Skip to main content

A20—A Biomarker of Allograft Outcome: A Showcase in Kidney Transplantation

  • Chapter
  • First Online:
The Multiple Therapeutic Targets of A20

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 809))

Abstract

Effective means to identify anti-donor immune activity before the transplant organ is damaged and rejected has been an important goal in transplantation research. Development of sensitive and non-invasive diagnostic methods that probe the immune status of the recipient as well as the resilience of the donor organ should enable personalized application of immunosuppressive drugs. With a non-invasive biomarker for rejection, it should be possible to selectively treat the patients that are rejecting the graft and wean the tolerant patients from immunosuppression. Although A20 is also expressed by activated CD4+ T cells and CD8+ T cells, its expression by mouse tubular cells has been shown to play an important role in protecting allografts from ischemia/reperfusion (I/R) injury and rejection. Using quantitative (real-time) reverse transcriptase polymerase chain reaction (qt-RT-PCR), we showed that expression levels of A20, hemeoxygenase (HO)-1, other anti-apoptotic molecules, granzyme-B (GZMB), perforin (PRF1), CD3 and other immune molecules in renal transplant biopsies, urinary cells and peripheral blood cells are predictive of transplantation outcomes. Measuring A20 at mRNA and protein levels has the potentiality to be diagnostic and prognostic of transplantation outcomes and thereby help in timely therapeutic interventions to prolong graft life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Avihingsanon Y, Ma N, Pavlakis M, Chon WJ, Uknis ME, Monaco AP, Ferran C, Stillman I, Schachter AD, Mottley C, et al. On the intraoperative molecular status of renal allografts after vascular reperfusion and clinical outcomes. J Am Soc Nephrol 2005; 16:1542–8; PMID:15888558; http://dx.doi.org/10.1681/ASN.2005020210.

    Article  CAS  Google Scholar 

  2. Christie JD, Kotloff RM, Pochettino A, Arcasoy SM, Rosengard BR, Landis JR, Kimmel SE. Clinical risk factors for primary graft failure following lung transplantation. Chest 2003; 124:1232–41; PMID:14555551; http://dx.doi.org/10.1378/chest.124.4.1232.

    Article  Google Scholar 

  3. Ojo AO, Wolfe RA, Held PJ, Port FK, Schmouder RL. Delayed graft function: risk factors and implications for renal allograft survival. Transplantation 1997; 63:968–74; PMID:9112349; http://dx.doi.org/10.1097/00007890-199704150-00011.

    Article  CAS  Google Scholar 

  4. Deschênes M, Belle SH, Krom RA, Zetterman RK, Lake JR; National Institute of Diabetes and Digestive and Kidney Diseases Liver Transplantation Database. Early allograft dysfunction after liver transplantation: a definition and predictors of outcome. Transplantation 1998; 66:302–10; PMID:9721797; http://dx.doi.org/10.1097/00007890-199808150-00005.

    Article  Google Scholar 

  5. Woo YM, Jardine AG, Clark AF, MacGregor MS, Bowman AW, Macpherson SG, Briggs JD, Junor BJ, McMillan MA, Rodger RS. Early graft function and patient survival following cadaveric renal transplantation. Kidney Int 1999; 55:692–9; PMID:9987094; http://dx.doi.org/10.1046/j.1523-1755.1999.00294.x.

    Article  CAS  Google Scholar 

  6. Christie JD, Bavaria JE, Palevsky HI, Litzky L, Blumenthal NP, Kaiser LR, Kotloff RM. Primary graft failure following lung transplantation. Chest 1998; 114:51–60; PMID:9674447; http://dx.doi.org/10.1378/chest.114.1.51.

    Article  CAS  Google Scholar 

  7. Mccord JM. Oxygen-derived free radicals in postischemic tissue injury. N Engl J Med 1985; 312:159–63; PMID:2981404; http://dx.doi.org/10.1056/NEJM198501173120305.

