Skip to main content

Part of the book series: Springer Handbooks ((SHB))

Abstract

Medical acoustics can be subdivided into diagnostics and therapy. Diagnostics are further separated into auditory and ultrasonic methods, and both employ low amplitudes. Therapy (excluding medical advice) uses ultrasound for heating, cooking, permeablizing, activating and fracturing tissues and structures within the body, usually at much higher amplitudes than in diagnostics. Because ultrasound is a wave, linear wave physics are generally applicable, but recently nonlinear effects have become more important, even in low-intensity diagnostic applications.

This document is designed to provide the nonmedical acoustic scientist or engineer with some insights into acoustic practices in medicine. Auscultation with a stethoscope is the most basic use of acoustics in medicine and is dependent on the fields of incompressible (circulation) and compressible (respiration) fluid mechanics and frictional mechanics. Detailed discussions of tribology, laminar and turbulent hemodynamics, subsonic and supersonic compressional flow, and surfactants and inflation dynamics are beyond the scope of this document. However, some of the basic concepts of auscultation are presented as a starting point for the study of natural body sounds. Ultrasonic engineers have dedicated over half a century of effort to the development of ultrasound beam patterns and beam scanning methods, stretching the current technical and economic limits of analog and digital electronics and signal processing at each stage. The depth of these efforts cannot be covered in these few pages. However, the basic progression of progress in the fields of transducers and signal processing will be covered. The study of the interaction of ultrasound with living tissues is complicated by complex anatomic structures, the high density of scatterers, and the constantly changing nature of the tissues with ongoing life processes including cardiac pulsations, the formation of edema and intrinsic noise sources. A great deal of work remains to be done on the ultrasonic characterization of tissues. Finally, the effect of ultrasound on tissues, both inadvertent and therapeutic will be discussed.

Much of the medical acoustic literature published since 1987 is searchable online, so this document has included key words that will be helpful in performing a search. However, much of the important basic work was done before 1987. In an attempt to help the reader to access that literature, Denis White and associates have compiled a complete bibliography of the medical ultrasound literature prior to 1987. Under Further Reading in this chapter, the reader will find a link to a complete compilation of 99 citations from Ultrasound in Medicine and Biology which list the thousands of articles on medical acoustics written prior to 1987.

The academically based authors develop, use and commercialize diagnostic ultrasonic Doppler systems for the benefit of patients with cardiovascular diseases. To translate ultrasonic and acoustic innovation into widespread clinical application requires as much knowledge about the economics of medicine, the training and practices of medical personnel, and the pathology and prevalence of diseases as about the diffraction patterns of ultrasound beams and signal-to-noise ratio of an echo. Although a discussion of these factors is beyond the scope of this chapter, a few comments will help to provide perspective on the likely future contribution of medical acoustics to improved public health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2-D:

two-dimensional

AF:

audio frequency

AFSUMB:

Asian Federation for Societies of Ultrasound in Medicine and Biology

AIUM:

American Institute of Ultrasound in Medicine

ALARA:

as low as reasonably achievable

AM:

amplitude modulation

ASUM:

Australasian Society for Ultrasound in Medicine

BMUS:

British Medical Ultrasound Society

BNR:

beam nonuniformity ratio

CPA:

carotid phono-angiography

CPT:

current procedural terminology

CW:

continuous wave

DGC:

depth gain compensation

DVT:

deep venous thrombosis

ECG:

electro-cardiograph

ECMUS:

European Committee for Medical Ultrasound Safety

EDV:

end diastolic velocity

EFSUMB:

European Federation of Societies for Ultrasound in Medicine and Biology

FDA:

Food and Drug Administration

FFT:

fast Fourier transform

FIR:

finite impulse response

FLAUS:

Latin American Federation of Ultrasound in Medicine and Biology

HIFU:

high-intensity focused ultrasound

IIR:

infinite impulse response

IMT:

intima-media thickness

IVP:

intravenous pyelogram

MASU:

Mediterranean and African Society of Ultrasound

MI:

mechanical index

MRI:

magnetic resonance imaging

NEMA:

National Electronic Manufacturers Association

ODS:

output display standards

PA:

pulse average

PFO:

patent foramen ovale

PMA:

pre-market approval

PRF:

pulse repetition frequency

PRI:

pulse repetition interval

PS:

peak systolic

PVC:

premature ventricular contraction

PVDF:

polyvinylidene fluoride

PZT:

lead zirconate titanate

QCPA:

quantitative phono-angiography

RF:

radio frequency

SA:

spatial average

SB:

spectral broadening

SP:

spatial peak

SPTP:

spatial peak temporal peak

TA:

temporal average

TEE:

trans-esophageal

TGC:

time gain compensation

TI:

thermal index

TIA:

transient ischemic attacks

TIB:

bone near the focus

TIC:

cranial bone near the skin

TIS:

soft tissue

TP:

temporal peak

WFUMB:

World Federation for Ultrasound in Medicine and Biology

References

  1. G.E. Horn, J.M. Mynors: Recording the bowel sounds, Med. Biol. Eng. 4(2), 205–208 (1966)

    Article  Google Scholar 

  2. T. Tomomasa, A. Morikawa, R.H. Sandler, H.A. Mansy, H. Koneko, T. Masahiko, P.E. Hyman, Z. Itoh: Gastrointestinal sounds and migrating motor complex in fasted humans, Am. J. Gastroenterol. 94(2), 374–381 (1999)

    Article  Google Scholar 

  3. C. Leknius, B.J. Kenyon: Simple instrument for auscultation of temporomandibular joint sounds, J. Prosthet. Dent. 92(6), 604 (2004)

    Article  Google Scholar 

  4. S.E. Widmalm, W.J. Williams, D. Djurdjanovic, D.C. McKay: The frequency range of TMJ sounds, J. Oral. Rehabil. 30(4), 335–346 (2003)

    Article  Google Scholar 

  5. C. Oster, R.W. Katzberg, R.H. Tallents, T.W. Morris, J. Bartholomew, T.L. Miller, K. Hayakawa: Characterization of temporomandibular joint sounds. A preliminary investigation with arthrographic correlation, Oral Surg. Oral Med. Oral Pathol. 58(1), 10–16 (1984)

    Article  Google Scholar 

  6. A. Peylan: Direct auscultation of the joints; Preliminary clinical observations, Rheumatism 9(4), 77–81 (1953)

    Google Scholar 

  7. E.P. McCutcheon, R.F. Rushmer: Korotkoff sounds. An experimental critique, Circ. Res. 20(2), 149–161 (1967)

    Article  Google Scholar 

  8. J.E. Meisner, R.F. Rushmer: Production of sounds in distensible tubes, Circ. Res. 12, 651–658 (1963)

    Article  Google Scholar 

  9. S. Jarcho: The young stethoscopist (H. I. Bowditch, 1846), Am. J. Cardiol. 13, 808–819 (1964)

    Article  Google Scholar 

  10. R.F. Rushmer, R.S. Bark, R.M. Ellis: Direct-writing heart-sound recorder (The sonvelograph), Ama. Am. J. Dis. Child 83(6), 733–739 (1952)

    Google Scholar 

  11. M.A. Chizner: The diagnosis of heart disease by clinical assessment alone, Curr. Probl. Cardiol. 26(5), 285–379 (2001)

    Article  Google Scholar 

  12. M.A. Chizner: The diagnosis of heart disease by clinical assessment alone, Dis. Mon. 48(1), 7–98 (2002)

    Article  Google Scholar 

  13. A.E. Aubert, B.G. Denys, F. Meno, P.S. Reddy: Investigation of genesis of gallop sounds in dogs by quantitative phonocardiography and digital frequency analysis, Circulation 71, 987–993 (1985)

    Article  Google Scholar 

  14. R.F. Rushmer, C. Morgan: Meaning of murmurs, Am. J. Cardiol. 21(5), 722–730 (1968)

    Article  Google Scholar 

  15. J.E. Foreman, K.J. Hutchison: Arterial wall vibration distal to stenoses in isolated arteries, J. Physiol. 205(2), 30–31 (1969)

    Google Scholar 

  16. J.E. Foreman, K.J. Hutchison: Arterial wall vibration distal to stenoses in isolated arteries of dog and man, Circ. Res. 26(5), 583–590 (1970)

