Skip to main content

Role of Exhaled Biomarkers, Volatiles, and Breath Condensate

  • Chapter
  • First Online:
Studies on Respiratory Disorders

Abstract

Analysis of biomarkers associated with diseases and disorders in the breath is attractive in clinical diagnoses and management because the sampling is noninvasive. This approach is further strengthened by an increasing evidence of the correlation between exhaled biomarker patterns and the occurrence of certain diseases and disorders. Exhaled biomarkers include both volatile and nonvolatile molecules. Exhaled gases, such as nitric oxide and carbon monoxide, are easily detectable in breath, and their contents have been used to monitor inflammation associated with pulmonary pathologies. In addition, there are volatile organic compounds (VOCs) which are related to various metabolic processes within the body. The profiling of the VOCs in breath-gases, referring to a kind of metabolomics called “breathomics,” attracts increasing interest in clinical diagnosis and monitoring purposes in human diseases. The exhaled breath condensate (EBC) contains nonvolatile components, mainly from the airway lining fluid. Substances measured in EBC include oxidative stress and inflammatory mediators, such as arachidonic acid derivatives, reactive oxygen/nitrogen species, reduced and oxidized glutathione, and inflammatory cytokines. Although exhaled biomarkers have great potential, their reliability as gold standards is plagued by critical issues such as reproducibility, variability, and sensitivity. In this chapter, the roles of volatile and nonvolatile biomarkers in the breath are reviewed. The full potential of this line of investigation in the occurrence of methodological and technological advancements is promising.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AMP:

Adenosine monophosphate

ALF:

Airway lining fluid

CO:

Carbon monoxide

COPD:

Chronic obstructive pulmonary disease

COX:

Cyclooxygenases

Cys:

Cysteine

eNose:

Electronic nose

ELISA:

Enzyme immunoassay

EBC:

Exhaled breath condensate

FeNO:

Fractional exhaled nitric oxide

GC/MS:

Gas chromatography/mass spectrometry

GSH:

Glutathione

H2O2 :

Hydrogen peroxide

5-LO:

5-Lipoxygenases

LC/MS:

Liquid chromatography/mass spectrometry

NO:

Nitric oxide

PLA2:

Phospholipase A2

ONOO :

Peroxynitrite

RIA:

Radioimmunoassay

ROS:

Reactive oxygen species

RNS:

Reactive nitrogen species

VOCs:

Volatile organic compounds

References

  1. Phillips M, Herrera J, Krishnan S, Zain M, Greenberg J, Cataneo RN (1999) Variation in volatile organic compounds in the breath of normal humans. J Chromatogr B Biomed Sci Appl 729:75–88

    PubMed  CAS  Google Scholar 

  2. Horvath I, Hunt J, Barnes PJ, Alving K, Antczak A, Baraldi E et al (2005) Exhaled breath condensate: methodological recommendations and unresolved questions. Eur Respir J 26: 523–548

    PubMed  CAS  Google Scholar 

  3. Hunt J (2007) Exhaled breath condensate: an overview. Immunol Allergy Clin North Am 27:587–596

    PubMed Central  PubMed  Google Scholar 

  4. Montuschi P (2007) Analysis of exhaled breath condensate in respiratory medicine: methodological aspects and potential clinical applications. Ther Adv Respir Dis 1:5–23

    PubMed  Google Scholar 

  5. Davis MD, Montpetit A, Hunt J (2012) Exhaled breath condensate: an overview. Immunol Allergy Clin North Am 32:363–375

    PubMed Central  PubMed  Google Scholar 

  6. Mochalski P, King J, Unterkofler K, Amann A (2013) Stability of selected volatile breath constituents in Tedlar, Kynar and Flexfilm sampling bags. Analyst 138:1405–1418

    PubMed  CAS  Google Scholar 

  7. Nakamura T, Tu S, Akhtar MW, Sunico CR, Okamoto S, Lipton SA (2013) Aberrant protein s-nitrosylation in neurodegenerative diseases. Neuron 78:596–614

    PubMed  CAS  Google Scholar 

  8. Mangiapane H (2012) Cardiovascular disease and diabetes. Adv Exp Med Biol 771:219–228

    PubMed  Google Scholar 

  9. Toda N, Nakanishi S, Tanabe S (2013) Aldosterone affects blood flow and vascular tone regulated by endothelium-derived NO: therapeutic implications. Br J Pharmacol 168:519–533

