Skip to main content

IV.D. Physiology of Accommodation and Role of the Vitreous Body

  • Chapter
  • First Online:
Vitreous

Abstract

The eye is a three-chambered system, consisting of the anterior chamber, posterior chamber, and vitreous compartment. The anterior and posterior chambers are separated by the iris and filled with aqueous fluid produced by the ciliary epithelium and flowing from the posterior to the anterior chamber through the pupil. Fluid is constantly replenished and “turned over” in both the aqueous and the vitreous. The fluid “relief valve” is primarily movement of the aqueous from the eye via the trabecular meshwork and Schlemm’s canal, but also is transported from the eye via a secondary uveoscleral outflow route [1–3] involving the ciliary body, choroid, sclera, and episcleral tissues. The anterior and posterior chambers are normally in communication through the pupil and hence in pressure equilibrium. The vitreous is normally also in pressure equilibrium with the aqueous. Remarkably, this pressure equilibrium is maintained during growth and development when there are significant changes in anatomy.

Croft & Kaufman et. al., IOVS 2013. (54) 5049-5058

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bill A, Hellsing K. Production and drainage of aqueous humor in the cynomolgus money (Macaca irus). Invest Ophthalmol Vis Sci. 1965;4:920–6.

    CAS  Google Scholar 

  2. Bill A. Conventional and uveo-scleral drainage of aqueous humour in the cynomolgus monkey (Macaca irus) at normal and high intraocular pressures. Exp Eye Res. 1966;5:45–54.

    Article  PubMed  CAS  Google Scholar 

  3. Bill A. The routes for bulk drainage of aqueous humour in the vervet monkey (Cercopithecus ethiops). Exp Eye Res. 1966;5:55–7.

    Article  PubMed  CAS  Google Scholar 

  4. Wilmer HA, Scammon RE. Growth of the components of the human eyeball; I. Diagrams, calculations, computation and reference tables. Arch Ophthalmol. 1950;43(4):599–619.

    Article  CAS  Google Scholar 

  5. Scammon RE, Wilmer HA. Growth of the components of the human eyeball; II. Comparison of the calculated volumes of the eyes of the newborn and of adults, and their components. Arch Ophthalmol. 1950;43(4):620–37.

    Article  CAS  Google Scholar 

  6. Oppel O. About some special aspects of the development of the human visual apparatus and its visual functions. Klin Monbl Augenheilkd. 1966;48(3):321–40.

    Google Scholar 

  7. Ruby AJ, Williams GA, Blumenkranz MS. Vitreous humor. In: Tasman W, Jaeger E, editors. Duane’s foundations of clinical ophthalmology. Philadelphia: Lippincott Williams & Wilkins; 2000.

    Google Scholar 

  8. Sebag J. Anomalous posterior vitreous detachment: a unifying concept in vitreo-retinal disease. Graefes Arch Clin Exp Ophthalmol. 2004;242:690–8.

    Article  PubMed  CAS  Google Scholar 

  9. Coleman DJ, Trokel S. Direct-recorded intraocular pressure variations in a human subject. Arch Ophthalmol. 1969;85(2):637–40.

    Article  Google Scholar 

  10. Coleman DJ. On the hydraulic suspension theory of accommodation. Trans Am Ophthalmol Soc. 1986;84:846–68.

    PubMed  CAS  PubMed Central  Google Scholar 

  11. Duke-Elder S. System of ophthalmology. Ophthalmic optics and refraction. St Louis: Mosby; 1970.

    Google Scholar 

  12. von Helmholtz H. Über die akkommodation des augues. Albrecht Von Graefes Arch Klin Exp Ophthalmol. 1855;1:1–89.

    Article  Google Scholar 

  13. Cramer A. Tijdschrift der maatshappij vor geneeskunde, Nederlandisch. Lancet. 1851;1:529–41.

    Google Scholar 

  14. Tscherning M. Physiologic optics, dioptrics of the eye, functions of the retina, ocular movements and binocular vision. Philadelphia: C. Weiland; 1904.

    Google Scholar 

  15. von Pflugk A. Neve wege zur erforschung der lehre von der akkommodation, der glaskorper im akkommodierenden auge. Albrecht Von Graefes Arch Klin Exp Ophthalmol. 1935;133:454–571.

