

  33. Marin-Garcia J, Akhmedov AT, Moe GW. Mitochondria in heart failure: the emerging role of mitochondrial dynamics. Heart Fail Rev. 2013;18(4):439–56.

    Article  PubMed  Google Scholar 

  34. Chen L, Knowlton AA. Mitochondrial dynamics in heart failure. Congest Heart Fail. 2011;17:257–61.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Sciarretta S, Hariharan N, Monden Y, Zablocki D, Sadoshima J. Is autophagy in response to ischemia and reperfusion protective or detrimental for the heart? Pediatr Cardiol. 2011;32:275–81.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Kostin S, Pool L, Elsasser A, Hein S, Drexler HC, Arnon E, et al. Myocytes die by multiple mechanisms in failing human hearts. Circ Res. 2003;92:715–24.

    Article  CAS  PubMed  Google Scholar 

  37. Villalba JM, Alcain FJ. Sirtuin activators and inhibitors. Biofactors. 2012;38(5):349–59.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Porcu M, Chiarugi A. The emerging therapeutic potential of sirtuin-interacting drugs: from cell death to lifespan extension. Trends Pharmacol Sci. 2005;26:94–103.

    Article  CAS  PubMed  Google Scholar 

  39. Naiman S, Kanfi Y, Cohen HY. Sirtuins as regulators of mammalian aging. Aging (Albany, NY). 2012;4(8):521–2.

    CAS  Google Scholar 

  40. Tanner KG, Landry J, Sternglanz R, Denu JM. Silent information regulator 2 family of NAD-dependent histone/protein deacetylases generates a unique product, 1-O-acetyl-ADP-ribose. Proc Natl Acad Sci USA. 2000;97:14178–82.

    Article  CAS  PubMed  Google Scholar 

  41. Kim S, Bi X, Czarny-Ratajczak M, Dai J, Welsh DA, Myers L, et al. Telomere maintenance genes SIRT1 and XRCC6 impact age-related decline in telomere length but only SIRT1 is associated with human longevity. Biogerontology. 2012;13:119–31.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Bellizzi D, Rose G, Cavalcante P, Covello G, Dato S, De Rango F, et al. A novel VNTR enhancer within the SIRT3 gene, a human homologue of SIR2, is associated with survival at oldest ages. Genomics. 2005;85:258–63.

    Article  CAS  PubMed  Google Scholar 

  43. Tanno M, Kuno A, Horio Y, Miura T. Emerging beneficial roles of sirtuins in heart failure. Basic Res Cardiol. 2012;107:273.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Giralt A, Villarroya F. SIRT3, a pivotal actor in mitochondrial functions: metabolism, cell death and aging. Biochem J. 2012;444:1–10.

    Article  CAS  PubMed  Google Scholar 

  45. Wang F, Chen HZ, Lv X, Liu DP. SIRT1 as a novel potential treatment target for vascular aging and age-related vascular diseases. Curr Mol Med. 2013;13(1):155–64.

    Article  PubMed  Google Scholar 

  46. Sundaresan NR, Samant SA, Pillai VB, Rajamohan SB, Gupta MP. SIRT3 is a stress-responsive deacetylase in cardiomyocytes that protects cells from stress-mediated cell death by deacetylation of Ku70. Mol Cell Biol. 2008;28:6384–401.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Smith J. Human Sir2 and the ‘silencing’ of p53 activity. Trends Cell Biol. 2002;12:404–6.

    Article  CAS  PubMed  Google Scholar 

  48. Li S, Banck M, Mujtaba S, Zhou MM, Sugrue MM, Walsh MJ. p53-induced growth arrest is regulated by the mitochondrial SirT3 deacetylase. PLoS One. 2010;5:e10486.

    Article  PubMed Central  PubMed  Google Scholar 

  49. Pillai JB, Isbatan A, Imai S, Gupta MP. Poly(ADP-ribose) polymerase-1-dependent cardiac myocyte cell death during heart failure is mediated by NAD+ depletion and reduced Sir2alpha deacetylase activity. J Biol Chem. 2005;280:43121–30.