    Article  Google Scholar 

  17. A.M. Khalifa, D.P. Giddens: Characterization and evolution poststenotic flow disturbances, J. Biomech. 14(5), 279–296 (1981)

    Article  Google Scholar 

  18. G.W. Duncan, J.O. Gruber, C.F. Dewey, G.S. Myers, R.S. Lees: Evaluation of carotid stenosis by phonoangiography, N. Engl. J. Med. 293(22), 1124–1128 (1975)

    Article  Google Scholar 

  19. J.P. Kistler, R.S. Lees, J. Friedman, M. Pressin, J.P. Mohr, G.S. Roberson, R.G. Ojemann: The bruit of carotid stenosis versus radiated basal heart murmurs. Differentiation by phonoangiography, Circulation 57(5), 975–981 (1978)

    Article  Google Scholar 

  20. J.P. Kistler, R.S. Lees, A. Miller, R.M. Crowell, G. Roberson: Correlation of spectral phonoangiography and carotid angiography with gross pathology in carotid stenosis, N. Engl. J. Med. 305(8), 417–419 (1981)

    Article  Google Scholar 

  21. R. Knox, P. Breslau, D.E. Strandness Jr.: Quantitative carotid phonoangiography, Stroke 12, 798–803 (1981)

    Article  Google Scholar 

  22. R.S. Lees: Phonoangiography: Qualitative and quantitative, Ann. Biomed. Eng. 12(1), 55–62 (1984)

    Article  Google Scholar 

  23. R.S. Lees, C.F. Dewey Jr.: Phonoangiography: A new noninvasive diagnostic method for studying arterial disease, Proc. Natl. Acad. Sci. USA 67, 935–942 (1970)

    Article  ADS  Google Scholar 

  24. A. Miller, R.S. Lees, J.P. Kistler, W.M. Abbott: Spectral analysis of arterial bruits (phonoangiography): Experimental validation, Circulation 61(3), 515–520 (1980)

    Article  Google Scholar 

  25. A. Miller, R.S. Lees, J.P. Kistler, W.M. Abbott: Effects of surrounding tissue on the sound spectrum of arterial bruits in vivo, Stroke 11(4), 394–398 (1980)

    Article  Google Scholar 

  26. D. Smith, T. Ishimitsu, E. Craige: Mechanical vibration transmission characteristics of the left ventricle: implications with regard to auscultation and phonocardiography, J. Am. Coll. Cardiol. 4, 517–521 (1984)

    Article  Google Scholar 

  27. D. Smith, T. Ishimitsu, E. Craige: Abnormal diastolic mechanical vibration transmission characteristics of the left ventricle, J. Cardiogr. 15, 507–512 (1985)

    Google Scholar 

  28. J.P. Murgo: Systolic ejection murmurs in the era of modern cardiology: What do we really know?, J. Am. Coll. Cardiol. 32, 1596–1602 (1998)

    Article  Google Scholar 

  29. H. Nygaard, L. Thuesen, J.M. Hasenkam, E.M. Pedersen, P.K. Paulsen: Assessing the severity of aortic valve stenosis by spectral analysis of cardiac murmurs (spectral vibrocardiography). Part I: Technical aspects, J. Heart Valve Dis. 2, 454–467 (1993)

    Google Scholar 

  30. Z. Sun, K.K. Poh, L.H. Ling, G.S. Hong, C.H. Chew: Acoustic diagnosis of aortic stenosis, J. Heart Valve Dis. 14, 186–194 (2005)

    Google Scholar 

  31. D.J. Doyle, D.M. Mandell, R.M. Richardson: Monitoring hemodialysis vascular access by digital phonoangiography, Ann. Biomed. Eng. 30(7), 982 (2002)

    Article  Google Scholar 

  32. C. Clark: Turbulent wall pressure measurements in a model of aortic stenosis, J. Biomech. 10(8), 461–472 (1977)

    Article  Google Scholar 

  33. M.B. Rappoport, H.B. Sprague: Physiologic and physical laws that govern auscultation and their clinical application, Am. Heart J. 21, 257 (1941)

