Skip to main content

Pluripotent Very Small Embryonic-like Stem Cells in Adult Mammalian Gonads

  • Chapter
  • First Online:
Adult Stem Cell Therapies: Alternatives to Plasticity

Abstract

The presence of very small embryonic-like stem cells (VSELs) in adult mammalian gonads is set to disrupt several existing paradigms in the field of reproductive biology. Being pluripotent, VSELs are present at the top of hierarchy among the tissue-specific stem cells. In the testis, they exist as a sub-population of small spherical cells with high nucleo-cytoplasmic ratio among the spermatogonial stem cells (SSCs) along the basement membrane of the seminiferous tubules. They undergo asymmetric cell division to self-renew, give rise to the SSCs and may also be responsible for the embryonic stem (ES) cell-like colonies observed on culturing testicular biopsy. The SSCs undergo rapid division (clonal expansion as chains), meiosis, and further differentiate into sperm. In the ovary, VSELs are lodged in the ovary surface epithelium (OSE) along with immediate progenitors termed ovarian germ stem cells (OGSCs). Ovarian VSELs also undergo asymmetric cell division to give rise to OGSCs which undergo clonal expansion to form nests (cysts) and further differentiate into oocytes which assemble as primordial follicles below the OSE. Stem cell function in the adult mammalian ovary is modulated by follicle stimulating hormone (FSH) via a novel FSH receptor isoform R3. These results are in contradiction to the existing paradigm that initial primordial follicle growth is independent of FSH and that it acts on the granulosa cells of growing follicles through a G protein-coupled FSH receptor. Being relatively quiescent in nature, VSELs survive oncotherapy in both testis and ovary but are unable to differentiate because of a compromised niche. Their functionality may be restored by providing a healthy niche. This newer understanding of VSELs biology in mammalian gonads will provide deep insight in various fields of reproductive health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Culty M (2013) Gonocytes, from the fifties to the present: is there a reason to change the name? Biol Reprod 89(2):46

    Article  PubMed  Google Scholar 

  2. De Felici M, Barrios F (2013) Seeking the origin of female germline stem cells in the mammalian ovary. Reproduction 146:R125–R130

    Article  PubMed  CAS  Google Scholar 

  3. Pepling ME (2012) Follicular assembly: mechanisms of action. Reproduction 143:139–149

    Article  PubMed  CAS  Google Scholar 

  4. De Felici M (2010) Germ stem cells in the mammalian adult ovary: considerations by a fan of the primordial germ cells. Mol Hum Reprod 16:632–636

    Article  PubMed  CAS  Google Scholar 

  5. Bhartiya D, Unni S, Parte S, Anand S (2013) Very small embryonic-like stem cells: implications in reproductive biology. Biomed Res Int 2013:682326

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ratajczak MZ, Liu R, Ratajczak J, Kucia M, Shin DM (2011) The role of pluripotent embryonic-like stem cells residing in adult tissues in regeneration and longevity. Differentiation 81(3):153–161

    Article  PubMed  CAS  Google Scholar 

  7. Wojakowski W, Landmesser U, Bachowski R, Jadczyk T, Tendera M (2012) Mobilization of stem and progenitor cells in cardiovascular diseases. Leukemia 26:23–33

    Article  PubMed  CAS  Google Scholar 

  8. Drukała J, Paczkowska E, Kucia M, Młyńska E, Krajewski A, Machaliński B et al (2012) Stem cells, including a population of very small embryonic-like stem cells, are mobilized into peripheral blood in patients after skin burn injury. Stem Cell Rev 8:184–194

    Article  PubMed  Google Scholar 

  9. Ratajczak MZ, Liu R, Marlicz W, Blogowski W, Starzynska T, Wojakowski W (2011) Identification of very small embryonic/epiblast-like stem cells (VSELs) circulating in peripheral blood during organ/tissue injuries. Methods Cell Biol 103:31–54

    Article  PubMed  CAS  Google Scholar 

  10. Paczkowska E, Kucia M, Koziarska D, Halasa M, Safranow K, Masiuk M et al (2009) Clinical evidence that very small embryonic-like stem cells are mobilized into peripheral blood in patients after stroke. Stroke 40:1237–1244