    Article  CAS  PubMed  Google Scholar 

  50. Pfister JA, Ma C, Morrison BE, D’Mello SR. Opposing effects of sirtuins on neuronal survival: SIRT1-mediated neuroprotection is independent of its deacetylase activity. PLoS One. 2008;3:e4090.

    Article  PubMed Central  PubMed  Google Scholar 

  51. Alcendor RR, Gao S, Zhai P, Zablocki D, Holle E, Yu X, et al. Sirt1 regulates aging and resistance to oxidative stress in the heart. Circ Res. 2007;100:1512–21.

    Article  CAS  PubMed  Google Scholar 

  52. Venkatapuram S, Wang C, Krolikowski JG, Weihrauch D, Kersten JR, Warltier DC, et al. Inhibition of apoptotic protein p53 lowers the threshold of isoflurane-induced cardioprotection during early reperfusion in rabbits. Anesth Analg. 2006;103:1400–5.

    Article  CAS  PubMed  Google Scholar 

  53. Hafner AV, Dai J, Gomes AP, Xiao CY, Palmeira CM, Rosenzweig A, et al. Regulation of the mPTP by SIRT3-mediated deacetylation of CypD at lysine 166 suppresses age-related cardiac hypertrophy. Aging (Albany, NY). 2010;2:914–23.

    CAS  Google Scholar 

  54. Lee IH, Cao L, Mostoslavsky R, Lombard DB, Liu J, Bruns NE, et al. A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc Natl Acad Sci USA. 2008;105:3374–9.

    Article  CAS  PubMed  Google Scholar 

  55. Hariharan N, Maejima Y, Nakae J, Paik J, Depinho RA, Sadoshima J. Deacetylation of FoxO by Sirt1 plays an essential role in mediating starvation-induced autophagy in cardiac myocytes. Circ Res. 2010;107:1470–82.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Pillai VB, Sundaresan NR, Kim G, Gupta M, Rajamohan SB, Pillai JB, et al. Exogenous NAD blocks cardiac hypertrophic response via activation of the SIRT3-LKB1-AMP-activated kinase pathway. J Biol Chem. 2010;285:3133–44.

    Article  CAS  PubMed  Google Scholar 

  57. Terai K, Hiramoto Y, Masaki M, Sugiyama S, Kuroda T, Hori M, et al. AMP-activated protein kinase protects cardiomyocytes against hypoxic injury through attenuation of endoplasmic reticulum stress. Mol Cell Biol. 2005;25:9554–75.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Boyle AJ, Shih H, Hwang J, Ye J, Lee B, Zhang Y, et al. Cardiomyopathy of aging in the mammalian heart is characterized by myocardial hypertrophy, fibrosis and a predisposition towards cardiomyocyte apoptosis and autophagy. Exp Gerontol. 2011;46:549–59.

    Article  PubMed Central  PubMed  Google Scholar 

  59. Herbert KE, Mistry Y, Hastings R, Poolman T, Niklason L, Williams B. Angiotensin II-mediated oxidative DNA damage accelerates cellular senescence in cultured human vascular smooth muscle cells via telomere-dependent and independent pathways. Circ Res. 2008;102:201–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Leri A, Claudio PP, Li Q, Wang X, Reiss K, Wang S, et al. Stretch-mediated release of angiotensin II induces myocyte apoptosis by activating p53 that enhances the local renin-angiotensin system and decreases the Bcl-2-to-Bax protein ratio in the cell. J Clin Invest. 1998;101:1326–42.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Asai K, Yang GP, Geng YJ, Takagi G, Bishop S, Ishikawa Y, et al. Beta-adrenergic receptor blockade arrests myocyte damage and preserves cardiac function in the transgenic G(salpha) mouse. J Clin Invest. 1999;104:551–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Ni L, Zhou C, Duan Q, Lv J, Fu X, Xia Y, et al. beta-AR blockers suppresses ER stress in cardiac hypertrophy and heart failure. PLoS One. 2011;6:e27294.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Zhu WZ, Zheng M, Koch WJ, Lefkowitz RJ, Kobilka BK, Xiao RP. Dual modulation of cell survival and cell death by beta(2)-adrenergic signaling in adult mouse cardiac myocytes. Proc Natl Acad Sci USA. 2001;98:1607–12.