    PubMed Central  PubMed  CAS  Google Scholar 

  10. Grasemann H, Ratjen F (2012) Nitric oxide and L-arginine deficiency in cystic fibrosis. Curr Pharm Des 18:726–736

    PubMed  CAS  Google Scholar 

  11. Petsky HL, Cates CJ, Li A, Kynaston JA, Turner C, Chang AB (2009) Tailored interventions based on exhaled nitric oxide versus clinical symptoms for asthma in children and adults. Cochrane Database Syst Rev: CD006340

    Google Scholar 

  12. Peirsman EJ, Carvelli TJ, Hage PY, Hanssens LS, Pattyn L, Raes MM et al (2013) Exhaled nitric oxide in childhood allergic asthma management a randomized controlled trial. Pediatr Pulmonol. doi: 10.1002/ppul.22873. [Epub ahead of print]

  13. Girvan HM, Munro AW (2013) Heme sensor proteins. J Biol Chem 288:13194–13203

    PubMed  CAS  Google Scholar 

  14. Rochette L, Cottin Y, Zeller M, Vergely C (2013) Carbon monoxide: mechanisms of action and potential clinical implications. Pharmacol Ther 137:133–152

    PubMed  CAS  Google Scholar 

  15. Ryter SW, Choi AM (2013) Carbon monoxide in exhaled breath testing and therapeutics. J Breath Res 7:017111

    PubMed Central  PubMed  Google Scholar 

  16. van de Kant KD, van der Sande LJ, Jobsis Q, van Schayck OC, Dompeling E (2012) Clinical use of exhaled volatile organic compounds in pulmonary diseases: a systematic review. Respir Res 13:117

    PubMed Central  PubMed  Google Scholar 

  17. Gahleitner F, Guallar-Hoyas C, Beardsmore CS, Pandya HC, Thomas CP (2013) Metabolomics pilot study to identify volatile organic compound markers of childhood asthma in exhaled breath. Bioanalysis 5:2239–2247

    PubMed  CAS  Google Scholar 

  18. Dragonieri S, Schot R, Mertens BJ, Le Cessie S, Gauw SA, Spanevello A et al (2007) An electronic nose in the discrimination of patients with asthma and controls. J Allergy Clin Immunol 120:856–862

    PubMed  Google Scholar 

  19. Ibrahim B, Basanta M, Cadden P, Singh D, Douce D, Woodcock A et al (2011) Non-invasive phenotyping using exhaled volatile organic compounds in asthma. Thorax 66:804–809

    PubMed  Google Scholar 

  20. Robroeks CM, van Berkel JJ, Jobsis Q, van Schooten FJ, Dallinga JW, Wouters EF et al (2013) Exhaled volatile organic compounds predict exacerbations of childhood asthma in a 1-year prospective study. Eur Respir J 42:98–106

    PubMed  CAS  Google Scholar 

  21. van de Kant KD, van Berkel JJ, Jobsis Q, Lima Passos V, Klaassen EM, van der Sande L et al (2013) Exhaled breath profiling in diagnosing wheezy preschool children. Eur Respir J 41: 183–188

    PubMed  Google Scholar 

  22. Fens N, Zwinderman AH, van der Schee MP, de Nijs SB, Dijkers E, Roldaan AC et al (2009) Exhaled breath profiling enables discrimination of chronic obstructive pulmonary disease and asthma. Am J Respir Crit Care Med 180:1076–1082

    PubMed  CAS  Google Scholar 

  23. Sethi S, Nanda R, Chakraborty T (2013) Clinical application of volatile organic compound analysis for detecting infectious diseases. Clin Microbiol Rev 26:462–475

    PubMed  CAS  Google Scholar 

  24. Scott-Thomas A, Epton M, Chambers S (2013) Validating a breath collection and analysis system for the new tuberculosis breath test. J Breath Res 7:037108

    PubMed  Google Scholar 

  25. Manginell RP, Pimentel AS, Mowry CD, Mangan MA, Moorman MW, Allen A et al (2013) Diagnostic potential of the pulsed discharged helium ionization detector (PDHID) for pathogenic Mycobacterial volatile biomarkers. J Breath Res 7:037107

    PubMed  Google Scholar 

  26. Zhu J, Jimenez-Diaz J, Bean HD, Daphtary NA, Aliyeva MI, Lundblad LK et al (2013) Robust detection of P. aeruginosa and S. aureus acute lung infections by secondary electrospray ionization-mass spectrometry (SESI-MS) breathprinting: from initial infection to clearance. J Breath Res 7:037106