    Article  Google Scholar 

  34. R. Tidwell, R. Rushmer, R. Polley: The office diagnosis of operable congenital heart lesions, Northwest Med. 52(7), 546 (1953)

    Google Scholar 

  35. R. Tidwell, R. Rushmer, R. Polley: The office diagnosis of operable congenital heart lesions, Northwest Med. 52(8), 635 (1953)

    Google Scholar 

  36. R. Tidwell, R. Rushmer, R. Polley: The office diagnosis of operable congenital heart lesions; coarctation of the aorta, Northwest Med. 52(11), 927 (1953)

    Google Scholar 

  37. F.D. Fielder, P. Pocock: Foetal blood flow detector, Ultrasonics 6(4), 240–241 (1968)

    Article  Google Scholar 

  38. W.L. Johnson, H.F. Stegall, J.N. Lein, R.F. Rushmer: Detection of fetal life in early pregnancy with an ultrasonic doppler flowmeter, Obstet. Gynecol. 26, 305–307 (1965)

    Google Scholar 

  39. R.F. Rushmer, C.L. Morgan, D.C. Harding: Electronic aids to auscultation, Med. Res. Eng. 7(4), 28–36 (1968)

    Google Scholar 

  40. R.F. Rushmer, D.R. Sparkman, R.F. Polley, E.E. Bryan, R.R. Bruce, G.B. Welch, W.C. Bridges: Variability in detection and interpretation of heart murmurs; a comparison of auscultation and stethography, AMA Am. J. Dis. Child 83(6), 740–754 (1952)

    Google Scholar 

  41. R.F. Rushmer, R.A. Tidwell, R.M. Ellis: Sonvelographic recording of murmurs during acute myocarditis, Am. Heart J. 48(6), 835–846 (1954)

    Article  Google Scholar 

  42. P.N.T. Wells: Review, absorption and dispersion of ultrasound in biological tissue, Ultrasound Med. Biol. 1, 369–376 (1975)

    Article  Google Scholar 

  43. M.A. Allison, J. Tiefenbrun, R.D. Langer, C.M. Wright: Atherosclerotic calcification and intimal medial thickness of the carotid arteries, Int. J. Cardiol. 103(1), 98–104 (2005)

    Article  Google Scholar 

  44. J.A. Jensen: FIELD (1997) http://www.es.oersted.dtu.dk/staff/jaj/field/index.html; http://www.es.oersted.dtu.dk/staff/jaj/old_field/

    Google Scholar 

  45. R.F. Rushmer, D.W. Baker, H.F. Stegall: Transcutaneous doppler flow detection as a nondestructive technique, J. Appl. Physiol. 21(2), 554–566 (1966)

    Google Scholar 

  46. D.L. Franklin, W. Schlegel, R.F. Rushmer: Blood flow measured by doppler frequency shift of back-scattered ultrasound, Science 134, 564–565 (1961)

    Article  ADS  Google Scholar 

  47. H.F. Stegall, R.F. Rushmer, D.W. Baker: A transcutaneous ultrasonic blood-velocity meter, J. Appl. Physiol. 21(2), 707–711 (1966)

    Google Scholar 

  48. D.E. Strandness Jr., E.P. McCutcheon, R.F. Rushmer: Application of a transcutaneous doppler flowmeter in evaluation of occlusive arterial disease, Surg. Gynecol. Obstet. 122(5), 1039–1045 (1966)

    Google Scholar 

  49. D.E. Strandness Jr., R.D. Schultz, D.S. Sumner, R.F. Rushmer: Ultrasonic flow detection. A useful technic in the evaluation of peripheral vascular disease, Am. J. Surg. 113(3), 311–320 (1967)

    Article  Google Scholar 

  50. R.F. Rushmer, D.W. Baker, W.L. Johnson, D.E. Strandness: Clinical applications of a transcutaneous ultrasonic flow detector, JAMA 199(5), 326–328 (1967)