    Article  CAS  PubMed  Google Scholar 

  64. Talan MI, Ahmet I, Xiao RP, Lakatta EG. beta(2) AR agonists in treatment of chronic heart failure: long path to translation. J Mol Cell Cardiol. 2011;51:529–33.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Yusuf S, Dagenais G, Pogue J, Bosch J, Sleight P. Vitamin E supplementation and cardiovascular events in high-risk patients. The Heart Outcomes Prevention Evaluation Study Investigators. N Engl J Med. 2000;342:154–60.

    Article  CAS  PubMed  Google Scholar 

  66. Cook NR, Albert CM, Gaziano JM, Zaharris E, MacFadyen J, Danielson E, et al. A randomized factorial trial of vitamins C and E and beta carotene in the secondary prevention of cardiovascular events in women: results from the Women’s Antioxidant Cardiovascular Study. Arch Intern Med. 2007;167:1610–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Yarbrough WM, Mukherjee R, Squires CE, Reese ES, Leiser JS, Stroud RE, et al. Caspase inhibition attenuates contractile dysfunction following cardioplegic arrest and rewarming in the setting of left ventricular failure. J Cardiovasc Pharmacol. 2004;44:645–50.

    Article  CAS  PubMed  Google Scholar 

  68. Gezelius C, Eriksson A. Neoplastic disease in a medicolegal autopsy material. A retrospective study in northern Sweden. Z Rechtsmed. 1988;101:115–30.

    Article  CAS  PubMed  Google Scholar 

  69. Nam YJ, Mani K, Ashton AW, Peng CF, Krishnamurthy B, Hayakawa Y, et al. Inhibition of both the extrinsic and intrinsic death pathways through nonhomotypic death-fold interactions. Mol Cell. 2004;15:901–12.

    Article  CAS  PubMed  Google Scholar 

  70. Donath S, Li P, Willenbockel C, Al-Saadi N, Gross V, Willnow T, et al. Apoptosis repressor with caspase recruitment domain is required for cardioprotection in response to biomechanical and ischemic stress. Circulation. 2006;113:1203–12.

    Article  CAS  PubMed  Google Scholar 

  71. Piot C, Croisille P, Staat P, Thibault H, Rioufol G, Mewton N, et al. Effect of cyclosporine on reperfusion injury in acute myocardial infarction. N Engl J Med. 2008;359:473–81.

    Article  CAS  PubMed  Google Scholar 

  72. Hausenloy DJ, Boston-Griffiths EA, Yellon DM. Cyclosporin A and cardioprotection: from investigative tool to therapeutic agent. Br J Pharmacol. 2012;165:1235–45.

    Article  CAS  PubMed  Google Scholar 

  73. Argaud L, Gateau-Roesch O, Raisky O, Loufouat J, Robert D, Ovize M. Postconditioning inhibits mitochondrial permeability transition. Circulation. 2005;111:194–7.

    Article  CAS  PubMed  Google Scholar 

  74. Lim SY, Davidson SM, Mocanu MM, Yellon DM, Smith CC. The cardioprotective effect of necrostatin requires the cyclophilin-D component of the mitochondrial permeability transition pore. Cardiovasc Drugs Ther. 2007;21:467–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Scheller C, Knoferle J, Ullrich A, Prottengeier J, Racek T, Sopper S, et al. Caspase inhibition in apoptotic T cells triggers necrotic cell death depending on the cell type and the proapoptotic stimulus. J Cell Biochem. 2006;97:1350–61.

    Article  CAS  PubMed  Google Scholar 

  76. Rifki OF, Hill JA. Cardiac autophagy: good with the bad. J Cardiovasc Pharmacol. 2012;60(3):248–52.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Nair S, Ren J. Autophagy and cardiovascular aging: lesson learned from rapamycin. Cell Cycle. 2012;11:2092–9.

    Article  CAS  PubMed  Google Scholar 

  78. Kim J, Kundu M, Viollet B, Guan KL. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol. 2011;13:132–41.

    Article  CAS  PubMed  Google Scholar 

  79. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). UK Prospective Diabetes Study (UKPDS) Group. Lancet. 1998;352:854–65.