    Article  CAS  Google Scholar 

  8. Jaeschke H. Molecular mechanisms of hepatic ischemia-reperfusion injury and preconditioning. Am J Physiol Gastrointest Liver Physiol 2003; 284:G15–26; PMID:12488232.

    Article  CAS  Google Scholar 

  9. Goes N, Urmson J, Ramassar V, Halloran PF. Ischemic acute tubular necrosis induces an extensive local cytokine response. Evidence for induction of interferon-gamma, transforming growth factor-beta 1, granulocyte-macrophage colony-stimulating factor, interleukin-2, and interleukin-10. Transplantation 1995; 59:565–72; PMID:7878762;; http://dx.doi.org/10.1089/hum.1997.8.8-955.

    Article  CAS  Google Scholar 

  10. Lieberthal W, Koh JS, Levine JS. Necrosis and apoptosis in acute renal failure. Semin Nephrol 1998; 18:505–18; PMID:9754603.

    CAS  PubMed  Google Scholar 

  11. Gobé G, Zhang XJ, Willgoss DA, Schoch E, Hogg NA, Endre ZH. Relationship between expression of Bcl-2 genes and growth factors in ischemic acute renal failure in the rat. J Am Soc Nephrol 2000; 11:454–67; PMID:10703669.

    PubMed  Google Scholar 

  12. Basile DP, Liapis H, Hammerman MR. Expression of bcl-2 and bax in regenerating rat renal tubules following ischemic injury. Am J Physiol 1997; 272:F640–7; PMID:9176375.

    CAS  PubMed  Google Scholar 

  13. Nogae S, Miyazaki M, Kobayashi N, Saito T, Abe K, Saito H, Nakane PK, Nakanishi Y, Koji T. Induction of apoptosis in ischemia-reperfusion model of mouse kidney: possible involvement of Fas. J Am Soc Nephrol 1998; 9:620–31; PMID:9555665.

    CAS  PubMed  Google Scholar 

  14. Donnahoo KK, Shames BD, Harken AH, Meldrum DR. Review article: the role of tumor necrosis factor in renal ischemia-reperfusion injury. J Urol 1999; 162:196–203; PMID:10379787; http://dx.doi.org/10.1097/00005392-199907000-00068.

    Article  CAS  Google Scholar 

  15. Daemen MA, van’t Veer C, Wolfs TG, Buurman WA. Ischemia/reperfusion-induced IFN-gamma up-regulation: involvement of IL-12 and IL-18. J Immunol 1999; 162:5506–10; PMID:10228031.

    CAS  PubMed  Google Scholar 

  16. Liuwantara D, Elliot M, Smith MW, Yam AO, Walters SN, Marino E, McShea A, Grey ST. Nuclear factor-kappaB regulates beta-cell death: a critical role for A20 in beta-cell protection. Diabetes 2006; 55:2491–501; PMID:16936197; http://dx.doi.org/10.2337/db06-0142.

    Article  CAS  Google Scholar 

  17. Avihingsanon Y, Ma N, Csizmadia E, Wang C, Pavlakis M, Giraldo M, Strom TB, Soares MP, Ferran C. Expression of protective genes in human renal allografts: a regulatory response to injury associated with graft rejection. Transplantation 2002; 73:1079–85; PMID:11965035; http://dx.doi.org/10.1097/00007890-200204150-00011.

    Article  CAS  Google Scholar 

  18. Ferran C. The graft unveils its secrets: provocative therapeutic leads to protected vascularized allografts. Transpl Immunol 2002; 9:135–6; PMID:12180820; http://dx.doi.org/10.1016/S0966-3274(02)00005-9.

    Article  Google Scholar 

  19. Bach FH, Ferran C, Hechenleitner P, Mark W, Koyamada N, Miyatake T, Winkler H, Badrichani A, Candinas D, Hancock WW. Accommodation of vascularized xenografts: expression of “protective genes” by donor endothelial cells in a host Th2 cytokine environment. Nat Med 1997; 3:196–204; PMID:9018239; http://dx.doi.org/10.1038/nm0297-196.