    PubMed  Google Scholar 

  27. de Heer K, van der Schee MP, Zwinderman K, van den Berk IA, Visser CE, van Oers R et al (2013) Electronic nose technology for detection of invasive pulmonary aspergillosis in prolonged chemotherapy-induced neutropenia: a proof-of-principle study. J Clin Microbiol 51: 1490–1495

    PubMed Central  PubMed  Google Scholar 

  28. Khalid TY, Saad S, Greenman J, de Lacy Costello B, Probert CS, Ratcliffe NM (2013) Volatiles from oral anaerobes confounding breath biomarker discovery. J Breath Res 7:017114

    PubMed  CAS  Google Scholar 

  29. Bajtarevic A, Ager C, Pienz M, Klieber M, Schwarz K, Ligor M et al (2009) Noninvasive detection of lung cancer by analysis of exhaled breath. BMC Cancer 9:348

    PubMed Central  PubMed  Google Scholar 

  30. Ligor M, Ligor T, Bajtarevic A, Ager C, Pienz M, Klieber M et al (2009) Determination of volatile organic compounds in exhaled breath of patients with lung cancer using solid phase microextraction and gas chromatography mass spectrometry. Clin Chem Lab Med 47: 550–560

    PubMed  CAS  Google Scholar 

  31. Phillips M, Altorki N, Austin JH, Cameron RB, Cataneo RN, Greenberg J et al (2007) Prediction of lung cancer using volatile biomarkers in breath. Cancer Biomark 3:95–109

    PubMed  CAS  Google Scholar 

  32. Ulanowska A, Kowalkowski T, Trawinska E, Buszewski B (2011) The application of statistical methods using VOCs to identify patients with lung cancer. J Breath Res 5:046008

    PubMed  Google Scholar 

  33. Buszewski B, Ulanowska A, Kowalkowski T, Cieslinski K (2012) Investigation of lung cancer biomarkers by hyphenated separation techniques and chemometrics. Clin Chem Lab Med 50:573–581

    CAS  Google Scholar 

  34. Subramaniam S, Thakur RK, Yadav VK, Nanda R, Chowdhury S, Agrawal A (2013) Lung cancer biomarkers: state of the art. J Carcinog 12:3

    PubMed Central  PubMed  CAS  Google Scholar 

  35. Paff T, van der Schee MP, Daniels JM, Pals G, Postmus PE, Sterk PJ et al (2013) Exhaled molecular profiles in the assessment of cystic fibrosis and primary ciliary dyskinesia. J Cyst Fibros 12:454–460

    PubMed  CAS  Google Scholar 

  36. Robroeks CM, van Berkel JJ, Dallinga JW, Jobsis Q, Zimmermann LJ, Hendriks HJ et al (2010) Metabolomics of volatile organic compounds in cystic fibrosis patients and controls. Pediatr Res 68:75–80

    PubMed  CAS  Google Scholar 

  37. Kovacs D, Bikov A, Losonczy G, Murakozy G, Horvath I (2013) Follow up of lung transplant recipients using an electronic nose. J Breath Res 7:017117

    PubMed  Google Scholar 

  38. Beck O, Stephanson N, Sandqvist S, Franck J (2013) Detection of drugs of abuse in exhaled breath using a device for rapid collection: comparison with plasma, urine and self-reporting in 47 drug users. J Breath Res 7:026006

    PubMed  CAS  Google Scholar 

  39. Goerl T, Kischkel S, Sawacki A, Fuchs P, Miekisch W, Schubert JK (2013) Volatile breath biomarkers for patient monitoring during haemodialysis. J Breath Res 7:017116

    PubMed  Google Scholar 

  40. Kohl I, Beauchamp J, Cakar-Beck F, Herbig J, Dunkl J, Tietje O et al (2013) First observation of a potential non-invasive breath gas biomarker for kidney function. J Breath Res 7:017110

    PubMed  Google Scholar 

  41. Morisco F, Aprea E, Lembo V, Fogliano V, Vitaglione P, Mazzone G et al (2013) Rapid “breath-print” of liver cirrhosis by proton transfer reaction time-of-flight mass spectrometry. A pilot study. PLoS One 8:e59658

    PubMed Central  PubMed  CAS  Google Scholar 

  42. Hunt J (2007) Exhaled breath condensate—an overview. Immunol Allergy Clin North Am 27:587 (9 pp)

    Google Scholar 

  43. Effros RM, Casaburi R, Porszasz J, Morales EM, Rehan V (2012) Exhaled breath condensates: analyzing the expiratory plume. Am J Respir Crit Care Med 185:803–804