    Article  PubMed  CAS  Google Scholar 

  11. Kucia MJ, Wysoczynski M, Wu W, Zuba-SurmaEK, Ratajczak J, Ratajczak MZ (2008) Evidence that very small embryonic-like stem cells are mobilized into peripheral blood. Stem Cells 26:2083–2092

    Article  PubMed  CAS  Google Scholar 

  12. Virant-Klun I, Skutella T, Hren M, Gruden K, Cvjeticanin B, Vogler A et al (2013) Isolation of small SSEA-4-positive putative stem cells from the ovarian surface epithelium of adult human ovaries by two different methods. Biomed Res Int 2013:690415

    Google Scholar 

  13. Bhartiya D, Kasiviswanathan S, Unni SK, Pethe P, Dhabalia JV, Patwardhan S et al (2010) Newer insights into pre-meiotic development of germ cells in adult human testis using Oct-4 as a stem cell marker. J Histochem Cytochem 58:1093–1106

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Parte S, Bhartiya D, Telang J, Daithankar V, Salvi V, Zaveri K et al (2011) Detection, characterization and spontaneous differentiation in vitro of very small embryonic-like putative stem cells in adult mammalian ovary. Stem Cells Dev 20(8):1451–1464

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Bhartiya D, Sriraman K, Gunjal P, Modak H (2012) Gonadotropin treatment augments postnatal oogenesis and primordial follicle assembly in adult mouse ovaries? J Ovarian Res 5(1):32

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Parte S, Bhartiya D, Manjramkar DD, Chauhan A, Joshi A (2013) Stimulation of ovarian stem cells by follicle stimulating hormone and basic fibroblast growth factor during cortical tissue culture. J Ovarian Res 6(1):20

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Patel H, Bhartiya D, Parte S, Gunjal P, Yedurkar S, Bhatt M (2013) Follicle stimulating hormone modulates ovarian stem cells through alternately spliced receptor variant FSH-R3. J Ovarian Res 6(1):52

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Ratajczak J, Zuba-Surma E, Paczkowska E, Kucia M, Nowacki P, Ratajczak MZ (2011) Stem cells for neural regeneration-a potential application of very small embryonic-like stem cells. J Physiol Pharmacol 62:3–12

    PubMed  CAS  Google Scholar 

  19. Anand S, Bhartiya D, Sriraman K, Patel H, Manjramkar DD, Bakshi G et al (2013) Quiescent very small embryonic-like stem cells resist oncotherapy and can restore spermatogenesis in germ cell depleted mammalian testis. Stem Cells Dev 2013 Sep 30. PMID:24079711

    Google Scholar 

  20. Sriraman K, Bhartiya D, Anand S, Bhutda S (2013) Mouse ovarian very small embryonic-like stem cells resist chemotherapy and initiate oocyte-specific differentiation in vitro in response to follicle stimulating hormone. Mol Reprod Dev (Manuscript under review)

    Google Scholar 

  21. Brinster RL, Zimmermann JW (1994) Spermatogenesis following male germ-cell transplantation. Proc Natl Acad Sci U S A 91:11298–11302

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Li L, Clevers H (2010) Coexistence of quiescent and active adult stem cells in mammals. Science 327:542–545

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. De Rosa L, De Luca M (2012) Cell biology: dormant and restless skin stem cells. Nature 489:215–217

    Article  PubMed  CAS  Google Scholar 

  24. Oatley JM, Brinster RL (2012) The germline stem cell niche unit in mammalian testes. Physiol Rev 92:577–595

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Caires K, Broady J, McLean D (2010) Maintaining the male germline: regulation of spermatogonial stem cells. J Endocrinol 205:133–145

    Article  PubMed  CAS  Google Scholar 

  26. deRooij DG, Russell LD (2000) All you wanted to know about spermatogonia but were afraid to ask. J Androl 21:776–798

    CAS  Google Scholar 

  27. Zuba-Surma EK, Kucia M, Wu W, Klich I, Lillard JW Jr, Ratajczak J et al (2008) Very small embryonic-like stem cells are present in adult murine organs: ImageStream-based morphological analysis and distribution studies. Cytometry A 73 A:1116–1127

    Article  Google Scholar 

  28. Lim JJ, Kim HJ, Kim KS, Hong JY, Lee DR (2013) In vitro culture-induced pluripotency of human spermatogonial stem cells. Biomed Res Int 2013:143028

    PubMed  PubMed Central  Google Scholar 

  29. Lim JJ, Sung SY, Kim HJ, Song SH, Hong JY, Yoon TK et al (2010) Long-term proliferation and characterization of human spermatogonial stem cells obtained from obstructive and non-obstructive azoospermia under exogenous feeder-free culture conditions. Cell Prolif 43:405–417

    Article  PubMed  CAS  Google Scholar 

  30. Izadyar F, Wong J, Maki C, Pacchiarotti J, Ramos T, Howerton K et al (2011) Identification and characterization of repopulating spermatogonial stem cells from the adult human testis. Hum Reprod 26(6):1296–1306

    Article  PubMed  Google Scholar 

  31. Grisanti L, Falciatori IG, Muciaccia B et al (2009) Identification of spermatogonial stem cell subsets by morphological analysis and prospective isolation. Stem Cells 27:3043–3052

    PubMed  CAS  Google Scholar 

  32. Kubota H, Mary R, Brinster RL (2003) Spermatogonial stem cells share some, but not all, phenotypic and functional characteristics with other stem cells. PNAS 100:6487–6492

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Huckins C (1971) The spermatogonial stem cell population in adult rats. 3. Evidence for a long-cycling population. Cell Tissue Kinet 4:335–349

    PubMed  CAS  Google Scholar 

  34. Mays-Hoopes LL, Bolen J, Riggs AD, Singer-Sam J (1995) Preparation of spermatogonia, spermatocytes, and round spermatids for analysis of gene expression using fluorescence-activated cell sorting. Biol Reprod 53:1003–1011

    Article  PubMed  CAS  Google Scholar 

  35. Mizrak SC, Chikhovskaya JV, Sadri-Ardekani H, van Daalen S, Korver CM, Hovingh SE et al (2010) Embryonic stem cell-like cells derived from adult human testis. Hum Reprod 25:158–167

    Article  PubMed  CAS  Google Scholar 

  36. deRooij DG, Mizrak SC (2008) Deriving multipotent stem cells from mouse spermatogonial stem cells: a new tool for developmental and clinical research. Development 135:2207–2213

    Article  CAS  Google Scholar 

  37. Kanatsu-Shinohara M, Miki H, Inoue K, Ogonuki N, Toyokuni S, Ogura A et al (2005) Germline niche transplantation restores fertility in infertile mice. Hum Reprod 20:2376–2382

    Article  PubMed  CAS  Google Scholar 

  38. Chikhovskaya JV, Jonker MJ, Meissner A, Breit TM, Repping S, van Pelt AM (2012) Human testis-derived embryonic stem cell-like cells are not pluripotent, but possess potential of mesenchymal progenitors. Hum Reprod 27:210–221

    Article  PubMed  CAS  Google Scholar 

  39. Warthemann R, Eildermann K, Debowski K, Behr R (2012) False-positive antibody signals for the pluripotency factor OCT4A (POU5F1) in testis-derived cells may lead to erroneous data and misinterpretations. Mol Hum Reprod 18:605–612

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Bhartiya D, Kasiviswananthan S, Shaikh A (2012) Cellular origin of testis-derived pluripotent stem cells: a case for very small embryonic-like stem cells. Stem Cells Dev 21:670–674

    Article  PubMed  CAS  Google Scholar 

  41. Woods DC, Tilly JL (2013) An evolutionary perspective on adult female germline stem cell function from flies to humans. Semin Reprod Med 31:24–32

    Article  PubMed  Google Scholar 

  42. Woods DC, Tilly JL (2013) Isolation, characterization and propagation of mitotically active germ cells from adult mouse and human ovaries. Nat Protoc 8(5):966–988

    Article  PubMed  Google Scholar 

  43. Virant-Klun I, Stimpfel M, Skutella T (2012) Stem cells in adult human ovaries: from female fertility to ovarian cancer. Curr Pharm Des 18:283–292

    Article  PubMed  CAS  Google Scholar 

  44. Bukovsky A, Caudle MR (2012) Immunoregulation of follicular renewal, selection, POF, and menopause in vivo, vs. neo-oogenesis in vitro, POF and ovarian infertility treatment, and a clinical trial. Reprod Biol Endocrinol 10:97

    Article  PubMed  PubMed Central  Google Scholar 

  45. Virant-Klun IR, Rulicke TR et al (2009) Parthenogenetic embryo-like structures in the human ovarian surface epithelium cell culture in postmenopausal women with no naturally present follicles and oocytes. Stem Cells Dev 18:137–149

    Article  PubMed  CAS  Google Scholar 

  46. White YA, Woods DC, Takai Y, Ishihara O, Seki H, Tilly JL (2012) Oocyte formation by mitotically active germ cells purified from ovaries of reproductive-age women. Nat Med 18:413–421

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  47. Zou K, Yuan ZY, Zhou L et al (2009) Production of offspring from a germline stem cell line derived from neonatal ovaries. Nat Cell Biol 11:631–636

    Article  PubMed  CAS  Google Scholar 

  48. Ratajczak MZ, Zuba-Surma E, Wojakowski W, Suszynska M, Mierzejewska K, Liu R et al (2013) Very small embryonic like stem cells (VSELs) represent a real challenge in stem cell biology. Recent pros and cons in the midst of a lively debate. Leukemia. doi:10.1038/leu.2013.255 [Epub ahead of print]

    Google Scholar 

  49. Abbott A (2013) Doubt case over tiny stem cells. Nature 499:390. doi:10.1038/499390a

    Google Scholar 

  50. Chang HL, MacLaughlin DT, Donahoe PK (2009) Somatic stem cells of the ovary and their relationship to human ovarian cancers (April 30, 2009), Stem Book, ed. The stem cell research community, Stem Book. doi/10.3824/stembook.1.43.1, http://www.stembook.org

  51. Auersperg N, Wong AS, Choi KC, Kang SK, Leung PC (2001) Ovarian surface epithelium: biology, endocrinology, and pathology. Endocr Rev 22:255–288

    PubMed  CAS  Google Scholar 

  52. Lei L, Jin S, Mayo KE, Woodruff TK (2010) The interactions between the stimulatory effect of follicle-stimulating hormone and the inhibitory effect of estrogen on mouse primordial folliculogenesis. Biol Reprod 5:13–22

    Article  Google Scholar 

  53. Debieve F, Beerlandt S, Hubinont C, Thomas K (2000) Gonadotropins, prolactin, inhibin A, inhibin B, and activin A in human fetal serum from mid-pregnancy and term pregnancy. J Clin Endocrinol Metab 85:270–274

    Article  PubMed  CAS  Google Scholar 

  54. Vomachka AJ, Greenwald GS (1979) The development of gonadotropin and steroid hormone patterns in male and female from birth to puberty. Endocrinology 5:960–966

    Article  Google Scholar 

  55. Telfer EE, Zelinski MB (2013) Ovarianfollicleculture: advances and challenges for human and nonhuman primates. Fertil Steril 99:1523–1533

    Article  PubMed  PubMed Central  Google Scholar 

  56. McLaughlin M, Telfer EE (2010) Oocyte development in bovine primordial follicles is promoted by activin and FSH within a two-step serum-free culture system. Reproduction 139:971–978

    Article  PubMed  CAS  Google Scholar 

  57. Garor R, Abir R, Erman A, Felz C, Nitke S, Fisch B (2009) Effects of basic fibroblast growth factor on in vitro development of human ovarian primordial follicles. Fertil Steril 91:1967–1975

    Article  PubMed  CAS  Google Scholar 

  58. Lei L, Spradling AC (2013) Female mice lack adult germ-line stem cells but sustain oogenesis using stable primordial follicles. Proc Natl Acad Sci U S A 110:8585–8590

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  59. Bhartiya D, Sriraman K, Parte S, Patel H (2013) Ovarian stem cells: absence of evidence is not evidence of absence. J Ovarian Res 6(1):65