    Article  CAS  Google Scholar 

  20. Soares MP, Lin Y, Anrather J, Csizmadia E, Takigami K, Sato K, Grey ST, Colvin RB, Choi AM, Poss KD, et al. Expression of heme oxygenase-1 can determine cardiac xenograft survival. Nat Med 1998; 4:1073–7; PMID:9734404; http://dx.doi.org/10.1038/2063.

    Article  CAS  Google Scholar 

  21. Siracuse JJ, Fisher MD, da Silva CG, Peterson CR, Csizmadia E, Moll HP, Damrauer SM, Studer P, Choi LY, Essayagh S, et al. A20-mediated modulation of inflammatory and immune responses in aortic allografts and development of transplant arteriosclerosis. Transplantation 2012; 93:373–82; PMID:22245872; http://dx.doi.org/10.1097/TP.0b013e3182419829.

    Article  CAS  Google Scholar 

  22. Vasconcellos LM, Schachter AD, Zheng XX, Vasconcellos LH, Shapiro M, Harmon WE, Strom TB. Cytotoxic lymphocyte gene expression in peripheral blood leukocytes correlates with rejecting renal allografts. Transplantation 1998; 66:562–6; PMID:9753332; http://dx.doi.org/10.1097/00007890-199809150-00002.

    Article  CAS  Google Scholar 

  23. Souza AI, Felkin LE, McCormack AM, Holder A, Barton PJ, Banner NR, Rose ML. Sequential expression of three known protective genes in cardiac biopsies after transplantation. Transplantation 2005; 79:584–90; PMID:15753848; http://dx.doi.org/10.1097/01.TP.0000153154.37616.94.

    Article  Google Scholar 

  24. da Silva CG, Maccariello ER, Wilson SW, Putheti P, Daniel S, Damrauer SM, Peterson CR, Siracuse JJ, Kaczmarek E, Ferran C. Hepatocyte growth factor preferentially activates the anti-inflammatory arm of Nf-κB signaling to induce A20 and protect renal proximal tubular epithelial cells from inflammation. J Cell Physiol 2012; 227:1382–90; PMID:21618526; http://dx.doi.org/10.1002/jcp.22851.

    Article  Google Scholar 

  25. Tewari M, Wolf FW, Seldin MF, O’Shea KS, Dixit VM, Turka LA. Lymphoid expression and regulation of A20, an inhibitor of programmed cell death. J Immunol 1995; 154:1699–706; PMID:7836754.

    CAS  Google Scholar 

  26. Zheng XX, Sánchez-Fueyo A, Sho M, Domenig C, Sayegh MH, Strom TB. Favorably tipping the balance between cytopathic and regulatory T cells to create transplantation tolerance. Immunity 2003; 19:503–14; PMID:14563315; http://dx.doi.org/10.1016/S1074-7613(03)00259-0.

    Article  CAS  Google Scholar 

  27. Zheng XX, Sanchez-Fueyo A, Domenig C, Strom TB. The balance of deletion and regulation in allograft tolerance. Immunol Rev 2003; 196:75–84; PMID:14617199; http://dx.doi.org/10.1046/j.1600-065X.2003.00089.x.

    Article  CAS  Google Scholar 

  28. McDaid J, Yamashita K, Chora A, Ollinger R, Strom TB, Li XC, Bach FH, Soares MP. Heme oxygenase-1 modulates the allo-immune response by promoting activation-induced cell death of T cells. FASEB J 2005; 19:458–60; PMID:15640283.

    Article  CAS  Google Scholar 

  29. Racusen LC, Solez K, Colvin RB, Bonsib SM, Castro MC, Cavallo T, Croker BP, Demetris AJ, Drachenberg CB, Fogo AB, et al. The Banff 97 working classification of renal allograft pathology. Kidney Int 1999; 55:713–23; PMID:9987096; http://dx.doi.org/10.1046/j.1523-1755.1999.00299.x.