    PubMed Central  PubMed  Google Scholar 

  44. Effros RM, Biller J, Foss B, Hoagland K, Dunning MB, Castillo D et al (2003) A simple method for estimating respiratory solute dilution in exhaled breath condensates. Am J Respir Crit Care Med 168:1500–1505

    PubMed  Google Scholar 

  45. Hüttmann E-M, Greulich T, Hattesohl A, Schmid S, Noeske S, Herr C et al (2011) Comparison of two devices and two breathing patterns for exhaled breath condensate sampling. PLoS One 6:e27467

    PubMed Central  PubMed  Google Scholar 

  46. Effros RM, Bosbous M, Foss B, Shaker R, Biller J (2003) Exhaled breath condensates: a potential novel technique for detecting aspiration. Am J Med 115(Suppl 3A):137S–143S

    PubMed  Google Scholar 

  47. Effros RM, Hoagland KW, Bosbous M, Castillo D, Foss B, Dunning M et al (2002) Dilution of respiratory solutes in exhaled condensates. Am J Respir Crit Care Med 165:663–669

    PubMed  Google Scholar 

  48. Zacharasiewicz A, Wilson N, Bush A (2003) Dilution of respiratory solutes in exhaled condensates. Am J Respir Crit Care Med 167:802

    PubMed  Google Scholar 

  49. Effros RM, Peterson B, Casaburi R, Su J, Dunning M, Torday J et al (2005) Epithelial lining fluid solute concentrations in chronic obstructive lung disease patients and normal subjects. J Appl Physiol 99:1286–1292

    PubMed  CAS  Google Scholar 

  50. Carter SR, Davis CS, Kovacs EJ (2012) Exhaled breath condensate collection in the mechanically ventilated patient. Respir Med 106:601–613

    PubMed Central  PubMed  Google Scholar 

  51. Roca O, Gomez-Olles S, Cruz MJ, Munoz X, Griffiths MJ, Masclans JR (2010) Mechanical ventilation induces changes in exhaled breath condensate of patients without lung injury. Respir Med 104:822–828

    PubMed  Google Scholar 

  52. Roca O, Gomez-Olles S, Cruz MJ, Munoz X, Griffiths MJ, Masclans JR (2008) Effects of salbutamol on exhaled breath condensate biomarkers in acute lung injury: prospective analysis. Crit Care 12:R72

    PubMed Central  PubMed  Google Scholar 

  53. Vaughan J, Ngamtrakulpanit L, Pajewski TN, Turner R, Nguyen TA, Smith A et al (2003) Exhaled breath condensate pH is a robust and reproducible assay of airway acidity. Eur Respir J 22:889–894

    PubMed  CAS  Google Scholar 

  54. Harding SM (2004) Gastroesophageal reflux as an asthma trigger: acid stress. Chest 126: 1398–1399

    PubMed  Google Scholar 

  55. Ricciardolo FL, Rado V, Fabbri LM, Sterk PJ, Maria GUD, Geppetti P (1999) Bronchoconstriction induced by citric acid inhalation in guinea pigs: role of tachykinins, bradykinin, and nitric oxide. Am J Respir Crit Care Med 159:557–562

    PubMed  CAS  Google Scholar 

  56. Zhao J, Shimizu Y, Dobashi K, Kawata T, Ono A, Yanagitani N et al (2008) The relationship between oxidative stress and acid stress in adult patients with mild asthma. J Investig Allergol Clin Immunol 18:41–45

    PubMed  CAS  Google Scholar 

  57. Hunt JF, Fang K, Malik R, Snyder A, Malhotra N, Platts-Mills TAE et al (2000) Endogenous airway acidification implications for asthma pathophysiology. Am J Respir Crit Care Med 161:694–699

    PubMed  CAS  Google Scholar 

  58. Antus B, Barta I, Csiszer E, Kelemen K (2012) Exhaled breath condensate pH in patients with cystic fibrosis. Inflamm Res 61:1141–1147

    PubMed  CAS  Google Scholar 

  59. MacNee W, Rennard SI, Hunt JF, Edwards LD, Miller BE, Locantore NW et al (2011) Evaluation of exhaled breath condensate pH as a biomarker for COPD. Respir Med 105:1037–1045

    PubMed  Google Scholar 

  60. Machen TE (2006) Innate immune response in CF airway epithelia: hyperinflammatory. Am J Physiol Cell Physiol 291:C218–C230

    PubMed  CAS  Google Scholar 

  61. Hunt JF, Gaston B (2008) Airway acidification and gastroesophageal reflux. Curr Allergy Asthma Rep 8:79–84

    PubMed  CAS  Google Scholar 

  62. Hunt J (2006) Airway acidification: interactions with nitrogen oxides and airway inflammation. Curr Allergy Asthma Rep 6:47–52

    PubMed  CAS  Google Scholar 

  63. Effros RM (2001) Endogenous airway acidification: implications for asthma pathology. Am J Respir Crit Care Med 163:293–294

    PubMed  CAS  Google Scholar 

  64. Lin J-L, Bonnichsen MH, Thomas PS (2011) Standardization of exhaled breath condensate: effects of different de-aeration protocols on pH and H2O2 concentrations. J Breath Res 5:011001 (5 pp)

    Google Scholar 

  65. Antus B, Barta I, Kullmann T, Lazar Z, Valyon M, Horvath I et al (2010) Assessment of exhaled breath condensate pH in exacerbations of asthma and chronic obstructive pulmonary disease. Am J Respir Crit Care Med 182:1492–1497

    PubMed  Google Scholar 

  66. Holtzman MJ (1992) Arachidonic acid metabolism in airway epithelial cells. Annu Rev Physiol 54:303–329

    PubMed  CAS  Google Scholar 

  67. Tesfaigzi Y, Kluger M, Kozak W (2001) Clinical and cellular effects of cytochrome P-450 modulators. Respir Physiol 128:79–87

    PubMed  CAS  Google Scholar 

  68. Farooque SP, Lee TH (2009) Aspirin-sensitive respiratory disease. Annu Rev Physiol 71: 465–487

    PubMed  CAS  Google Scholar 

  69. Spector AA (2009) Arachidonic acid cytochrome P450 epoxygenase pathway. J Lipid Res 50:S52–S56

    PubMed Central  PubMed  Google Scholar 

  70. Zordoky BNM, El-Kadi AOS (2010) Effect of cytochrome P450 polymorphism on arachidonic acid metabolism and their impact on cardiovascular diseases. Pharmacol Ther 125: 446–463

    PubMed  CAS  Google Scholar 

  71. Folco G, Murphy RC (2006) Eicosanoid transcellular biosynthesis: from cell-cell interactions to in vivo tissue responses. Pharmacol Rev 58:375–388

    PubMed  CAS  Google Scholar 

  72. Peters-Golden M, Henderson WR (2007) Leukotrienes. N Engl J Med 357:1841–1854

    PubMed  CAS  Google Scholar 

  73. Busse WW (1998) Leukotrienes and inflammation. Am J Respir Crit Care Med 157:S210–S213

    CAS  Google Scholar 

  74. Morrow JD, Hill KE, Burk RF, Nammour TM, Badr KF, Roberts LJ II (1990) A series of prostaglandin F2-like compounds are produced in vivo in humans by a non-cyclooxygenase, free radical-catalyzed mechanism. Proc Natl Acad Sci U S A 87:9383–9387

    PubMed Central  PubMed  CAS  Google Scholar 

  75. Tsuburai T, Mita H, Tsurikisawa N, Oshikata C, Ono E, Fukutomi Y et al (2008) Relationship between cysteinyl leukotriene in exhaled breath condensate and the severity of asthma in adult asthmatics in Japan. Jpn J Allergol 57:121–129

    CAS  Google Scholar 

  76. Montuschi P, Kharitonov SA, Ciabattoni G, Barnes PJ (2003) Exhaled leukotrienes and prostaglandins in COPD. Thorax 58:585–588

    PubMed Central  PubMed  CAS  Google Scholar 

  77. Malerba M, Montuschi P (2012) Non-invasive biomarkers of lung inflammation in smoking subjects. Curr Med Chem 19:187–196

    PubMed  CAS  Google Scholar 

  78. Baraldi E, Ghiro L, Piovan V, Carraro S, Ciabattoni G, Barnes PJ et al (2003) Increased exhaled 8-isoprostane in childhood asthma. Chest 124:25–31

    PubMed  CAS  Google Scholar 

  79. Antczak A, Montuschi P, Kharitonov S, Gorski P, Barnes PJ (2002) Increased exhaled cysteinyl-leukotrienes and 8-isoprostane in aspirin-induced asthma. Am J Respir Crit Care Med 166:301–306

    PubMed  Google Scholar 

  80. Makrisa D, Paraskakisa E, Korakasd P, Karagiannakisd E, Sourvinosc G, Siafakasa NM et al (2008) Exhaled breath condensate 8-isoprostane, clinical parameters, radiological indices and airway inflammation in COPD. Respiration 75:138–144

    Google Scholar 

  81. Kinnula VL, Ilumets H, Myllärniemi M, Sovijärvi A, Rytilä P (2007) 8-Isoprostane as a marker of oxidative stress in nonsymptomatic cigarette smokers and COPD. Eur Respir J 29: 51–55

    PubMed  CAS  Google Scholar 

  82. Montuschi P, Ciabattoni G, Paredi P, Pantelidis P, du Bois RM, Kharitonov SA et al (1998) 8-Isoprostane as a biomarker of oxidative stress in interstitial lung diseases. Am J Respir Crit Care Med 158:1524–1527

    PubMed  CAS  Google Scholar 

  83. Latzin P, Beck-Ripp J, Hartl D, Bartenstein A, Noss J, Griese M (2007) 8-Isoprostane in nasally exhaled breath condensate in different pediatric lung diseases. Eur J Med Res 12: 21–25

    PubMed  CAS  Google Scholar 

  84. Montuschi P, Kharitonov SA, Ciabattoni G, Corradi M, van Rensen L, Geddes DM et al (2000) Exhaled 8-isoprostane as a new non-invasive biomarker of oxidative stress in cystic fibrosis. Thorax 55:205–209

    PubMed Central  PubMed  CAS  Google Scholar 

  85. Caballero S, Martorell A, Escribano A, Belda J (2013) Markers of airway inflammation in the exhaled breath condensate of preschool wheezers. J Investig Allergol Clin Immunol 23:7–13

    PubMed  CAS  Google Scholar 

  86. Serrano CD, Valero A, Bartra J, Roca-Ferrer J, Munoz-Cano R, Sanchez-Lopez J et al (2012) Nasal and bronchial inflammation after nasal allergen challenge: assessment using noninvasive methods. J Investig Allergol Clin Immunol 22:351–356

    PubMed  CAS  Google Scholar 

  87. Ojoo JC, Mulrennan SA, Kastelik JA, Morice AH, Redington AE (2005) Exhaled breath condensate pH and exhaled nitric oxide in allergic asthma and in cystic fibrosis. Thorax 60:22–26

    PubMed Central  PubMed  CAS  Google Scholar 

  88. Montuschi P, Barnes PJ (2002) Analysis of exhaled breath condensate for monitoring airway inflammation. Trends Pharmacol Sci 23:232–237

    PubMed  CAS  Google Scholar 

  89. Donnelly LE (2010) Exhaled breath condensate: nitric oxide-related compounds. Eur Respir Soc Monogr 49:207–216

    Google Scholar 

  90. Balint B, Kharitonov SA, Hanazawa T, Donnelly LE, Shah PL, Hodson ME et al (2001) Increased nitrotyrosine in exhaled breath condensate in cystic fibrosis. Eur Respir J 17: 1201–1207

    PubMed  CAS  Google Scholar 

  91. Lärstad M, Söderling A-S, Caidahl K, Olin A-C (2005) Selective quantification of free 3-nitrotyrosine in exhaled breath condensate in asthma using gas chromatography/tandem mass spectrometry. Nitric Oxide 13:134–144

    PubMed  Google Scholar 

  92. Conventz A, Musiol A, Brodowsky C, Müller-Lux A, Dewes P, Kraus T et al (2007) Simultaneous determination of 3-nitrotyrosine, tyrosine, hydroxyproline and proline in exhaled breath condensate by hydrophilic interaction liquid chromatography/electrospray ionization tandem mass spectrometry. J Chromatogr B 860:78–85

    CAS  Google Scholar 

  93. Corradi M, Montuschi P, Connelly LE, Pesci A, Kharitonov SA, Barnes PJ (2001) Increased nitrosothiols in exhaled breath condensate in inflammatory airway diseases. Am J Respir Crit Care Med 163:854–858

    PubMed  CAS  Google Scholar 

  94. Chladkova J, Krcmova I, Chladek J, Cap P, Micuda S, Hanzalkova Y (2006) Validation of nitrite and nitrate measurements in exhaled breath condensate. Respiration 73:173–179

    PubMed  CAS  Google Scholar 

  95. Marteus H, Törnberg DC, Weitzberg E, Schedin U, Alving K (2004) Origin of nitrite and nitrate in nasal and exhaled breath condensate and relation to nitric oxide formation. Thorax 60:219–225

