Skip to main content

Estimating Survival Probabilities from Mark-Re-Encounter Data

  • Chapter
  • First Online:
Modelling Population Dynamics

Abstract

There are many reasons why we are interested in how long wild animals survive. A particularly pressing one is so that we can evaluate the effects of climate and anthropomorphic changes. In an early example, North and Morgan (1979) demonstrated a link between winter temperature and the survival of grey herons, Ardea cinerea, using point-process models as well as logistic regression, as in Sect. 5.1. As a further example, one might be interested in calibrating the effect of a change in hunting regulations on survival probability of wild fowl.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arnason, A. N. (1973). The estimation of population size, migration rates and survival in a stratified population. Research in Population Ecology, 15, 1–8.

    Article  Google Scholar 

  • Barker, R. J. (1997). Joint modelling of live-recapture, tag-resight, and tag-recovery data. Biometrics, 53, 666–677.

    Article  MATH  Google Scholar 

  • Besbeas, P., Freeman, S. N., Morgan, B. J. T., & Catchpole, E. A. (2002). Integrating mark-recapture-recovery and census data to estimate animal abundance and demographic parameters. Biometrics, 58, 540–547.

    Article  MATH  MathSciNet  Google Scholar 

  • Bonner, S. J., Morgan, B. J. T., & King, R. (2010). Continuous covariates in mark-recapture-recovery analysis: A comparison of methods. Biometrics, 66, 1256–65.

    Article  MATH  MathSciNet  Google Scholar 

  • Buckland, S. T., Burnham, K. P., & Augustin, N. H. (1997). Model selection: An integral part of inference. Biometrics, 53, 603–618.

    Article  MATH  Google Scholar 

  • Buckland, S. T., Newman, K. B., Thomas, L., & Koesters, N. B. (2004). State-space models for the dynamics of wild animal populations. Ecological Modelling, 171, 157–175.

    Article  Google Scholar 

  • Buoro, M., Prévost, E., & Gimenez, O. (2010). Investigating evolutionary trade-offs in wild populations of Atlantic salmon Salmo salar: Incorporating detection probabilities and individual heterogeneity. Evolution, 64, 2629–2642.

    Article  Google Scholar 

  • Burnham, K. P. (1993). A theory for combined analysis of ring-recovery and recapture data. In J. D. Lebreton & P. M. North (Eds.), The study of bird population dynamics using marked individuals (pp. 199–213). Berlin: Birkhauser Verag.

    Google Scholar 

  • Catchpole, E. A., Fan, Y., Morgan, B. J. T., Coulson, T. N., & Clutton-Brock, T. H. (2004). Sexual dimorphism, survival and dispersal in red deer. Journal of Agricultural, Biological, and Environmental Statistics, 9, 1–26.

    Article  Google Scholar 

  • Catchpole. E. A., Freeman, S. N., Morgan, B. J. T., & Harris, M. P. (1998). Integrated recovery/recapture data analysis. Biometrics, 54(1), 33–46.

    Google Scholar 

  • Catchpole, E. A., Morgan, B. J. T., Coulson, T., Freeman, S. N., & Albon, S. D. (2000). Factors influencing Soay sheep survival. Applied Statistics, 49, 453–472.

    MathSciNet  Google Scholar 

  • Catchpole, E. A., Morgan, B. J. T., Freeman, S. N., & Peach, W. J. (1999). Modelling the survival of British lapwings, Vanellus vanellus using ring-recovery data and weather covariates. Bird Study, 46(Suppl), S5–S13.

    Article  Google Scholar 

  • Catchpole, E. A., Morgan, B. J. T., & Tavecchia, G. (2008). A new method for analysing discrete life-history data with missing covariate values. Journal of the Royal Statistical Society B, 70, 445–460.

    Article  MATH  MathSciNet  Google Scholar 

  • Cole, D. J. (2012). Determining parameter redundancy of multi-state mark-recapture models for sea birds. Journal of Ornithology, 152(Suppl 2), 305–315.

    Article  Google Scholar 

  • Cole, D. J., Morgan, B. J. T., Catchpole, E. A., & Hubbard, B.A. (2012). Parameter redundancy in mark-recovery models. Biometrical Journal, 54, 507–523.

    Article  MATH  MathSciNet  Google Scholar 

  • Cormack, R. M. (1964). Estimates of survival from the sighting of marked animals. Biometrika, 51, 429–438.

    Article  MATH  Google Scholar 

  • Dupuis, J. A. (1995). Bayesian estimation of movement and survival probabilities from capture-recapture data. Biometrika, 82, 761–772.

    MATH  MathSciNet  Google Scholar 

  • Dupuis, J. A., Badia, J., Maublanc, M., & Bon, R. (2002). Survival and spatial fidelity of mouflons (Ovis gmelini): A Bayesian analysis of an age-dependent capture-recapture model. Journal of Agricultural, Biological, and Environmental Statistics, 7, 277–298.

    Article  Google Scholar 

  • Gimenez, O., Barbraud, C., Crainiceanu, C., Jenouvrier, S., & Morgan, B. J. T. (2006a). Semiparametric regression in capture-recapture modelling. Biometrics, 62, 691–698.

    Article  MATH  MathSciNet  Google Scholar 

  • Gimenez, O., & Choquet, R. (2010). Individual heterogeneity in studies on marked animals using numerical integration: Capture-recapture mixed models. Ecology, 91, 148–154.

    Google Scholar 

  • Gimenez, O., Covas, R., Brown, C. R., Anderson, M. D., Bomberger Brown, M., & Lenormand, T. (2006b). Nonparametric estimation of natural selection on a quantitative trait using mark-recapture data. Evolution, 60, 460–466.

    Article  Google Scholar 

  • Gimenez, O., Grégoire, A., & Lenormand, T. (2009a). Estimating and visualizing fitness surfaces using mark-recapture data. Evolution, 63, 3097–3105.

    Article  Google Scholar 

  • Gimenez, O., Rossi, V., Choquet, R., Dehais, C., Doris, B., Varella, H., Vila, J-P., & Pradel, R. (2007). State-space modelling of data on marked individuals. Ecological Modelling, 206, 431–438.

    Article  Google Scholar 

  • Grosbois, V., Harris, M. P., Anker-Nilssen, T., McCleery, R. H., Shaw, D. N., Morgan, B. J. T., & Gimenez, O. (2009). Survival at multi-population scales using mark-recapture data. Ecology, 90, 2922–2932.

    Article  Google Scholar 

  • Hubbard, B. A., Cole, D. J., & Morgan, B. J. T. (2014). Parameter redundancy in capture-recapture-recovery models. Statistical Methodology, 17, 17–29.

    Article  MathSciNet  Google Scholar 

  • Jolly, G. M. (1965). Explicit estimates from capture-recapture data with both death and immigration: Stochastic model. Biometrika, 52, 225–247.

    Article  MATH  MathSciNet  Google Scholar 

  • Kendall, W. L., Nichols, J. D., & Hines, J. E. (1997). Estimating temporary emigration using capture-recapture data with Pollock’s robust design. Ecology, 78, 563–578.

    Google Scholar 

  • King, R. (2012). A review of Bayesian state-space modelling of capture-recapture-recovery data. Interface Focus, 2, 190–204.

    Article  Google Scholar 

  • King, R. (2014). Statistical ecology. Annual Review of Statistics and its Application, 1, 401–426.

    Article  Google Scholar 

  • King, R., & Brooks, S. P. (2003). Closed-form likelihoods for Arnason-Schwarz models. Biometrika, 90, 435–444.

    Article  MATH  MathSciNet  Google Scholar 

  • King, R., Brooks, S. P., Morgan, B. J. T., & Coulson, T. (2006). Factors influencing Soay sheep survival: A Bayesian analysis. Biometrics, 62, 211–220.

    Article  MATH  MathSciNet  Google Scholar 

  • King, R., & McCrea, R. S. (2014). A generalised likelihood framework for partially observed capture-recapture-recovery models. Statistical Methodology, 17, 30–45.

    Article  MathSciNet  Google Scholar 

  • King, R., Morgan, B. J. T., Gimenez, O., & Brooks, S. P. (2009). Bayesian analysis for population ecology. London: Chapman & Hall/CRC.

    Book  Google Scholar 

  • Lahoz-Monfort, J. J., Morgan, B. J. T., Harris, M. P., Wanless, S., & Freeman, S. N. (2011). A capture-recapture model for exploring multi-species synchrony in survival. Methods in Ecology and Evolution, 2, 116–124.

    Article  Google Scholar 

  • Langrock, R., & King, R. (2013). Maximum likelihood estimation of mark-recapture-recovery models in the presence of continuous covariates. Annals of Applied Statistics, 7, 1709–1732.

    Article  MATH  MathSciNet  Google Scholar 

  • Lebreton, J-D., Burnham, K. P., Clobert, J., & Anderson, D. R. (1992). Modeling survival and testing biological hypotheses using marked animals: A unified approach with case studies. Ecological Monographs, 62, 67–118.

    Article  Google Scholar 

  • McCrea, R. S., & Morgan, B. J. T. (2011). Multistate mark-recapture model selection using score tests. Biometrics, 67, 234–241.

    Article  MATH  MathSciNet  Google Scholar 

  • McCrea, R. S., Morgan, B. J. T., & Bregnballe, T. (2012a). Model comparison and assessment for multi-state capture-recapture-recovery models. Journal of Ornithology, 152(Suppl 2), S293–S303.

    Article  Google Scholar 

  • North, P. M., & Morgan, B. J. T. (1979). Modelling heron survival using weather data. Biometrics, 35, 667–682.

    Article  MathSciNet  Google Scholar 

  • Pradel, R. (2005). Multievent: An extension of multistate capture-recapture models to uncertain states. Biometrics, 61, 442–447.

    Article  MATH  MathSciNet  Google Scholar 

  • Royle, J. A. (2008). Modeling individual effects in the Cormack-Jolly-Seber model: A state-space formulation. Biometrics, 64, 364–370.

    Article  MATH  MathSciNet  Google Scholar 

  • Schofield, M. R., Barker, R. J., & MacKenzie, D. I. (2009). Flexible hierarchical mark-recapture modeling for open populations using WinBUGS. Environmental and Ecological Statistics, 16, 369–387.

    Article  MathSciNet  Google Scholar 

  • Schwarz, C. J., Schweigert, J. F., & Arnason, A. N. (1993). Estimating migration rates using tag-recovery data. Biometrics, 49, 177–193.

    Article  Google Scholar 

  • Seber, G. A. F. (1965). A note on the multiple recapture census. Biometrika, 52, 249–259.

    Article  MATH  MathSciNet  Google Scholar 

  • Servanty, S., Choquet, R., Baubet, E., Brandt, S., Gaillard J.-M., Schaub, M., Togo, C., Lebreton, J.-D., Buoro, M., & Gimenez, O. (2010). Assessing compensatory vs. additive mortality using marked animals: A Bayesian state-space modeling approach. Ecology, 91, 1916–1923.

    Google Scholar 

  • Thomas, L., Buckland, S. T., Newman, K. B., & Harwood, J. (2005). A unified framework for modelling wildlife population dynamics. Australian and New Zealand Journal of Statistics, 47, 19–34.

    Article  MATH  MathSciNet  Google Scholar 

  • Zheng, C., Ovaskainen, O., Saastamoinen, M., & Hanski, I. (2007). Age-dependent survival analyzed with Bayesian models of mark-recapture data. Ecology, 88, 1970–1976.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Newman, K.B. et al. (2014). Estimating Survival Probabilities from Mark-Re-Encounter Data. In: Modelling Population Dynamics. Methods in Statistical Ecology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0977-3_7

Download citation

Publish with us

Policies and ethics