    Article  Google Scholar 

  16. Coleman DJ. Unified model for accommodative mechanism. Am J Ophthalmol. 1970;69:1063–79.

    Article  PubMed  CAS  Google Scholar 

  17. Graves B. Changes of tension on the lens capsule during accommodation and under the influence of various drugs. Br Med J. 1926;9:46–50.

    Article  Google Scholar 

  18. Schachar RA. Zonular function: a new hypothesis with clinical implications. Ann Ophthalmol. 1994;26:36–8.

    PubMed  CAS  Google Scholar 

  19. Rohen JW. Experimental studies on the trabecular meshwork in primates. Arch Ophthalmol. 1963;69:335–49.

    Article  PubMed  CAS  Google Scholar 

  20. Fincham EF. The accommodation reflex and its stimulus. Br J Ophthalmol. 1951;35(7):381–93.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Lutjen-Drecoll E, Kaufman P, Wasielewski R, Lin TL, Croft MA. Morphology and accommodative function of the vitreous zonule in human and monkey eyes. Invest Ophthalmol Vis Sci. 2010;51(3):1554–64.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Croft MA, Nork TM, McDonald JP, Katz A, Luetjen-Drecoll E, Kaufman PL. Accommodative movements of the vitreous membrane, choroid, and sclera in young and presbyopic human and nonhuman primate eyes. Invest Ophthalmol Vis Sci. 2013;54(7):5049–58.

    Article  PubMed  PubMed Central  Google Scholar 

  23. van Alphen GW. On emmetropia and ametropia. Ophthalmologica. 1961;142(S1):1–92.

    Article  Google Scholar 

  24. Lossing LA, Sinnott LT, Kao CY, Richdale K, Bailey MD. Measuring changes in ciliary muscle thickness with accommodation in young adults. Optom Vis Sci. 2012;89:719–26.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Sheppard AL, Davies LN. In vivo analysis of ciliary muscle morphologic changes with accommodation and axial ametropia. Invest Ophthalmol Vis Sci. 2010;51:6882–9.

    Article  PubMed  Google Scholar 

  26. Baikoff G. Measurement of accommodation. Anterior segment optical coherence tomography. Thorofare: Slack; 2008.

    Google Scholar 

  27. Malyugin BE, Shpak AA, Pokrovskiy DF. Accommodative changes in anterior chamber depth in patients with high myopia. J Cataract Refract Surg. 2012;38:1403–7.

    Article  PubMed  Google Scholar 

  28. Shen M, Wang MR, Yuan Y, et al. SD-OCT with prolonged scan depth for imaging the anterior segment of the eye. Ophthalmic Surg Lasers Imaging. 2010;41:S65–9.

    Article  PubMed  Google Scholar 

  29. Du C, Shen M, Li M, Zhu D, Wang MR, Wang J. Anterior segment biometry during accommodation imaged with ultralong scan depth optical coherence tomography. Ophthalmology. 2012;119:2479–85.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Yuan Y, Chen F, Shen M, Lu F, Wang J. Repeated measurements of the anterior segment during accommodation using long depth optical coherence tomography. Eye Contact Lens. 2012;38:102–8.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kim E, Ehrmann K, Uhlhorn S, Borja D, Arrieta-Quintero E, Parel JM. Semiautomated analysis of optical coherence tomography crystalline lens images under simulated accommodation. J Biomed Opt. 2011;16(5):056003-1-11.

    Article  Google Scholar 

  32. Itakura H, Kishi S, Li D, Akiyama H. Observation of posterior precortical vitreous pocket using swept source optical coherence tomography. Invest Ophthalmol Vis Sci. 2013;54(5):3102–7.

    Article  PubMed  Google Scholar 

  33. Coleman DJ, Silverman RS, Lizzi FL, Rondeau MJ, Reinstein DZ, Lloys H, Daly SW. Ultrasonography of the eye and orbit. Philadelphia: Lippincott Williams & Wilkins; 2006.

    Google Scholar 

  34. Glasser A, Kaufman PL. The mechanism of accommodation in primates. Ophthalmology. 1999;106:863–72.

    Article  PubMed  CAS  Google Scholar 

  35. Schachar RA, Kamangar F. Computer image analysis of ultrasound biomicroscopy of primate accommodation. Eye. 2006;20:226–33.