    Article  Google Scholar 

  51. C.R. Hill: Medical ultrasonics: An historical review, Br. J. Radiol. 46(550), 899–905 (1973)

    Article  Google Scholar 

  52. A.H. Crawford: Ultrasonic medical equipment, Ultrasonics 8(2), 105–111 (1970)

    Article  Google Scholar 

  53. B. Buttery, G. Davison: The ghost artifact, J. Ultras. Med. 3, 49–52 (1984)

    Google Scholar 

  54. R.M. Ellis, D.L. Franklin, R.F. Rushmer: Left ventricular dimensions recorded by sonocardiometry, Circ. Res. 4(6), 684–688 (1956)

    Article  Google Scholar 

  55. R.F. Rushmer: Continuous measurements of left ventricular dimensions in intact, unanesthetized dogs, Circ. Res. 2(1), 14–21 (1954)

    Article  Google Scholar 

  56. J.C. Somer: Electronic sector scanning fo ultrasonic diagnosis, Ultrasonics 6(3), 153–159 (1968)

    Article  Google Scholar 

  57. F.E. Barber, D.W. Baker, A.W. Nation, D.E. Strandness Jr., J.M. Reid: Ultrasonic duplex-echo doppler scanner, IEEE Trans. Biomed. Eng. vBME 21(2), 109–113 (1974)

    Article  Google Scholar 

  58. D.N. Ku, D.P. Giddens: Pulsatile flow in a model carotid bifurcation, Arteriosclerosis 3(1), 31–39 (1983)

    Article  Google Scholar 

  59. T.L. Yearwood, K.B. Chandran: Experimental investigation of steady flow through a model of the human aortic arch, J. Biomech. 13(12), 1075–1088 (1980)

    Article  Google Scholar 

  60. T.L. Yearwood, K.B. Chandran: Physiological pulsatile flow experiments in a model of the human aortic arch, J. Biomech. 15(9), 683–704 (1982)

    Article  Google Scholar 

  61. D.E. Strandness Jr.: Duplex Scanning in Vascular Disorders, 3rd edn. (Lippincott Williams Wilkins, Philadelphia 2002)

    Google Scholar 

  62. G. Papanicolaou, K.W. Beach, R.E. Zierler, D.E. Strandness Jr.: The relationship between arm-ankle pressure difference and peak systolic velocity in patients with stenotic lower extremity vein grafts, Ann. Vasc. Surg. 9(6), 554–560 (1995)

    Article  Google Scholar 

  63. T.R. Kohler, S.C. Nicholls, R.E. Zierler, K.W. Beach, P.J. Schubert, D.E. Strandness Jr.: Assessment of pressure gradient by Doppler ultrasound: experimental and clinical observations, J. Vasc. Surg. 6(5), 460–469 (1987)

    Article  Google Scholar 

  64. D.N. White, J.M. Clark, M.N. White: Studies in ultrasonic echoencephalography. 7. General principles of recording information in ultrasonic B- and C-scanning and the effects of scatter, reflection and refraction by cadaver skull on this information, Med. Biol. Eng. 5(1), 3–14 (1967)

    Article  Google Scholar 

  65. D.N. White, J.M. Clark, M.N. White: Studies in ultrasonic echoencephalography. 8. The effects on resolution of irregularities in attenuation of an ultrasonic beam traversing cadaver skull, Med. Biol. Eng. 5(1), 15–23 (1967)

    Article  Google Scholar 

  66. D.N. White: Ultrasonic encephalography, Acta Radiol. Diagn.(Stockh.) 9, 671–674 (1969)

    Google Scholar 

  67. D.N. Ku, D.P. Giddens, D.J. Phillips, D.E. Strandness Jr.: Hemodynamics of the normal human carotid bifurcation: in vitro and in vivo studies, Ultrasound Med. Biol. 11(1), 13–26 (1985)

    Article  Google Scholar 

  68. W.M. Blackshear Jr., D.J. Phillips, B.L. Thiele, J.H. Hirsch, P.M. Chikos, M.R. Marinelli, K.J. Ward, D.E. Strandness Jr.: Detection of carotid occlusive disease by ultrasonic imaging and pulsed doppler spectrum analysis, Surgery 86(5), 698–706 (1979)

    Google Scholar 

  69. K.A. Comess, F.A. DeRook, M.L. Russell, T.A. Tognazzi-Evans, K.W. Beach: The incidence of pulmonary embolism in unexplained sudden cardiac arrest with pulseless electrical activity, Am. J. Med. 109(5), 351–356 (2000)