    Google Scholar 

  80. Yin M, van der Horst IC, van Melle JP, Qian C, van Gilst WH, Sillje HH, et al. Metformin improves cardiac function in a nondiabetic rat model of post-MI heart failure. Am J Physiol Heart Circ Physiol. 2011;301:H459–68.

    Article  CAS  PubMed  Google Scholar 

  81. Jia L, Hui RT. Everolimus, a promising medical therapy for coronary heart disease? Med Hypotheses. 2009;73:153–5.

    Article  CAS  PubMed  Google Scholar 

  82. Martinet W, De Meyer GRY. Autophagy in atherosclerosis: a cell survival and death phenomenon with therapeutic potential. Circ Res. 2009;104:304–17.

    Article  CAS  PubMed  Google Scholar 

  83. De Meyer GRY, Martinet W. Autophagy in the cardiovascular system. Biochim Biophys Acta. 2009;1793:1485–95.

    Article  PubMed  Google Scholar 

  84. Verheye S, Martinet W, Kockx MM, Knaapen MW, Salu K, Timmermans JP, et al. Selective clearance of macrophages in atherosclerotic plaques by autophagy. J Am Coll Cardiol. 2007;49:706–15.

    Article  CAS  PubMed  Google Scholar 

  85. Schrijvers DM, De Meyer GRY, Martinet W. Autophagy in atherosclerosis: a potential drug target for plaque stabilization. Arterioscler Thromb Vasc Biol. 2011;31:2787–91.

    Article  CAS  PubMed  Google Scholar 

  86. Martinet W, Verheye S, De Meyer GRY. Everolimus-induced mTOR inhibition selectively depletes macrophages in atherosclerotic plaques by autophagy. Autophagy. 2007;3:241–4.

    CAS  PubMed  Google Scholar 

  87. Kushwaha S, Xu X. Target of rapamycin (TOR)-based therapy for cardiomyopathy: evidence from zebrafish and human studies. Trends Cardiovasc Med. 2012;22:39–43.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. Harries LW, Fellows AD, Pilling LC, Hernandez D, Singleton A, Bandinelli S, et al. Advancing age is associated with gene expression changes resembling mTOR inhibition: Evidence from two human populations. Mech Ageing Dev. 2012;133:556–62.

    Article  CAS  PubMed  Google Scholar 

  89. Baur JA, Ungvari Z, Minor RK, Le Couteur DG, de Cabo R. Are sirtuins viable targets for improving healthspan and lifespan? Nat Rev Drug Discov. 2012;11:443–61.

    Article  CAS  PubMed  Google Scholar 

  90. Tanno M, Kuno A, Yano T, Miura T, Hisahara S, Ishikawa S, et al. Induction of manganese superoxide dismutase by nuclear translocation and activation of SIRT1 promotes cell survival in chronic heart failure. J Biol Chem. 2010;285:8375–82.

    Article  CAS  PubMed  Google Scholar 

  91. Petrovski G, Gurusamy N, Das DK. Resveratrol in cardiovascular health and disease. Ann NY Acad Sci. 2011;1215:22–33.

    Article  PubMed  Google Scholar 

  92. Bahro M, Pfeifer U. Short-term stimulation by propranolol and verapamil of cardiac cellular autophagy. J Mol Cell Cardiol. 1987;19:1169–78.

    Article  CAS  PubMed  Google Scholar 

  93. Weiss EP, Fontana L. Caloric restriction: powerful protection for the aging heart and vasculature. Am J Physiol Heart Circ Physiol. 2011;301:H1205–19.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido R. Y. De Meyer PharmD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

De Meyer, G.R.Y., Schrijvers, D.M., Martinet, W. (2014). Aging-Related Changes in Cell Death and Cell Survival Pathways and Implications for Heart Failure Therapy. In: Jugdutt, B. (eds) Aging and Heart Failure. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0268-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0268-2_22

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-0267-5

  • Online ISBN: 978-1-4939-0268-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics