Skip to main content

Emerging Roles for A20 in Islet Biology and Pathology

  • Chapter
  • First Online:
The Multiple Therapeutic Targets of A20

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 809))

Abstract

A20 is most characteristically described in terms relating to inflammation and inflammatory pathologies. The emerging understanding of inflammation in the etiology of diabetes mellitus lays the framework for considering a central role for A20 in this disease process. Diabetes mellitus is considered a major health issue, and describes a group of common metabolic disorders pathophysiologically characterized by hyperglycemia. Within islets of Langherhans, the endocrine powerhouse of the pancreas, are the insulin-producing pancreatic β-cells.Loss of β-cell mass and function to inflammation and apoptosis is a major contributing factor to diabetes. Consequently, restoring functional β-cell mass via transplantation represents a therapeutic option for diabetes. Unfortunately, transplanted islets also suffers from loss of β-cell function and mass fueled by a multifactorial inflammatory cycle triggered by islet isolation prior to transplantation, the ischemic environment at transplantation as well as allogeneic or recurrent auto-immune responses. Activation of the transcription factor NF-κB is a central mediator of inflammatory mediated β-cell dysfunction and loss. Accordingly, a plethora of strategies to block NF-κB activation in islets and hence limit β-cell loss have been explored, with mixed success. We propose that the relatively poor efficacy of NF-κB blockade in β-cells is due to concommittant loss of the important, Nf-κB regulated anti-apoptotic and anti-inflammatory protein A20. A20 has been identified as a β-cell expressed gene, raising questions about its role in β-cell development and function, and in β-cell related pathologies. Involvement of apoptosis, inflammation and NF-κB activation as β-cell factors contributing to the pathophysiology of diabetes, coupled with the knowledge that β-cells express the A20 gene, implies an important role for A20 in both normal β-cell biology as well as β-cell related pathology. Genome wide association studies (GWAS) linking single nucleotide polymorphisms in the A20 gene with the occurrence of diabetes and its complications support this hypothesis. In this chapter we review data supporting the role of A20 in β-cell health and disease. Furthermore, by way of their specialized function in metabolism, pancreatic β-cells also provide opportunities to explore the biology of A20 in scenarios beyond inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dixit VM, Green S, Sarma V, Holzman LB, Wolf FW, O’Rourke K, Ward PA, Prochownik EV, Marks RM. Tumor necrosis factor-alpha induction of novel gene products in human endothelial cells including a macrophage-specific chemotaxin. J Biol Chem 1990; 265:2973–8; PMID:2406243.

    CAS  PubMed  Google Scholar 

  2. Opipari AW Jr., Boguski MS, Dixit VM. The A20 cDNA induced by tumor necrosis factor alpha encodes a novel type of zinc finger protein. J Biol Chem 1990; 265:14705–8; PMID:2118515.

    CAS  PubMed  Google Scholar 

  3. Verstrepen L, Verhelst K, van Loo G, Carpentier I, Ley SC, Beyaert R. Expression, biological activities and mechanisms of action of A20 (TNFAIP3). Biochem Pharmacol 2010; 80:2009–20; PMID:20599425; http://dx.doi.org/10.1016/j.bcp.2010.06.044.

    Article  CAS  PubMed  Google Scholar 

  4. Krikos A, Laherty CD, Dixit VM. Transcriptional activation of the tumor necrosis factor alpha-inducible zinc finger protein, A20, is mediated by kappa B elements. J Biol Chem 1992; 267:17971–6; PMID:1381359.

    CAS  PubMed  Google Scholar 

  5. Liuwantara D, Elliot M, Smith MW, Yam AO, Walters SN, Marino E, McShea A, Grey ST. Nuclear factor-kappaB regulates beta-cell death: a critical role for A20 in beta-cell protection. Diabetes 2006; 55:2491–501; PMID:16936197; http://dx.doi.org/10.2337/db06-0142.

    Article  CAS  PubMed  Google Scholar 

  6. Lee EG, Boone DL, Chai S, Libby SL, Chien M, Lodolce JP, Ma A. Failure to regulate TNF-induced NF-kappaB and cell death responses in A20-deficient mice. Science 2000; 289:2350–4; PMID:11009421; http://dx.doi.org/10.1126/science.289.5488.2350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ma A, Malynn BA. A20: linking a complex regulator of ubiquitylation to immunity and human disease. Nat Rev Immunol 2012; 12:774–85; PMID:23059429; http://dx.doi.org/10.1038/nri3313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Vereecke L, Beyaert R, van Loo G. The ubiquitin-editing enzyme A20 (TNFAIP3) is a central regulator of immunopathology. Trends Immunol 2009; 30:383–91; PMID:19643665; http://dx.doi.org/10.1016/j.it.2009.05.007.

    Article  CAS  PubMed  Google Scholar 

  9. Daniel S, Arvelo MB, Patel VI, Longo CR, Shrikhande G, Shukri T, Mahiou J, Sun DW, Mottley C, Grey ST, et al. A20 protects endothelial cells from TNF-, Fas-, and NK-mediated cell death by inhibiting caspase 8 activation. Blood 2004; 104:2376–84; PMID:15251990; http://dx.doi.org/10.1182/blood-2003-02-0635.

    Article  CAS  PubMed  Google Scholar 

  10. Longo CR, Arvelo MB, Patel VI, Daniel S, Mahiou J, Grey ST, Ferran C. A20 protects from CD40-CD40 ligand-mediated endothelial cell activation and apoptosis. Circulation 2003; 108:1113–8; PMID:12885753; http://dx.doi.org/10.1161/01.CIR.0000083718.76889.D0.

    Article  CAS  PubMed  Google Scholar 

  11. Li HL, Zhuo ML, Wang D, Wang AB, Cai H, Sun LH, Yang Q, Huang Y, Wei YS, Liu PP, et al. Targeted cardiac overexpression of A20 improves left ventricular performance and reduces compensatory hypertrophy after myocardial infarction. Circulation 2007; 115:1885–94; PMID:17389268; http://dx.doi.org/10.1161/CIRCULATIONAHA.106.656835.

    Article  CAS  PubMed  Google Scholar 

  12. Vereecke L, Sze M, Mc Guire C, Rogiers B, Chu Y, Schmidt-Supprian M, Pasparakis M, Beyaert R, van Loo G. Enterocyte-specific A20 deficiency sensitizes to tumor necrosis factor-induced toxicity and experimental colitis. J Exp Med 2010; 207:1513–23; PMID:20530205; http://dx.doi.org/10.1084/jem.20092474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Grey ST, Arvelo MB, Hasenkamp W, Bach FH, Ferran C. A20 inhibits cytokine-induced apoptosis and nuclear factor kappaB-dependent gene activation in islets. J Exp Med 1999; 190:1135–46; PMID:10523611; http://dx.doi.org/10.1084/jem.190.8.1135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Storz P, Döppler H, Ferran C, Grey ST, Toker A. Functional dichotomy of A20 in apoptotic and necrotic cell death. Biochem J 2005; 387:47–55; PMID:15527421; http://dx.doi.org/10.1042/BJ20041443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Daniel S, Patel VI, Shrikhande GV, Scali ST, Ramsey HE, Csizmadia E, Benhaga N, Fisher MD, Arvelo MB, Ferran C. The universal NF-kappaB inhibitor a20 protects from transplant vasculopathy by differentially affecting apoptosis in endothelial and smooth muscle cells. Transplant Proc 2006; 38:3225–7; PMID:17175229; http://dx.doi.org/10.1016/j.transproceed.2006.10.167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang AB, Li HL, Zhang R, She ZG, Chen HZ, Huang Y, Liu DP, Liang CC. A20 attenuates vascular smooth muscle cell proliferation and migration through blocking PI3k/Akt singling in vitro and in vivo. J Biomed Sci 2007; 14:357–71; PMID:17260188; http://dx.doi.org/10.1007/s11373-007-9150-x.

    Article  CAS  PubMed  Google Scholar 

  17. Patel VI, Daniel S, Longo CR, Shrikhande GV, Scali ST, Czismadia E, Groft CM, Shukri T, Motley-Dore C, Ramsey HE, et al. A20, a modulator of smooth muscle cell proliferation and apoptosis, prevents and induces regression of neointimal hyperplasia. FASEB J 2006; 20:1418–30; PMID:16816117; http://dx.doi.org/10.1096/fj.05-4981com.

    Article  CAS  PubMed  Google Scholar 

  18. Arvelo MB, Badrichani AZ, Stroka DM, Grey ST, Bach FH, Ferran C. A novel function for A20 in smooth muscle cells: inhibition of activation and proliferation. Transplant Proc 1999; 31:858–9; PMID:10083374; http://dx.doi.org/10.1016/S0041-1345(98)01804-1.

    Article  CAS  PubMed  Google Scholar 

  19. da Silva CG, Studer P, Skroch M, Mahiou J, Minussi DC, Peterson CR, Wilson SW, Patel VI, Ma A, Csizmadia E, et al. A20 promotes liver regeneration by decreasing SOCS3 expression to enhance IL-6/STAT3 proliferative signals. Hepatology 2013; 57:2014–25; PMID:23238769; http://dx.doi.org/10.1002/hep.26197.

    Article  PubMed  CAS  Google Scholar 

  20. Wang J, Ouyang Y, Guner Y, Ford HR, Grishin AV. Ubiquitin-editing enzyme A20 promotes tolerance to lipopolysaccharide in enterocytes. J Immunol 2009; 183:1384–92; PMID:19570823; http://dx.doi.org/10.4049/jimmunol.0803987.

    Article  CAS  PubMed  Google Scholar 

  21. Cardozo AK, Heimberg H, Heremans Y, Leeman R, Kutlu B, Kruhøffer M, Ørntoft T, Eizirik DL. A comprehensive analysis of cytokine-induced and nuclear factor-kappa B-dependent genes in primary rat pancreatic beta-cells. J Biol Chem 2001; 276:48879–86; PMID:11687580; http://dx.doi.org/10.1074/jbc.M108658200.

    Article  CAS  PubMed  Google Scholar 

  22. Morrison H. Contributions to the microscopic anatomy of the pancreas by Paul Langerhans (Berlin, 1869). Reprint of the German original with an English translation and an introductory essay. Bull Inst Hist Med 1937; 5:259–97.

    Google Scholar 

  23. Cabrera O, Berman DM, Kenyon NS, Ricordi C, Berggren PO, Caicedo A. The unique cytoarchitecture of human pancreatic islets has implications for islet cell function. Proc Natl Acad Sci U S A 2006; 103:2334–9; PMID:16461897; http://dx.doi.org/10.1073/pnas.0510790103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Federation, I.D. IDF Diabetes Atlas update 2012. (2012).

    Google Scholar 

  25. Peng H, Hagopian W. Environmental factors in the development of Type 1 diabetes. Rev Endocr Metab Disord 2006; 7:149–62; PMID:17203405; http://dx.doi.org/10.1007/s11154-006-9024-y.

    Article  PubMed  Google Scholar 

  26. Notkins AL. Immunologic and genetic factors in type 1 diabetes. J Biol Chem 2002; 277:43545–8; PMID:12270944; http://dx.doi.org/10.1074/jbc.R200012200.

    Article  CAS  PubMed  Google Scholar 

  27. Leibiger IB, Leibiger B, Berggren PO. Insulin signaling in the pancreatic beta-cell. Annu Rev Nutr 2008; 28:233–51; PMID:18481923; http://dx.doi.org/10.1146/annurev.nutr.28.061807.155530.

    Article  CAS  PubMed  Google Scholar 

  28. Imai Y, Dobrian AD, Morris MA, Nadler JL. Islet inflammation: a unifying target for diabetes treatment? Trends Endocrinol Metab 2013;24:351–60; PMID:23484621;http://dx.doi.org/10.1016/j.tem.2013.01.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Verbeeten KC, Elks CE, Daneman D, Ong KK. Association between childhood obesity and subsequent Type 1 diabetes: a systematic review and meta-analysis. Diabet Med 2011; 28:10–8; PMID:21166841; http://dx.doi.org/10.1111/j.1464-5491.2010.03160.x.

    Article  CAS  PubMed  Google Scholar 

  30. Donath MY, Størling J, Maedler K, Mandrup-Poulsen T. Inflammatory mediators and islet beta-cell failure: a link between type 1 and type 2 diabetes. J Mol Med (Berl) 2003; 81:455–70; PMID:12879149; http://dx.doi.org/10.1007/s00109-003-0450-y.

    Article  CAS  Google Scholar 

  31. Marchetti P, Del Prato S, Lupi R, Del Guerra S. The pancreatic beta-cell in human Type 2 diabetes. Nutr Metab Cardiovasc Dis 2006; 16(Suppl 1):S3–6; PMID:16530127; http://dx.doi.org/10.1016/j.numecd.2005.10.017.

    Article  PubMed  Google Scholar 

  32. Tersey SA, Nishiki Y, Templin AT, Cabrera SM, Stull ND, Colvin SC, Evans-Molina C, Rickus JL, Maier B, Mirmira RG. Islet β-cell endoplasmic reticulum stress precedes the onset of type 1 diabetes in the nonobese diabetic mouse model. Diabetes 2012; 61:818–27; PMID:22442300; http://dx.doi.org/10.2337/db11-1293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Donath MY, Shoelson SE. Type 2 diabetes as an inflammatory disease. Nat Rev Immunol 2011; 11:98–107; PMID:21233852; http://dx.doi.org/10.1038/nri2925.

    Article  CAS  PubMed  Google Scholar 

  34. Eizirik DL, Colli ML, Ortis F. The role of inflammation in insulitis and beta-cell loss in type 1 diabetes. Nat Rev Endocrinol 2009; 5:219–26; PMID:19352320; http://dx.doi.org/10.1038/nrendo.2009.21.

    Article  CAS  PubMed  Google Scholar 

  35. Fung EY, Smyth DJ, Howson JM, Cooper JD, Walker NM, Stevens H, Wicker LS, Todd JA. Analysis of 17 autoimmune disease-associated variants in type 1 diabetes identifies 6q23/TNFAIP3 as a susceptibility locus. Genes Immun 2009; 10:188–91; PMID:19110536; http://dx.doi.org/10.1038/gene.2008.99.

    Article  CAS  PubMed  Google Scholar 

  36. Graham RR, Cotsapas C, Davies L, Hackett R, Lessard CJ, Leon JM, Burtt NP, Guiducci C, Parkin M, Gates C, et al. Genetic variants near TNFAIP3 on 6q23 are associated with systemic lupus erythematosus. Nat Genet 2008; 40:1059–61; PMID:19165918; http://dx.doi.org/10.1038/ng.200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Musone SL, Taylor KE, Lu TT, Nititham J, Ferreira RC, Ortmann W, Shifrin N, Petri MA, Kamboh MI, Manzi S, et al. Multiple polymorphisms in the TNFAIP3 region are independently associated with systemic lupus erythematosus. Nat Genet 2008; 40:1062–4; PMID:19165919; http://dx.doi.org/10.1038/ng.202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Plenge RM, Cotsapas C, Davies L, Price AL, de Bakker PI, Maller J, Pe’er I, Burtt NP, Blumenstiel B, DeFelice M, et al. Two independent alleles at 6q23 associated with risk of rheumatoid arthritis. Nat Genet 2007; 39:1477–82; PMID:17982456; http://dx.doi.org/10.1038/ng.2007.27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Thomson W, Barton A, Ke X, Eyre S, Hinks A, Bowes J, Donn R, Symmons D, Hider S, Bruce IN, et al.; Wellcome Trust Case Control Consortium; YEAR Consortium. Rheumatoid arthritis association at 6q23. Nat Genet 2007; 39:1431–3; PMID:17982455; http://dx.doi.org/10.1038/ng.2007.32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tewari M, Wolf FW, Seldin MF, O’Shea KS, Dixit VM, Turka LA. Lymphoid expression and regulation of A20, an inhibitor of programmed cell death. J Immunol 1995; 154:1699–706; PMID:7836754.

    CAS  PubMed  Google Scholar 

  41. Grey ST, Longo C, Shukri T, Patel VI, Csizmadia E, Daniel S, Arvelo MB, Tchipashvili V, Ferran C. Genetic engineering of a suboptimal islet graft with A20 preserves beta cell mass and function. J Immunol 2003; 170:6250–6; PMID:12794157.

    Article  CAS  PubMed  Google Scholar 

  42. Boonyasrisawat W, Eberle D, Bacci S, Zhang YY, Nolan D, Gervino EV, Johnstone MT, Trischitta V, Shoelson SE, Doria A. Tag polymorphisms at the A20 (TNFAIP3) locus are associated with lower gene expression and increased risk of coronary artery disease in type 2 diabetes. Diabetes 2007; 56:499–505; PMID:17259397; http://dx.doi.org/10.2337/db06-0946.

    Article  CAS  PubMed  Google Scholar 

  43. Laybutt DR, Kaneto H, Hasenkamp W, Grey S, Jonas JC, Sgroi DC, Groff A, Ferran C, Bonner-Weir S, Sharma A, et al. Increased expression of antioxidant and antiapoptotic genes in islets that may contribute to beta-cell survival during chronic hyperglycemia. Diabetes 2002; 51:413–23; PMID:11812749; http://dx.doi.org/10.2337/diabetes.51.2.413.

    Article  CAS  PubMed  Google Scholar 

  44. Vereecke L, Beyaert R, van Loo G. Genetic relationships between A20/TNFAIP3, chronic inflammation and autoimmune disease. Biochem Soc Trans 2011; 39:1086–91; PMID:21787353; http://dx.doi.org/10.1042/BST0391086.

    Article  CAS  PubMed  Google Scholar 

  45. Cowley MJ, Weinberg A, Zammit NW, Walters SN, Hawthorne WJ, Loudovaris T, Thomas H, Kay T, Gunton JE, Alexander SI, et al. Human islets express a marked proinflammatory molecular signature prior to transplantation. Cell Transplant 2012; 21:2063–78; PMID:22404979; http://dx.doi.org/10.3727/096368911X627372.

    Article  PubMed  Google Scholar 

  46. Marselli L, Thorne J, Ahn YB, Omer A, Sgroi DC, Libermann T, Otu HH, Sharma A, Bonner-Weir S, Weir GC. Gene expression of purified beta-cell tissue obtained from human pancreas with laser capture microdissection. J Clin Endocrinol Metab 2008; 93:1046–53; PMID:18073315; http://dx.doi.org/10.1210/jc.2007-0931.

    Article  CAS  PubMed  Google Scholar 

  47. Ahn YB, Xu G, Marselli L, Toschi E, Sharma A, Bonner-Weir S, Sgroi DC, Weir GC. Changes in gene expression in beta cells after islet isolation and transplantation using laser-capture microdissection. Diabetologia 2007; 50:334–42; PMID:17180350; http://dx.doi.org/10.1007/s00125-006-0536-5.

    Article  CAS  PubMed  Google Scholar 

  48. Sarkar SA, Kutlu B, Velmurugan K, Kizaka-Kondoh S, Lee CE, Wong R, Valentine A, Davidson HW, Hutton JC, Pugazhenthi S. Cytokine-mediated induction of anti-apoptotic genes that are linked to nuclear factor kappa-B (NF-kappaB) signalling in human islets and in a mouse beta cell line. Diabetologia 2009; 52:1092–101; PMID:19343319; http://dx.doi.org/10.1007/s00125-009-1331-x.

    Article  CAS  PubMed  Google Scholar 

  49. Cooper JT, Stroka DM, Brostjan C, Palmetshofer A, Bach FH, Ferran C. A20 blocks endothelial cell activation through a NF-kappaB-dependent mechanism. J Biol Chem 1996; 271:18068–73; PMID:8663499; http://dx.doi.org/10.1074/jbc.271.30.18068.

    Article  CAS  PubMed  Google Scholar 

  50. Sen R, Baltimore D. Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell 1986; 46:705–16; PMID:3091258; http://dx.doi.org/10.1016/0092-8674(86)90346-6.

    Article  CAS  PubMed  Google Scholar 

  51. Ghosh S, May MJ, Kopp EB. NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. Annu Rev Immunol 1998; 16:225–60; PMID:9597130; http://dx.doi.org/10.1146/annurev.immunol.16.1.225.

    Article  CAS  PubMed  Google Scholar 

  52. Sun SC. Non-canonical NF-κB signaling pathway. Cell Res 2011; 21:71–85; PMID:21173796; http://dx.doi.org/10.1038/cr.2010.177. dx.doi.org/10.1038/cr.2010.177 http://dx.doi.org/10.1038/cr.2010.177.

    Article  CAS  PubMed  Google Scholar 

  53. Hayden MS, Ghosh S. Shared principles in NF-kappaB signaling. Cell 2008; 132:344–62; PMID:18267068; http://dx.doi.org/10.1016/j.cell.2008.01.020.

    Article  CAS  PubMed  Google Scholar 

  54. Kwon G, Corbett JA, Rodi CP, Sullivan P, McDaniel ML. Interleukin-1 beta-induced nitric oxide synthase expression by rat pancreatic beta-cells: evidence for the involvement of nuclear factor kappa B in the signaling mechanism. Endocrinology 1995; 136:4790–5; PMID:7588208; http://dx.doi.org/10.1210/en.136.11.4790.

    Article  CAS  PubMed  Google Scholar 

  55. Giannoukakis N, Rudert WA, Ghivizzani SC, Gambotto A, Ricordi C, Trucco M, Robbins PD. Adenoviral gene transfer of the interleukin-1 receptor antagonist protein to human islets prevents IL-1beta-induced beta-cell impairment and activation of islet cell apoptosis in vitro. Diabetes 1999; 48:1730–6; PMID:10480601; http://dx.doi.org/10.2337/diabetes.48.9.1730.

    Article  CAS  PubMed  Google Scholar 

  56. Giannoukakis N, Rudert WA, Trucco M, Robbins PD. Protection of human islets from the effects of interleukin-1beta by adenoviral gene transfer of an Ikappa B repressor. J Biol Chem 2000; 275:36509–13; PMID:10967112; http://dx.doi.org/10.1074/jbc.M005943200.

    Article  CAS  PubMed  Google Scholar 

  57. Abdelli S, Ansite J, Roduit R, Borsello T, Matsumoto I, Sawada T, Allaman-Pillet N, Henry H, Beckmann JS, Hering BJ, et al. Intracellular stress signaling pathways activated during human islet preparation and following acute cytokine exposure. Diabetes 2004; 53:2815–23; PMID:15504961; http://dx.doi.org/10.2337/diabetes.53.11.2815.

    Article  CAS  PubMed  Google Scholar 

  58. Mokhtari D, Barbu A, Mehmeti I, Vercamer C, Welsh N. Overexpression of the nuclear factor-κB subunit c-Rel protects against human islet cell death in vitro. Am J Physiol Endocrinol Metab 2009; 297:E1067–77; PMID:19706790; http://dx.doi.org/10.1152/ajpendo.00212.2009.

    Article  CAS  PubMed  Google Scholar 

  59. Kutlu B, Darville MI, Cardozo AK, Eizirik DL. Molecular regulation of monocyte chemoattractant protein-1 expression in pancreatic beta-cells. Diabetes 2003; 52:348–55; PMID:12540607; http://dx.doi.org/10.2337/diabetes.52.2.348.

    Article  CAS  PubMed  Google Scholar 

  60. Ortis F, Cardozo AK, Crispim D, Störling J, Mandrup-Poulsen T, Eizirik DL. Cytokine-induced proapoptotic gene expression in insulin-producing cells is related to rapid, sustained, and nonoscillatory nuclear factor-kappaB activation. Mol Endocrinol 2006; 20:1867–79; PMID:16556731; http://dx.doi.org/10.1210/me.2005-0268.

    Article  CAS  PubMed  Google Scholar 

  61. Ortis F, Pirot P, Naamane N, Kreins AY, Rasschaert J, Moore F, Théâtre E, Verhaeghe C, Magnusson NE, Chariot A, et al. Induction of nuclear factor-kappaB and its downstream genes by TNF-alpha and IL-1beta has a pro-apoptotic role in pancreatic beta cells. Diabetologia 2008; 51:1213–25; PMID:18463842; http://dx.doi.org/10.1007/s00125-008-0999-7.

    Article  CAS  PubMed  Google Scholar 

  62. Zammit NW, Tan BM, Walters SN, Liuwantara D, Villanueva JE, K Malle E, Grey ST. Low-Dose Rapamycin Unmasks the Protective Potential of Targeting Intragraft NF-κB for Islet Transplants. Cell Transplant 2012; [Epub ahead of print]. PMID:23127588;http://dx.doi.org/10.3727/096368912X658737.

    Google Scholar 

  63. Kwon G, Corbett JA, Hauser S, Hill JR, Turk J, McDaniel ML. Evidence for involvement of the proteasome complex (26S) and NFkappaB in IL-1beta-induced nitric oxide and prostagland in production by rat islets and RINm5F cells. Diabetes 1998; 47:583–91; PMID:9568691;http://dx.doi.org/10.2337/diabetes.47.4.583.

    Article  CAS  PubMed  Google Scholar 

  64. Sorli CH, Zhang HJ, Armstrong MB, Rajotte RV, Maclouf J, Robertson RP. Basal expression of cyclooxygenase-2 and nuclear factor-interleukin 6 are dominant and coordinately regulated by interleukin 1 in the pancreatic islet. Proc Natl Acad Sci U S A 1998; 95:1788–93; PMID:9465095; http://dx.doi.org/10.1073/pnas.95.4.1788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Moberg L, Johansson H, Lukinius A, Berne C, Foss A, Källen R, Østraat Ø, Salmela K, Tibell A, Tufveson G, et al. Production of tissue factor by pancreatic islet cells as a trigger of detrimental thrombotic reactions in clinical islet transplantation. Lancet 2002; 360:2039–45; PMID:12504401; http://dx.doi.org/10.1016/S0140-6736(02)12020-4.

    Article  CAS  PubMed  Google Scholar 

  66. Bennet W, Sundberg B, Groth CG, Brendel MD, Brandhorst D, Brandhorst H, Bretzel RG, Elgue G, Larsson R, Nilsson B, et al. Incompatibility between human blood and isolated islets of Langerhans: a finding with implications for clinical intraportal islet transplantation? Diabetes 1999; 48:1907–14; PMID:10512353; http://dx.doi.org/10.2337/diabetes.48.10.1907.

    Article  CAS  PubMed  Google Scholar 

  67. Schröppel B, Zhang N, Chen P, Zang W, Chen D, Hudkins KL, Kuziel WA, Sung R, Bromberg JS, Murphy B. Differential expression of chemokines and chemokine receptors in murine islet allografts: the role of CCR2 and CCR5 signaling pathways. J Am Soc Nephrol 2004; 15:1853–61; PMID:15213273; http://dx.doi.org/10.1097/01.ASN.0000130622.48066.D9.

    Article  PubMed  CAS  Google Scholar 

  68. Lee I, Wang L, Wells AD, Ye Q, Han R, Dorf ME, Kuziel WA, Rollins BJ, Chen L, Hancock WW. Blocking the monocyte chemoattractant protein-1/CCR2 chemokine pathway induces permanent survival of islet allografts through a programmed death-1 ligand-1-dependent mechanism. J Immunol 2003; 171:6929–35; PMID:14662900.

    Article  CAS  PubMed  Google Scholar 

  69. Melzi R, Mercalli A, Sordi V, Cantarelli E, Nano R, Maffi P, Sitia G, Guidotti LG, Secchi A, Bonifacio E, et al. Role of CCL2/MCP-1 in islet transplantation. Cell Transplant 2010; 19:1031–46; PMID:20546673; http://dx.doi.org/10.3727/096368910X514639.

    Article  PubMed  Google Scholar 

  70. Darville MI, Eizirik DL. Cytokine induction of Fas gene expression in insulin-producing cells requires the transcription factors NF-kappaB and C/EBP. Diabetes 2001; 50:1741–8; PMID:11473033; http://dx.doi.org/10.2337/diabetes.50.8.1741.

    Article  CAS  PubMed  Google Scholar 

  71. Hartman MG, Lu D, Kim ML, Kociba GJ, Shukri T, Buteau J, Wang X, Frankel WL, Guttridge D, Prentki M, et al. Role for activating transcription factor 3 in stress-induced beta-cell apoptosis. Mol Cell Biol 2004; 24:5721–32; PMID:15199129; http://dx.doi.org/10.1128/MCB.24.13.5721-5732.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Barthson J, Germano CM, Moore F, Maida A, Drucker DJ, Marchetti P, Gysemans C, Mathieu C, Nuñez G, Jurisicova A, et al. Cytokines tumor necrosis factor-α and interferon-γ induce pancreatic β-cell apoptosis through STAT1-mediated Bim protein activation. J Biol Chem 2011; 286:39632–43; PMID:21937453; http://dx.doi.org/10.1074/jbc.M111.253591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Pakala SV, Chivetta M, Kelly CB, Katz JD. In autoimmune diabetes the transition from benign to pernicious insulitis requires an islet cell response to tumor necrosis factor alpha. J Exp Med 1999; 189:1053–62; PMID:10190896; http://dx.doi.org/10.1084/jem.189.7.1053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Loweth AC, Williams GT, James RF, Scarpello JH, Morgan NG. Human islets of Langerhans express Fas ligand and undergo apoptosis in response to interleukin-1beta and Fas ligation. Diabetes 1998; 47:727–32; PMID:9588443; http://dx.doi.org/10.2337/diabetes.47.5.727.

    Article  CAS  PubMed  Google Scholar 

  75. Eldor R, Yeffet A, Baum K, Doviner V, Amar D, Ben-Neriah Y, Christofori G, Peled A, Carel JC, Boitard C, et al. Conditional and specific NF-kappaB blockade protects pancreatic beta cells from diabetogenic agents. Proc Natl Acad Sci USA 2006; 103:5072–7; PMID:16551748; http://dx.doi.org/10.1073/pnas.0508166103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC. Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes 2003; 52:102–10; PMID:12502499; http://dx.doi.org/10.2337/diabetes.52.1.102.

    Article  CAS  PubMed  Google Scholar 

  77. Apostolou I, Hao Z, Rajewsky K, von Boehmer H. Effective destruction of Fas-deficient insulin-producing beta cells in type 1 diabetes. J Exp Med 2003; 198:1103–6; PMID:14530378; http://dx.doi.org/10.1084/jem.20030698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Mathis D, Vence L, Benoist C. beta-Cell death during progression to diabetes. Nature 2001; 414:792–8; PMID:11742411; http://dx.doi.org/10.1038/414792a.

    Article  CAS  PubMed  Google Scholar 

  79. Shapiro AM, Lakey JR, Ryan EA, Korbutt GS, Toth E, Warnock GL, Kneteman NM, Rajotte RV. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med 2000; 343:230–8; PMID:10911004; http://dx.doi.org/10.1056/NEJM200007273430401.

    Article  CAS  PubMed  Google Scholar 

  80. Ballinger W. Proceedings: Isolation and transplantation of islets of Langerhans in rat and monkey. Ann R Coll Surg Engl 1976; 58:327; PMID:821380.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Weber CJ, Hardy MA, Lerner RL, Felig P, Reemtsma K. Hyperinsulinemia and hyperglucagonemia following pancreatic islet transplantation in diabetic rats. Diabetes 1976; 25:944–8; PMID:135703; http://dx.doi.org/10.2337/diab.25.10.944.

    Article  CAS  PubMed  Google Scholar 

  82. Ryan EA, Paty BW, Senior PA, Bigam D, Alfadhli E, Kneteman NM, Lakey JR, Shapiro AM. Five-year follow-up after clinical islet transplantation. Diabetes 2005; 54:2060–9; PMID:15983207; http://dx.doi.org/10.2337/diabetes.54.7.2060.

    Article  CAS  PubMed  Google Scholar 

  83. Balamurugan AN, Bottino R, Giannoukakis N, Smetanka C. Prospective and challenges of islet transplantation for the therapy of autoimmune diabetes. Pancreas 2006; 32:231–43; PMID:16628077; http://dx.doi.org/10.1097/01.mpa.0000203961.16630.2f.

    Article  CAS  PubMed  Google Scholar 

  84. Weir GC, Bonner-Weir S. Islet transplantation as a treatment for diabetes. J Am Optom Assoc 1998; 69:727–32; PMID:9844324.

    CAS  PubMed  Google Scholar 

  85. Lacy PE, Davie JM. Transplantation of pancreatic islets. Annu Rev Immunol 1984; 2:183–98; PMID:6443340; http://dx.doi.org/10.1146/annurev.iy.02.040184.001151.

    Article  CAS  PubMed  Google Scholar 

  86. Shapiro AM, Ricordi C, Hering BJ, Auchincloss H, Lindblad R, Robertson RP, Secchi A, Brendel MD, Berney T, Brennan DC, et al. International trial of the Edmonton protocol for islet transplantation. N Engl J Med 2006; 355:1318–30; PMID:17005949; http://dx.doi.org/10.1056/NEJMoa061267.

    Article  CAS  PubMed  Google Scholar 

  87. Montaña E, Bonner-Weir S, Weir GC. Beta cell mass and growth after syngeneic islet cell transplantation in normal and streptozocin diabetic C57BL/6 mice. J Clin Invest 1993; 91:780–7; PMID:8450059; http://dx.doi.org/10.1172/JCI116297.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Biarnés M, Montolio M, Nacher V, Raurell M, Soler J, Montanya E. Beta-cell death and mass in syngeneically transplanted islets exposed to short-and long-term hyperglycemia. Diabetes 2002; 51:66–72; PMID:11756324; http://dx.doi.org/10.2337/diabetes.51.1.66.

    Article  PubMed  Google Scholar 

  89. Deng S, Ketchum RJ, Kucher T, Weber M, Naji A, Brayman KL. Primary nonfunction of islet xenografts in rat recipients results from non-T-cell-mediated immune responses. Transplant Proc 1997; 29:1726–7; PMID:9142249; http://dx.doi.org/10.1016/S0041-1345(97)00032-8.

    Article  CAS  PubMed  Google Scholar 

  90. Bottino R, Balamurugan AN, Tse H, Thirunavukkarasu C, Ge X, Profozich J, Milton M, Ziegenfuss A, Trucco M, Piganelli JD. Response of human islets to isolation stress and the effect of antioxidant treatment. Diabetes 2004; 53:2559–68; PMID:15448084; http://dx.doi.org/10.2337/diabetes.53.10.2559.

    Article  CAS  PubMed  Google Scholar 

  91. Negi S, Jetha A, Aikin R, Hasilo C, Sladek R, Paraskevas S. Analysis of beta-cell gene expression reveals inflammatory signaling and evidence of dedifferentiation following human islet isolation and culture. PLoS One 2012; 7:e30415; PMID:22299040; http://dx.doi.org/10.1371/journal.pone.0030415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Heimberg H, Heremans Y, Jobin C, Leemans R, Cardozo AK, Darville M, Eizirik DL. Inhibition of cytokine-induced NF-kappaB activation by adenovirus-mediated expression of a NF-kappaB super-repressor prevents beta-cell apoptosis. Diabetes 2001; 50:2219–24; PMID:11574401; http://dx.doi.org/10.2337/diabetes.50.10.2219.

    Article  CAS  PubMed  Google Scholar 

  93. Dupraz P, Cottet S, Hamburger F, Dolci W, Felley-Bosco E, Thorens B. Dominant negative MyD88 proteins inhibit interleukin-1beta /interferon-gamma-mediated induction of nuclear factor kappa B-dependent nitrite production and apoptosis in beta cells. J Biol Chem 2000; 275:37672–8; PMID:10967106; http://dx.doi.org/10.1074/jbc.M005150200.

    Article  CAS  PubMed  Google Scholar 

  94. Rehman KK, Bertera S, Bottino R, Balamurugan AN, Mai JC, Mi Z, Trucco M, Robbins PD. Protection of islets by in situ peptide-mediated transduction of the Ikappa B kinase inhibitor Nemo-binding domain peptide. J Biol Chem 2003; 278:9862–8; PMID:12524423; http://dx.doi.org/10.1074/jbc.M207700200.

    Article  CAS  PubMed  Google Scholar 

  95. Takahashi T, Matsumoto S, Matsushita M, Kamachi H, Tsuruga Y, Kasai H, Watanabe M, Ozaki M, Furukawa H, Umezawa K, et al. Donor pretreatment with DHMEQ improves islet transplantation. J Surg Res 2010; 163:e23–34; PMID:20638688; http://dx.doi.org/10.1016/j.jss.2010.04.044.

    Article  CAS  PubMed  Google Scholar 

  96. Rink JS, Chen X, Zhang X, Kaufman DB. Conditional and specific inhibition of NF-κB in mouse pancreatic β cells prevents cytokine-induced deleterious effects and improves islet survival posttransplant. Surgery 2012; 151:330–9; PMID:21982523; http://dx.doi.org/10.1016/j.surg.2011.07.011.

    Article  PubMed  Google Scholar 

  97. Kim S, Millet I, Kim HS, Kim JY, Han MS, Lee MK, Kim KW, Sherwin RS, Karin M, Lee MS. NF-kappa B prevents beta cell death and autoimmune diabetes in NOD mice. Proc Natl Acad Sci USA 2007; 104:1913–8; PMID:17267600; http://dx.doi.org/10.1073/pnas.0610690104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Chang I, Kim S, Kim JY, Cho N, Kim YH, Kim HS, Lee MK, Kim KW, Lee MS. Nuclear factor kappaB protects pancreatic beta-cells from tumor necrosis factor-alpha-mediated apoptosis. Diabetes 2003; 52:1169–75; PMID:12716748; http://dx.doi.org/10.2337/diabetes.52.5.1169.

    Article  CAS  PubMed  Google Scholar 

  99. Beg AA, Baltimore D. An essential role for NF-kappaB in preventing TNF-alpha-induced cell death. Science 1996; 274:782–4; PMID:8864118; http://dx.doi.org/10.1126/science.274.5288.782.

    Article  CAS  PubMed  Google Scholar 

  100. Thomas HE, Angstetra E, Fernandes RV, Mariana L, Irawaty W, Jamieson EL, Dudek NL, Kay TW. Perturbations in nuclear factor-kappaB or c-Jun N-terminal kinase pathways in pancreatic beta cells confer susceptibility to cytokine-induced cell death. Immunol Cell Biol 2006; 84:20–7; PMID:16277639; http://dx.doi.org/10.1111/j.1440-1711.2005.01397.x.

    Article  CAS  PubMed  Google Scholar 

  101. Cetkovic-Cvrlje M, Eizirik DL. TNF-alpha and IFN-gamma potentiate the deleterious effects of IL-1 beta on mouse pancreatic islets mainly via generation of nitric oxide. Cytokine 1994; 6:399–406; PMID:7948748; http://dx.doi.org/10.1016/1043-4666(94)90064-7.

    Article  CAS  PubMed  Google Scholar 

  102. Kwon G, Corbett JA, Rodi CP, Sullivan P, McDaniel ML. Interleukin-1 beta-induced nitric oxide synthase expression by rat pancreatic beta-cells: evidence for the involvement of nuclear factor kappa B in the signaling mechanism. Endocrinology 1995; 136:4790–5; PMID:7588208; http://dx.doi.org/10.1210/en.136.11.4790.

    Article  CAS  PubMed  Google Scholar 

  103. Wong GH, Elwell JH, Oberley LW, Goeddel DV. Manganous superoxide dismutase is essential for cellular resistance to cytotoxicity of tumor necrosis factor. Cell 1989; 58:923–31; PMID:2476237; http://dx.doi.org/10.1016/0092-8674(89)90944-6.

    Article  CAS  PubMed  Google Scholar 

  104. Wang CY, Mayo MW, Baldwin AS Jr. TNF-and cancer therapy-induced apoptosis: potentiation by inhibition of NF-kappaB. Science 1996;274:784–7; PMID:8864119;http://dx.doi.org/10.1126/science.274.5288.784.

    Article  CAS  PubMed  Google Scholar 

  105. Van Antwerp DJ, Martin SJ, Kafri T, Green DR, Verma IM. Suppression of TNF-alpha-induced apoptosis by NF-kappaB. Science 1996;274:787–9; PMID:8864120; http://dx.doi.org/10.1126/science.274.5288.787.

    Article  PubMed  Google Scholar 

  106. Ferran C, Stroka DM, Badrichani AZ, Cooper JT, Wrighton CJ, Soares M, Grey ST, Bach FH. A20 inhibits NF-kappaB activation in endothelial cells without sensitizing to tumor necrosis factor-mediated apoptosis. Blood 1998; 91:2249–58; PMID:9516122.

    CAS  PubMed  Google Scholar 

  107. Karin M, Lin A. NF-kappaB at the crossroads of life and death. Nat Immunol 2002; 3:221–7; PMID:11875461; http://dx.doi.org/10.1038/ni0302-221.

    Article  CAS  PubMed  Google Scholar 

  108. Bach FH, Ferran C, Hechenleitner P, Mark W, Koyamada N, Miyatake T, Winkler H, Badrichani A, Candinas D, Hancock WW. Accommodation of vascularized xenografts: expression of “protective genes” by donor endothelial cells in a host Th2 cytokine environment. Nat Med 1997; 3:196–204; PMID:9018239; http://dx.doi.org/10.1038/nm0297-196.

    Article  CAS  PubMed  Google Scholar 

  109. Grey ST, Lock J, Bach FH, Ferran C. Adenovirus-mediated gene transfer of A20 in murine islets inhibits Fas-induced apoptosis. Transplant Proc 2001; 33:577–8; PMID:11266965; http://dx.doi.org/10.1016/S0041-1345(00)02149-7.

    Article  CAS  PubMed  Google Scholar 

  110. Grey ST, Arvelo MB, Hasenkamp WM, Bach FH, Ferran C. Adenovirus-mediated gene transfer of the anti-apoptotic protein A20 in rodent islets inhibits IL-1 beta-induced NO release. Transplant Proc 1999; 31:789; PMID:10083338; http://dx.doi.org/10.1016/S0041-1345(98)01769-2.

    Article  CAS  PubMed  Google Scholar 

  111. Huang X, Moore DJ, Ketchum RJ, Nunemaker CS, Kovatchev B, McCall AL, Brayman KL. Resolving the conundrum of islet transplantation by linking metabolic dysregulation, inflammation, and immune regulation. Endocr Rev 2008; 29:603–30; PMID:18664617; http://dx.doi.org/10.1210/er.2008-0006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Zammit NW, Walters SN, Villanueva JE, Grey ST. Re-wiring the molecular circuitry of the allograft to promote tolerance. in American Transplant Congress (Wiley, Washington State Convention & Trade Center, Seattle, WA, 2013).

    Google Scholar 

  113. Siracuse JJ, Fisher MD, da Silva CG, Peterson CR, Csizmadia E, Moll HP, Damrauer SM, Studer P, Choi LY, Essayagh S, et al. A20-mediated modulation of inflammatory and immune responses in aortic allografts and development of transplant arteriosclerosis. Transplantation 2012; 93:373–82; PMID:22245872; http://dx.doi.org/10.1097/TP.0b013e3182419829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Norlin S, Ahlgren U, Edlund H. Nuclear factor-kappaB activity in beta-cells is required for glucose-stimulated insulin secretion. Diabetes 2005; 54:125–32; PMID:15616019; http://dx.doi.org/10.2337/diabetes.54.1.125.

    Article  CAS  PubMed  Google Scholar 

  115. Cardozo AK, Kruhøffer M, Leeman R, Orntoft T, Eizirik DL. Identification of novel cytokine-induced genes in pancreatic beta-cells by high-density oligonucleotide arrays. Diabetes 2001; 50:909–20; PMID:11334433; http://dx.doi.org/10.2337/diabetes.50.5.909.

    Article  CAS  PubMed  Google Scholar 

  116. Roytblat L, Rachinsky M, Fisher A, Greemberg L, Shapira Y, Douvdevani A, Gelman S. Raised interleukin-6 levels in obese patients. Obes Res 2000; 8:673–5; PMID:11225716; http://dx.doi.org/10.1038/oby.2000.86.

    Article  CAS  PubMed  Google Scholar 

  117. Uysal KT, Wiesbrock SM, Marino MW, Hotamisligil GS. Protection from obesity-induced insulin resistance in mice lacking TNF-alpha function. Nature 1997; 389:610–4; PMID:9335502; http://dx.doi.org/10.1038/39335.

    Article  CAS  PubMed  Google Scholar 

  118. Hotamisligil GS, Arner P, Caro JF, Atkinson RL, Spiegelman BM. Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. J Clin Invest 1995; 95:2409–15; PMID:7738205; http://dx.doi.org/10.1172/JCI117936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Harbeck MC, Louie DC, Howland J, Wolf BA, Rothenberg PL. Expression of insulin receptor mRNA and insulin receptor substrate 1 in pancreatic islet beta-cells. Diabetes 1996; 45:711–7; PMID:8635642; http://dx.doi.org/10.2337/diab.45.6.711.

    Article  CAS  PubMed  Google Scholar 

  120. Muller D, Huang GC, Amiel S, Jones PM, Persaud SJ. Identification of insulin signaling elements inhuman beta-cells: autocrine regulation of insulin gene expression. Diabetes 2006; 55:2835–42; PMID:17003350; http://dx.doi.org/10.2337/db06-0532.

    Article  CAS  PubMed  Google Scholar 

  121. Muller D, Jones PM, Persaud SJ. Autocrine anti-apoptotic and proliferative effects of insulin in pancreatic beta-cells. FEBS Lett 2006; 580:6977–80; PMID:17161395; http://dx.doi.org/10.1016/j.febslet.2006.11.066.

    Article  CAS  PubMed  Google Scholar 

  122. Okada T, Liew CW, Hu J, Hinault C, Michael MD, Krtzfeldt J, Yin C, Holzenberger M, Stoffel M, Kulkarni RN. Insulin receptors in beta-cells are critical for islet compensatory growth response to insulin resistance. Proc Natl Acad Sci U S A 2007; 104:8977–82; PMID:17416680; http://dx.doi.org/10.1073/pnas.0608703104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Aguirre V, Uchida T, Yenush L, Davis R, White MF. The c-Jun NH(2)-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser(307). J Biol Chem 2000; 275:9047–54; PMID:10722755; http://dx.doi.org/10.1074/jbc.275.12.9047.

    Article  CAS  PubMed  Google Scholar 

  124. Gao Z, Hwang D, Bataille F, Lefevre M, York D, Quon MJ, Ye J. Serine phosphorylation of insulin receptor substrate 1 by inhibitor kappa B kinase complex. J Biol Chem 2002; 277:48115–21; PMID:12351658; http://dx.doi.org/10.1074/jbc.M209459200.

    Article  CAS  PubMed  Google Scholar 

  125. Hotamisligil GS, Peraldi P, Budavari A, Ellis R, White MF, Spiegelman BM. IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha-and obesity-induced insulin resistance. Science 1996; 271:665–8; PMID:8571133; http://dx.doi.org/10.1126/science.271.5249.665.

    Article  CAS  PubMed  Google Scholar 

  126. Yin MJ, Yamamoto Y, Gaynor RB. The anti-inflammatory agents aspirin and salicylate inhibit the activity of I(kappa)B kinase-beta. Nature 1998; 396:77–80; PMID:9817203; http://dx.doi.org/10.1038/23948.

    Article  CAS  PubMed  Google Scholar 

  127. Hundal RS, Petersen KF, Mayerson AB, Randhawa PS, Inzucchi S, Shoelson SE, Shulman GI. Mechanism by which high-dose aspirin improves glucose metabolism in type 2 diabetes. J Clin Invest 2002;109:1321–6; PMID:12021247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Lee J, Nakagiri T, Oto T, Harada M, Morii E, Shintani Y, Inoue M, Iwakura Y, Miyoshi S, Okumura M, et al. IL-6 amplifier, NF-κB-triggered positive feedback for IL-6 signaling, in grafts is involved in allogeneic rejection responses. J Immunol 2012; 189:1928–36; PMID:22798669; http://dx.doi.org/10.4049/jimmunol.1103613.

    Article  CAS  PubMed  Google Scholar 

  129. Shrikhande GV, Scali ST, da Silva CG, Damrauer SM, Csizmadia E, Putheti P, Matthey M, Arjoon R, Patel R, Siracuse JJ, et al. O-glycosylation regulates ubiquitination and degradation of the anti-inflammatory protein A20 to accelerate atherosclerosis in diabetic ApoE-null mice. PLoS One 2010; 5:e14240; PMID:21151899; http://dx.doi.org/10.1371/journal.pone.0014240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Wellen KE, Hotamisligil GS. Inflammation, stress, and diabetes. J Clin Invest 2005; 115:1111–9; PMID:15864338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shane T. Grey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Zammit, N.W., Grey, S.T. (2014). Emerging Roles for A20 in Islet Biology and Pathology. In: Ferran, C. (eds) The Multiple Therapeutic Targets of A20. Advances in Experimental Medicine and Biology, vol 809. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0398-6_9

Download citation

Publish with us

Policies and ethics