    Article  PubMed  PubMed Central  Google Scholar 

  60. Parte S, Bhartiya D, Patel H, Daithankar V, Chauhan A, Zaveri K, Hinduja I (2013) Dynamics associated with spontaneous differentiation of ovarian stem cells in vitro. J Ovarian Res 7(1):25

    Article  Google Scholar 

  61. Sairam MR, Babu PS (2007) The tale of follitropin receptor diversity: a recipe for fine tuning gonadal responses? Mol Cell Endocrinol 260–262:163–171

    Article  PubMed  Google Scholar 

  62. Desai SS, Roy BS, Mahale SD (2013) Mutations and polymorphisms in FSH receptor: functional implications in human reproduction. Reproduction 146(6):R235–R248

    Article  PubMed  CAS  Google Scholar 

  63. Woad KJ, Prendergast D, Winship IM, Shelling AN (2013) FSH receptor gene variants are rarely associated with premature ovarian failure. Reprod Biomed Online 26:396–399

    Article  PubMed  CAS  Google Scholar 

  64. Babu PS, Jiang L, Sairam AM, Touyz RM, Sairam MR (1999) Structural features and expression of an alternatively spliced growth factor type I receptor for follitropin signaling in the developing ovary. Mol Cell Biol Res Commun 2:21–27

    Article  PubMed  CAS  Google Scholar 

  65. Babu PS, Danilovich N, Sairam MR (2001) Hormone-induced receptor gene splicing: enhanced expression of the growth factor type I follicle-stimulating hormone receptor motif in the developing mouse ovary as a new paradigm in growth regulation. Endocrinology 142:381–389

    PubMed  CAS  Google Scholar 

  66. Sairam MR, Jiang LG, Yarney TA, Khan H (1997) Alternative splicing converts the G-protein coupled follitropin receptor gene into a growth factor type I receptor: implications for pleiotropic actions of the hormone. Mol Reprod Dev 48:471–479

    Article  PubMed  CAS  Google Scholar 

  67. Li Y, Ganta S, Cheng C, Craig R, Ganta RR, Freeman LC (2007) FSH stimulates ovarian cancer cell growth by action on growth factor variant receptor. Mol Cell Endocrinol 267:26–37

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  68. Rao AJ, Ramachandra SG, Ramesh V, Couture L, Abdennebi L, Salesse R et al (2004) Induction of infertility in adult male bonnet monkeys by immunization with phage-expressed peptides of the extracellular domain of FSH receptor. Reprod Biomed Online 8:385–391

    Article  PubMed  CAS  Google Scholar 

  69. Roy SK, Albee L (2000) Requirement for follicle-stimulating hormone action in the formation of primordial follicles during perinatal ovarian development in the hamster. Endocrinology 141:4449–4456

    PubMed  CAS  Google Scholar 

  70. Lange S, Tait D, Matthews M (2013) Oncofertility: an emerging discipline in obstetrics and gynecology. Obstet Gynecol Surv 68:582–593

    Article  PubMed  Google Scholar 

  71. Ratajczak J, Wysoczynski M, Zuba-Surma E, Wan W, Kucia M, Yoder MC et al (2011) Adult murine bone marrow-derived very small embryonic-like stem cells differentiate into the hematopoietic lineage after co-culture over OP9 stromal cells. Exp Hematol 39:225–237

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

Would like to acknowledge various groups whose work may be relevant to the chapter but we have made a conscious effort to cite most recent articles. The work was done as part of financial support provided by Indian Council of Medical Research and Department of Biotechnology, Government of India, New Delhi.

NIRRH accession number is OTH/24/10-2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepa Bhartiya PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bhartiya, D., Parte, S., Patel, H., Anand, S., Sriraman, K., Gunjal, P. (2014). Pluripotent Very Small Embryonic-like Stem Cells in Adult Mammalian Gonads. In: Ratajczak, M. (eds) Adult Stem Cell Therapies: Alternatives to Plasticity. Stem Cell Biology and Regenerative Medicine. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1001-4_11

Download citation

Publish with us

Policies and ethics