    Article  CAS  Google Scholar 

  30. Rush DN, Henry SF, Jeffery JR, Schroeder TJ, Gough J. Histological findings in early routine biopsies of stable renal allograft recipients. Transplantation 1994; 57:208–11; PMID:8310509; http://dx.doi.org/10.1097/00007890-199401001-00009.

    Article  CAS  Google Scholar 

  31. Colvin RB, Cohen AH, Saiontz C, Bonsib S, Buick M, Burke B, Carter S, Cavallo T, Haas M, Lindblad A, et al. Evaluation of pathologic criteria for acute renal allograft rejection: reproducibility, sensitivity, and clinical correlation. J Am Soc Nephrol 1997; 8:1930–41; PMID:9402096.

    CAS  PubMed  Google Scholar 

  32. Legendre C, Thervet E, Skhiri H, Mamzer-Bruneel MF, Cantarovich F, Noël LH, Kreis H. Histologic features of chronic allograft nephropathy revealed by protocol biopsies in kidney transplant recipients. Transplantation 1998; 65:1506–9; PMID:9645814; http://dx.doi.org/10.1097/00007890-199806150-00020.

    Article  CAS  Google Scholar 

  33. Muthukumar T, Dadhania D, Ding R, Snopkowski C, Naqvi R, Lee JB, Hartono C, Li B, Sharma VK, Seshan SV, et al. Messenger RNA for FOXP3 in the urine of renal-allograft recipients. N Engl J Med 2005; 353:2342–51; PMID:16319383; http://dx.doi.org/10.1056/NEJMoa051907.

    Article  CAS  Google Scholar 

  34. Humar A, Ramcharan T, Kandaswamy R, Gillingham K, Payne WD, Matas AJ. Risk factors for slow graft function after kidney transplants: a multivariate analysis. Clin Transplant 2002; 16:425–9; PMID:12437622; http://dx.doi.org/10.1034/j.1399-0012.2002.02055.x.

    Article  CAS  Google Scholar 

  35. Cecka JM. The UNOS Scientific Renal Transplant Registry—2000. Clin Transpl 2000: 1–18; PMID:11512303.

    Google Scholar 

  36. Lindholm A, Ohlman S, Albrechtsen D, Tufveson G, Persson H, Persson NH. The impact of acute rejection episodes on long-term graft function and outcome in 1347 primary renal transplants treated by 3 cyclosporine regimens. Transplantation 1993; 56:307–15; PMID:8356584; http://dx.doi.org/10.1097/00007890-199308000-00010.

    Article  CAS  Google Scholar 

  37. Avihingsanon Y, Ma N, Pavlakis M, Chon WJ, Uknis ME, Monaco AP, Ferran C, Stillman I, Schachter AD, Mottley C, et al. On the intraoperative molecular status of renal allografts after vascular reperfusion and clinical outcomes. J Am Soc Nephrol 2005; 16:1542–8; PMID:15888558; http://dx.doi.org/10.1681/ASN.2005020210.

    Article  CAS  Google Scholar 

  38. Plissonnier D, Henaff M, Poncet P, Paris E, Tron F, Thuillez C, Michel JB. Involvement of antibody-dependent apoptosis in graft rejection. Transplantation 2000; 69:2601–8; PMID:10910283; http://dx.doi.org/10.1097/00007890-200006270-00021.

    Article  CAS  Google Scholar 

  39. Shirwan H, Wu GD, Barwari L, Liu A, Cramer DV. Induction of allograft nonresponsiveness after intrathymic inoculation with donor class I allopeptides. II. Evidence for persistent chronic rejection despite high levels of donor microchimerism. Transplantation 1997; 64:1671–6; PMID:9422400; http://dx.doi.org/10.1097/00007890-199712270-00007.

    CAS  PubMed  Google Scholar 

  40. Wu GD, Jin YS, Salazar R, Dai WD, Barteneva N, Barr ML, Barsky LW, Starnes VA, Cramer DV. Vascular endothelial cell apoptosis induced by anti-donor non-MHC antibodies: a possible injury pathway contributing to chronic allograft rejection. J Heart Lung Transplant 2002; 21:1174–87; PMID:12431491; http://dx.doi.org/10.1016/S1053-2498(02)00457-6.