    Article  Google Scholar 

  70. R.C. Bahler, T. Mohyuddin, R.S. Finkelhor, I.B. Jacobs: Contribution of doppler tissue imaging and myocardial performance index to assessment of left ventricular function in patients with duchenneʼs muscular dystrophy, J. Am. Soc. Echocardiogr. 18(6), 666–673 (2005)

    Article  Google Scholar 

  71. J.K. Campbell, J.M. Clark, C.O. Jenkins, D.N. White: Ultrasonic studies of brain movements, Neurology 20(4), 418 (1970)

    Article  Google Scholar 

  72. S. Sikdar, K.W. Beach, S. Vaezy, Y. Kim: Ultrasonic technique for imaging tissue vibrations: Preliminary results, Ultrasound Med. Biol. 31, 221–232 (2005)

    Article  Google Scholar 

  73. A. Evans, D.N. Walder: Detection of circulating bubbles in the intact mammal, Ultrasonics 8(4), 216–217 (1970)

    Article  Google Scholar 

  74. C. Shub, A.J. Tajik, J.B. Seward, D.E. Dines: Detecting intrapulmonary right-to-left shunt with contrast echocardiography. Observations in a patient with diffuse pulmonary arteriovenous fistulas, Mayo Clin. Proc. 51(2), 81–84 (1976)

    Google Scholar 

  75. E. Grube, H. Simon, M. Zywietz, G. Bodem, G. Neumann, A. Schaede: Echocardiographic contrast studies for the delineation of the heart cavities using peripheral venous sodium chloride injections. A contribution to shunt diagnosis, Verh. Dtsch. Ges. Inn. Med. 83, 366–367 (1977)

    Google Scholar 

  76. P.W. Serruys, W.B. Vletter, F. Hagemeijer, C.M. Ligtvoet: Bidimensional real-time echocardiological visualization of a ventricular right-to-left shunt following peripheral vein injection, Eur. J. Cardiol. 6(2), 99–107 (1977)

    Google Scholar 

  77. D. Danilowicz, I. Kronzon: Use of contrast echocardiography in the diagnosis of partial anomalous pulmonary venous connection, Am. J. Cardiol. 43(2), 248–252 (1979)

    Article  Google Scholar 

  78. C. Tei, T. Sakamaki, P.M. Shah, S. Meerbaum, K. Shimoura, S. Kondo, E. Corday: Myocardial contrast echocardiography: a reproducible technique of myocardial opacification for identifying regional perfusion deficits, Circulation 67(3), 585–593 (1983)

    Article  Google Scholar 

  79. J.S. Rasor, E.G. Tickner: Microbubble precursors and methods for their production and use. US Patent 4 442 843 (1984)

    Google Scholar 

  80. J.L. Nelson, B.L. Roeder, J.C. Carinen, F. Roloff, W.G. Pitt: Ultrasonically activated chemotherapeutic drug delivery in a rat model, Cancer Res. 62, 7280–7283 (2002)

    Google Scholar 

  81. S.A. Sapareto, W.C. Dewey: Thermal dose determination in cancer therapy, Int. J. Radiat. Oncol. Biol. Phys. 10, 787–800 (1984)

    Article  Google Scholar 

  82. M.R. Bailey, L.A. Crum, A.P. Evan, J.A. McAteer, J.C. Williams, O.A. Sapozhinikov, R.O. Cleveland, T. Colonius: Cavitation in Shock Wave Lithotripsy (Cav03-0s-2-1-006) (Fifth Int. Symp. Cavitation (CAV2003), Osaka 2003), http://cav2003.me.es.osaka-u.ac.jp/Cav2003/Papers/Cav03-OS-2-1-006.pdf

    Google Scholar 

  83. E.A. Noser, H.M. Shaltoni, C.E. Hall, A.V. Alexandrov, Z. Garami, E.D. Cacayorin, J.K. Song, J.C. Grotta, M.S. Campbell: Aggressive mechanical clot disruption. A safe adjunct to thrombolytic therapy in acute stroke?, Stroke 36(2), 292–296 (2005)