    Google Scholar 

  96. Ganas K, Loukides S, Papatheodorou G, Panagou P, Kalogeropoulos N (2001) Total nitrite/nitrate in expired breath condensate of patients with asthma. Respir Med 95:649–654

    PubMed  CAS  Google Scholar 

  97. Corradi M, Pesci A, Casana R, Alinovi R, Goldoni M, Vettori MV et al (2003) Nitrate in exhaled breath condensate of patients with different airway diseases. Nitric Oxide 8:26–30

    PubMed  CAS  Google Scholar 

  98. Liu J, Sandrini A, Thurston MC, Yates DH, Thomas PS (2007) Nitric oxide and exhaled breath nitrite/nitrates in chronic obstructive pulmonary disease patients. Respiration 74: 617–623

    PubMed  CAS  Google Scholar 

  99. Chow S, Thomas PS, Malouf M, Yates DH (2012) Exhaled breath condensate (EBC) biomarkers in pulmonary fibrosis. J Breath Res 6:016004

    PubMed  Google Scholar 

  100. Brooks W, Lash H, Kettle A, Epton M (2005) Optimising hydrogen peroxide measurement in exhaled breath condensate. Redox Rep 11:78–84

    Google Scholar 

  101. Loukides S, Bakakos P, Kostikas K (2010) Exhaled breath condensate: hydrogen peroxide. Eur Respir Soc Monogr 49:162–172

    Google Scholar 

  102. Bartoli ML, Novelli F, Costa F, Malagrinò L, Melosini L, Bacci E et al (2011) Malondialdehyde in exhaled breath condensate as a marker of oxidative stress in different pulmonary diseases. Mediators Inflamm 2011:891752 (7 pp)

    Google Scholar 

  103. Romieu I, Barraza-Villarreal A, Escamilla-Nuñez C, Almstrand A-C, Diaz-Sanchez D, Sly PD et al (2008) Exhaled breath malondialdehyde as a marker of effect of exposure to air pollution in children with asthma. J Allergy Clin Immunol 121:903–909

    PubMed  CAS  Google Scholar 

  104. Celik M, Tuncer A, Soyer OU, Saçkesen C, Besler HT, Kalayci O (2012) Oxidative stress in the airways of children with asthma and allergic rhinitis. Pediatr Allergy Immunol 23:556–561

    PubMed  Google Scholar 

  105. Lärstad M, Ljungkvist G, Olin AC, Torén K (2002) Determination of malondialdehyde in breath condensate by high-performance liquid chromatography with fluorescence detection. J Chromatogr B Analyt Technol Biomed Life Sci 766:107–114

    PubMed  Google Scholar 

  106. Yeh MY, Burnham EL, Moss M, Brown LA (2007) Chronic alcoholism alters systemic and pulmonary glutathione redox status. Am J Respir Crit Care Med 176:270–276

    PubMed Central  PubMed  CAS  Google Scholar 

  107. Yeh MY, Burnham EL, Moss M, Brown LAS (2008) Non-invasive evaluation of pulmonary glutathione in the exhaled breath condensate of otherwise healthy alcoholics. Respir Med 102:248–255

    PubMed Central  PubMed  Google Scholar 

  108. Moss M, Guidot DM, Wong-Lambertina M, Ten Hoor T, Perez RL, Brown LAS (2000) The effects of chronic alcohol abuse on pulmonary glutathione homeostasis. Am J Respir Crit Care Med 161:414–419

    PubMed  CAS  Google Scholar 

  109. Corradi M, Folesani G, Andreoli R, Manini P, Bodini A, Piacentini G et al (2003) Aldehydes and glutathione in exhaled breath condensate of children with asthma exacerbation. Am J Respir Crit Care Med 167:395–399

    PubMed  Google Scholar 

  110. Matsunaga K, Yanagisawa S, Ichikawa T, Ueshima K, Akamatsu K, Hirano T et al (2006) Airway cytokine expression measured by means of protein array in exhaled breath condensate: correlation with physiologic properties in asthmatic patients. J Allergy Clin Immunol 18:84–90

    Google Scholar 

  111. Robroeks CM, Jöbsis Q, Damoiseaux JG, Heijmans PH, Rosias PP, Hendriks HJ et al (2006) Cytokines in exhaled breath condensate of children with asthma and cystic fibrosis. Ann Allergy Asthma Immunol 96:349–355