    Article  Google Scholar 

  41. Mannon RB, Griffiths R, Ruiz P, Platt JL, Coffman TM. Absence of donor MHC antigen expression ameliorates chronic kidney allograft rejection. Kidney Int 2002; 62:290–300; PMID:12081591; http://dx.doi.org/10.1046/j.1523-1755.2002.00422.x.

    Article  CAS  Google Scholar 

  42. Hernandez-Fuentes MP, Lechler RI. Chronic graft loss. Immunological and non-immunological factors. Contrib Nephrol 2005; 146:54–64; PMID:15567920.

    PubMed  Google Scholar 

  43. Strom TB, Tilney NL, Carpenter CB, Busch GJ. Identity and cytotoxic capacity of cells infiltrating renal allografts. N Engl J Med 1975; 292:1257–63; PMID:1093024; http://dx.doi.org/10.1056/NEJM197506122922402.

    Article  CAS  Google Scholar 

  44. Orosz CG, Zinn NE, Sirinek LP, Ferguson RM. In vivo mechanisms of alloreactivity. II. Allospecificity of cytotoxic T lymphocytes in sponge matrix allografts as determined by limiting dilution analysis. Transplantation 1986; 41:84–92; PMID:2934879; http://dx.doi.org/10.1097/00007890-198601000-00017.

    CAS  PubMed  Google Scholar 

  45. Baker RJ, Hernandez-Fuentes MP, Brookes PA, Chaudhry AN, Cook HT, Lechler RI. Loss of direct and maintenance of indirect alloresponses in renal allograft recipients: implications for the pathogenesis of chronic allograft nephropathy. J Immunol 2001; 167:7199–206; PMID:11739543.

    Article  CAS  Google Scholar 

  46. Huraib S, Goldberg H, Katz A, Cardella CJ, deVeber GA, Cook GT, Uldall PR. Percutaneous needle biopsy of the transplanted kidney: technique and complications. Am J Kidney Dis 1989; 14:13–7; PMID:2662761.

    Article  CAS  Google Scholar 

  47. Beckingham IJ, Nicholson ML, Bell PR. Analysis of factors associated with complications following renal transplant needle core biopsy. Br J Urol 1994; 73:13–5; PMID:8298893; http://dx.doi.org/10.1111/j.1464-410X.1994.tb07449.x.

    Article  CAS  Google Scholar 

  48. Benfield MR, Herrin J, Feld L, Rose S, Stablein D, Tejani A. Safety of kidney biopsy in pediatric transplantation: a report of the Controlled Clinical Trials in Pediatric Transplantation Trial of Induction Therapy Study Group. Transplantation 1999; 67:544–7; PMID:10071025; http://dx.doi.org/10.1097/00007890-199902270-00010.

    Article  CAS  Google Scholar 

  49. Sorof JM, Vartanian RK, Olson JL, Tomlanovich SJ, Vincenti FG, Amend WJ. Histopathological concordance of paired renal allograft biopsy cores. Effect on the diagnosis and management of acute rejection. Transplantation 1995; 60:1215–9; PMID:8525513.

    CAS  PubMed  Google Scholar 

  50. Nicholson ML, Wheatley TJ, Doughman TM, White SA, Morgan JD, Veitch PS, Furness PN. A prospective randomized trial of three different sizes of core-cutting needle for renal transplant biopsy. Kidney Int 2000; 58:390–5; PMID:10886586; http://dx.doi.org/10.1046/j.1523-1755.2000.00177.x.

    Article  CAS  Google Scholar 

  51. Scholten EM, Rowshani AT, Cremers S, Bemelman FJ, Eikmans M, van Kan E, Mallat MJ, Florquin S, Surachno J, ten Berge IJ, et al. Untreated rejection in 6-month protocol biopsies is not associated with fibrosis in serial biopsies or with loss of graft function. J Am Soc Nephrol 2006; 17:2622–32; PMID:16899517; http://dx.doi.org/10.1681/ASN.2006030227.

    Article  Google Scholar 

  52. Ferran C, Peuchmaur M, Desruennes M, Ghoussoub JJ, Cabrol A, Brousse N, Cabrol C, Bach JF, Chatenoud L. Implications of de novo ELAM-1 and VCAM-1 expression in human cardiac allograft rejection. Transplantation 1993; 55:605–9; PMID:7681227; http://dx.doi.org/10.1097/00007890-199303000-00026.

    Article  CAS  Google Scholar 

  53. Briscoe DM, Yeung AC, Schoen FJ, Allred EN, Stavrakis G, Ganz P, Cotran RS, Pober JS, Schoen EL. Predictive value of inducible endothelial cell adhesion molecule expression for acute rejection of human cardiac allografts. Transplantation 1995; 59:204–11; PMID:7530872.

    Article  CAS  Google Scholar 

  54. Shulzhenko N, Morgun A, Zheng XX, Diniz RV, Almeida DR, Ma N, Strom TB, Gerbase-DeLima M. Intragraft activation of genes encoding cytotoxic T lymphocyte effector molecules precedes the histological evidence of rejection in human cardiac transplantation. Transplantation 2001; 72:1705–8; PMID:11726838; http://dx.doi.org/10.1097/00007890-200111270-00025.

    Article  CAS  Google Scholar 

  55. Zhao DX, Hu Y, Miller GG, Luster AD, Mitchell RN, Libby P. Differential expression of the IFN-gamma-inducible CXCR3-binding chemokines, IFN-inducible protein 10, monokine induced by IFN, and IFN-inducible T cell alpha chemoattractant in human cardiac allografts: association with cardiac allograft vasculopathy and acute rejection. J Immunol 2002; 169:1556–60; PMID:12133984.

    Article  CAS  Google Scholar 

  56. Strehlau J, Pavlakis M, Lipman M, Shapiro M, Vasconcellos L, Harmon W, Strom TB. Quantitative detection of immune activation transcripts as a diagnostic tool in kidney transplantation. Proc Natl acad Sci U S A 1997; 94:695–700; PMID:9012847; http://dx.doi.org/10.1073/pnas.94.2.695.

    Article  CAS  Google Scholar 

  57. Tilney NL, Kupiec-Weglinski JW, Heidecke CD, Lear PA, Strom TB. Mechanisms of rejection and prolongation of vascularized organ allografts. Immunol Rev 1984; 77:185–216; PMID:6232201; http://dx.doi.org/10.1111/j.1600-065X.1984.tb00722.x.

    Article  CAS  Google Scholar 

  58. Bodonyi-kovacs G, Putheti P, Marino M, Avihingsanon Y, Uknis ME, Monaco AP, Strom TB, Pavlakis M. Gene expression profiling of the donor kidney at the time of transplantation predicts clinical outcomes 2 years after transplantation. Hum Immunol 2010; 71:451–5; PMID:20156509; http://dx.doi.org/10.1016/j.humimm.2010.02.013.

    Article  CAS  Google Scholar 

  59. Bach FH, Hancock WW, Ferran C. Protective genes expressed in endothelial cells: a regulatory response to injury. Immunol Today 1997; 18:483–6; PMID:9357140; http://dx.doi.org/10.1016/S0167-5699(97)01129-8.

    Article  CAS  Google Scholar 

  60. Badrichani AZ, Stroka DM, Bilbao G, Curiel DT, Bach FH, Ferran C. Bcl-2 and Bcl-XL serve an anti-inflammatory function in endothelial cells through inhibition of NF-kappaB. J Clin Invest 1999; 103:543–53; PMID:10021463; http://dx.doi.org/10.1172/JCI2517.

    Article  CAS  Google Scholar 

  61. Li B, Hartono C, Ding R, Sharma VK, Ramaswamy R, Qian B, Serur D, Mouradian J, Schwartz JE, Suthanthiran M. Noninvasive diagnosis of renal-allograft rejection by measurement of messenger RNA for perforin and granzyme B in urine. N Engl J Med 2001; 344:947–54; PMID:11274620; http://dx.doi.org/10.1056/NEJM200103293441301.

    Article  CAS  Google Scholar 

  62. Suthanthiran M, Schwartz JE, Ding R, Abecassis M, Dadhania D, Samstein B, Knechtle SJ, Friedewald J, Becker YT, Sharma VK, et al.; Clinical Trials in Organ Transplantation 04 (CTOT-04) Study Investigators. Urinary-cell mRNA profile and acute cellular rejection in kidney allografts. N Engl J Med 2013; 369:20–31; PMID:23822777; http://dx.doi.org/10.1056/NEJMoa1215555.

    Article  CAS  Google Scholar 

  63. Putheti P, Ding R, Naqvi R, Medeiros M, Sharma, VK, Liu J, LinG, Williams NM, Bridges ND, Strom TB, et al. Gene-expression profiles of peripheral blood cells and urinary cells are diagnostic of acute rejection in renal allograft recipients. Am J Transplant 2011; 11(S2):446; meeting abstract.

    Google Scholar 

  64. Sabek O, Dorak MT, Kotb M, Gaber AO, Gaber L. Quantitative detection of T-cell activation markers by real-time PCR in renal transplant rejection and correlation with histopathologic evaluation. Transplantation 2002; 74:701–7; PMID:12352889; http://dx.doi.org/10.1097/00007890-200209150-00019.

    Article  CAS  Google Scholar 

  65. Putheti P, Ma L, De Serres S, et al. Combined messenger RNA and microRNA profiling of peripheral blood cells is diagnostic of acute rejection of human renal allografts. Am J Transplant. May 2012; 12(SI):362–363.

    Google Scholar 

  66. Han D, Xu X, Pastori RL, Ricordi C, Kenyon NS. Elevation of cytotoxic lymphocyte gene expression is predictive of islet allograft rejection in nonhuman primates. Diabetes 2002; 51:562–6; PMID:11872651; http://dx.doi.org/10.2337/diabetes.51.3.562.

    Article  CAS  Google Scholar 

  67. Yamada Y, Boskovic S, Aoyama A, Murakami T, Putheti P, Smith RN, Ochiai T, Nadazdin O, Koyama I, Boenisch O, et al. Overcoming memory T-cell responses for induction of delayed tolerance in nonhuman primates. Am J Transplant 2012; 12:330–40; PMID:22053723; http://dx.doi.org/10.1111/j.1600-6143.2011.03795.x.

    Article  CAS  Google Scholar 

  68. Sarwal MM, Jani A, Chang S, Huie P, Wang Z, Salvatierra O Jr., Clayberger C, Sibley R, Krensky AM, Pavlakis M. Granulysin expression is a marker for acute rejection and steroid resistance in human renal transplantation. Hum Immunol 2001; 62:21–31; PMID:11165712; http://dx.doi.org/10.1016/S0198-8859(00)00228-7.

    Article  CAS  Google Scholar 

  69. Baan CC, van Riemsdijk-van Overbeeke IC, Balk AH, Vantrimpont PM, Mol WM, Knoop CJ, Niesters HG, Maat LP, Weimar W. Conversion from cyclosporin A to tacrolimus is safe and decreases blood pressure, cholesterol levels and TGF-beta 1 type I receptor expression. Clin Transplant 2001; 15:276–83; PMID:11683823; http://dx.doi.org/10.1034/j.1399-0012.2001.150410.x.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prabhakar Putheti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Bodonyi-Kovacs, G., Strom, T.B., Putheti, P. (2014). A20—A Biomarker of Allograft Outcome: A Showcase in Kidney Transplantation. In: Ferran, C. (eds) The Multiple Therapeutic Targets of A20. Advances in Experimental Medicine and Biology, vol 809. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0398-6_7

Download citation

Publish with us

Policies and ethics