    Article  Google Scholar 

  84. S. Pfaffenberger, B. Devcic-Kuhar, C. Kollmann, S.P. Kastl, C. Kaun, W.S. Speidl, T.W. Weiss, S. Demyanets, R. Ullrich, H. Sochor, C. Wober, J. Zeitlhofer, K. Huber, M. Groschl, E. Benes, G. Maurer, J. Wojta, M. Gottsauner-Wolf: Can a commercial diagnostic ultrasound device accelerate thrombolysis? An in vitro skull model, Stroke 36(1), 124–128 (2005)

    Article  Google Scholar 

  85. S. Schafer, S. Kliner, L. Klinghammer, H. Kaarmann, I. Lucic, U. Nixdorff, U. Rosenschein, W.G. Daniel, F.A. Flachskampf: Influence of ultrasound operating parameters on ultrasound-induced thrombolysis in vitro, Ultrasound Med. Biol. 31(6), 841–847 (2005)

    Article  Google Scholar 

  86. D.S. Jeon, H. Luo, M.C. Fishbein, T. Miyamoto, M. Horzewski, T. Iwami, J.M. Mirocha, F. Ikeno, Y. Honda, R.J. Siegel: Noninvasive transcutaneous ultrasound augments thrombolysis in the left circumflex coronary artery – in vivo canine study, Thromb. Res. 110(2/3), 149–158 (2003)

    Article  Google Scholar 

  87. A.V. Alexandrov, C.A. Molina, J.C. Grotta, Z. Garami, S.R. Ford, J. Alvarez-Sabin, J. Montaner, M. Saqqur, A.M. Demchuk, L.A. Moye, M.D. Hill, A.W. Wojner, CLOTBUST Investigators: Ultrasound-enhanced systemic thrombolysis for acute ischemic stroke, N. Engl. J. Med. 351(21), 2170–2178 (2004)

    Article  Google Scholar 

  88. J. Eggers, G. Seidel, B. Koch, I.R. Konig: Sonothrombolysis in acute ischemic stroke for patients ineligible for rt-PA, Neurology 64(6), 1052–1054 (2005)

    Article  Google Scholar 

  89. D. Harpaz: Ultrasound enhancement of thrombolytic therapy: Observations and mechanisms, Int. J. Cardiovasc. Intervent. 3(2), 81–89 (2000)

    Google Scholar 

  90. S.H. Eik-Nes, O. Okland, J.C. Aure, M. Ulstein: Ultrasound screening in pregnancy: A randomised controlled trial, Lancet 1(8390), 1347 (1984)

    Article  Google Scholar 

  91. FDA, U.S. Food and Drug Administration: Information for Manufacturers Seeking Marketing Clearance of Diagnostic Ultrasound Systems and Transducers (Center for Devices and Radiological Health U.S. Food and Drug Administration, Rockville 1997)

    Google Scholar 

  92. FDA: 510(k) Guide for Measuring and Reporting Output of Diagnostic Ultrasound Medical Devices (Center for Devices and Radiological Health, U.S. Food and Drug Administration, Rockville 1991)

    Google Scholar 

  93. AIUM/NEMA: Standard for Real-Time Display of Thermal and Mechanical Acoustic Output Indices on Diagnostic Ultrasound Equipment (Am. Inst. Ultrasound Medicine, Laurel 1992)

    Google Scholar 

  94. M. Fatemi, P.L. Ogburn, J.F. Greenleaf: Fetal stimulation by pulsed diagnostic ultrasound, J. Ultrasound Med. 20, 883–889 (2001)

    Google Scholar 

  95. M.A. Dinno, M. Dyson, S.R. Young, A.J. Mortimer, J. Hart, L.A. Crum: The significance of membrane changes in the safe and effective use of therapeutic and diagnostic ultrasound, Phys. Med. Biol. 34(11), 1543–1552 (1989)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirk W. Beach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag

About this chapter

Cite this chapter

Beach, K.W., Dunmire, B. (2014). Medical Acoustics. In: Rossing, T.D. (eds) Springer Handbook of Acoustics. Springer Handbooks. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0755-7_21

Download citation

Publish with us

Policies and ethics