    PubMed  CAS  Google Scholar 

  112. Sack U, Scheibe R, Wötzel M, Hammerschmidt S, Kuhn H, Emmrich F et al (2006) Multiplex analysis of cytokines in exhaled breath condensate. Cytometry A 69A:169–172

    CAS  Google Scholar 

  113. Gessner C, Scheibe R, Wötzel M, Hammerschmidt S, Kuhn H, Engelmann L et al (2005) Exhaled breath condensate cytokine patterns in chronic obstructive pulmonary disease. Respir Med 99:1229–1240

    PubMed  Google Scholar 

  114. Shahid SK, Kharitonov SA, Wilson NM, Bush A, Barnes PJ (2002) Increased interleukin-4 and decreased interferon-γ in exhaled breath condensate of children with asthma. Am J Respir Crit Care Med 165:1290–1293

    PubMed  Google Scholar 

  115. Conrad DH, Goyette J, Thomas PS (2008) Proteomics as a method for early detection of cancer: a review of proteomics, exhaled breath condensate, and lung cancer screening. J Gen Intern Med 23:78–84

    PubMed Central  PubMed  Google Scholar 

  116. Cheng Z, Lewis CR, Thomas PS, Raftery MJ (2011) Comparative proteomics analysis of exhaled breath condensate in lung cancer patients. J Canc Ther 2:1–8

    Google Scholar 

  117. Bloemen K, Hooyberghs J, Desager K, Witters E, Schoeters G (2009) Non-invasive biomarker sampling and analysis of the exhaled breath proteome. Proteomics Clin Appl 3:498–504

    PubMed  CAS  Google Scholar 

  118. Dompeling E, Jöbsis Q (2011) Proteomics of exhaled breath condensate: a realistic approach in children with asthma. Clin Exp Allergy 41:299–301

    PubMed  CAS  Google Scholar 

  119. Shi T, Su D, Liu T, Tang K, Camp DG II, Qian W-J et al (2012) Advancing the sensitivity of selected reaction monitoring-based targeted quantitative proteomics. Proteomics 12:1074–1092

    PubMed Central  PubMed  CAS  Google Scholar 

  120. Brand J, Haslberger T, Zolg W, Pestlin G, Palme S (2006) Depletion efficiency and recovery of trace markers from a multiparameter immunodepletion column. Proteomics 6:3236–3242

    PubMed  CAS  Google Scholar 

  121. Fumagalli M, Ferrari F, Luisetti M, Stolk J, Hiemstra PS, Capuano D et al (2012) Profiling the proteome of exhaled breath condensate in healthy smokers and COPD patients by LC-MS/MS. Int J Mol Sci 13:13894–13910

    PubMed Central  PubMed  CAS  Google Scholar 

  122. Esther CR Jr, Boysen G, Olsen BM, Collins LB, Ghio AJ, Swenberg JW et al (2009) Mass spectrometric analysis of biomarkers and dilution markers in exhaled breath condensate reveals elevated purines in asthma and cystic fibrosis. Am J Physiol Lung Cell Mol Physiol 296:L987–L993

    PubMed Central  PubMed  CAS  Google Scholar 

  123. Esther CR Jr, Olsen BM, Lin FC, Fine J, Boucher RC (2013) Exhaled breath condensate adenosine tracks lung function changes in cystic fibrosis. Am J Physiol Lung Cell Mol Physiol 304:L504–L509

    PubMed  CAS  PubMed Central  Google Scholar 

  124. Esther CR Jr, Lazaar AL, Bordonali E, Qaqish B, Boucher RC (2011) Elevated airway purines in COPD. Chest 140:954–960

    PubMed Central  PubMed  CAS  Google Scholar 

  125. Carraro S, Giordano G, Reniero F, Carpi D, Stocchero M, Sterk PJ et al (2013) Asthma severity in childhood and metabolomic profiling of breath condensate. Allergy 68:110–117

    PubMed  CAS  Google Scholar 

  126. Pleil JD, Stiegel MA, Risby TH (2013) Clinical breath analysis: discriminating between human endogenous compounds and exogenous (environmental) chemical confounders. J Breath Res 7:017107

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lou Ann S. Brown Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Liang, Y., Brown, L.A.S. (2014). Role of Exhaled Biomarkers, Volatiles, and Breath Condensate. In: Ganguly, N., Jindal, S., Biswal, S., Barnes, P., Pawankar, R. (eds) Studies on Respiratory Disorders. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0497-6_3

Download citation

Publish with us

Policies and ethics