    Article  PubMed  CAS  Google Scholar 

  36. Croft MA, McDonald JP, Nadkarni NV, Lin TL, Kaufman PL. Age-related changes in centripetal ciliary body movement relative to centripetal lens movement in monkeys. Exp Eye Res. 2009;89:824–32.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Adam RS, Pavlin CJ, Ulanski LJ. Ultrasound biomicroscopic analysis of iris profile changes with accommodation in pigmentary glaucoma and relationship to age. Am J Ophthalmol. 2004;138(4):652–4.

    Article  PubMed  Google Scholar 

  38. Jeon S, Lee WK, Lee K, Moon NJ. Diminished ciliary muscle movement on accommodation in myopia. Exp Eye Res. 2012;105:9–14.

    Article  PubMed  CAS  Google Scholar 

  39. Stachs O, Martin H, Behrend D, Schnitz KP, Guthoff R. Three-dimensional ultrasound biomicroscopy, environmental and conventional scanning electron microscopy investigations of the human zonula ciliaris for numerical modelling of accommodation. Graefes Arch Clin Exp Ophthalmol. 2006;244:836–44.

    Article  PubMed  Google Scholar 

  40. Stachs O, Martin H, Kirchhoff A, Stave J, Terwee T, Guthoff R. Monitoring accommodative ciliary muscle function using three-dimensional ultrasound. Graefes Arch Clin Exp Ophthalmol. 2002;240:906–12.

    Article  PubMed  Google Scholar 

  41. Park KA, Yun JH, Kee C. The effect of cataract extraction on the contractility of ciliary muscle. Am J Ophthalmol. 2008;146:8–14.

    Article  PubMed  Google Scholar 

  42. Modesti M, Pasqualitto G, Appolloni R, Pecorella I, Sourdille P. Preoperative and postoperative size and movements of the lens capsular bag: ultrasound biomicroscopy analysis. J Cataract Refract Surg. 2011;37:1755–84.

    Article  Google Scholar 

  43. Ludwig K, Wegscheider E, Hoops JP, Kampik A. In vivo imaging of the human zonular apparatus with high-resolution ultrasound biomicroscopy. Graefes Arch Clin Exp Ophthalmol. 1999;237:361–71.

    Article  PubMed  CAS  Google Scholar 

  44. Wasilewski R, McDonald JP, Heatley G, Lutjen-Drecoll E, Kaufman PL, Croft MA. Surgical intervention and accommodative responses, II: forward ciliary body accommodative movement is facilitated by zonular attachments to the lens capsule. Invest Ophthalmol Vis Sci. 2008;49:5495–502.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Kasthurirangan S, Markwell EL, Atchison DA, Pope JM. In vivo study of changes in refractive index distribution in the human crystalline lens with age and accommodation. Invest Ophthalmol Vis Sci. 2008;49:2531–40.

    Article  PubMed  Google Scholar 

  46. Jones CE, Atchison DA, Pope JM. Changes in lens dimensions and refractive index with age and accommodation. Optom Vis Sci. 2007;84(10):990–5.

    Article  PubMed  Google Scholar 

  47. Strenk SA, Strenk LM, Guo S. Magnetic resonance imaging of aging, accommodating, phakic and pseudophakic ciliary muscle diameters. J Cataract Refract Surg. 2006;32:1792–8.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Strenk SA, Strenk LM, Semmlow JL, DeMarco JK. Magnetic resonance imaging study of the effects of age and accommodation on the human lens cross-sectional area. Invest Ophthalmol Vis Sci. 2004;45(2):539–45.

    Article  PubMed  Google Scholar 

  49. Richdale K, Wassenaar P, Bluestein KT, et al. 7 Tesla MR imaging of the human eye in vivo. J Magn Reson Imaging. 2009;30:924–32.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Koretz JF, Cook CA, Kaufman PL. Accommodation and presbyopia in the human eye: changes in the anterior segment and crystalline lens with focus. Invest Ophthalmol Vis Sci. 1997;38(3):569–78.

    PubMed  CAS  Google Scholar 

  51. Coleman DJ, Fish SK. Presbyopia, accommodation, and the mature catenary. Ophthalmology. 2001;108(9):1544–51.

    Article  PubMed  CAS  Google Scholar 

  52. Fincham EF. The function of the lens capsule in the accommodation of the eye. Trans Opt Soc. 1928;30:101–37.

    Article  Google Scholar 

  53. van Alphen GW, Graebel WP. Elasticity of tissues involved in accommodation. Vision Res. 1961;31(7/8):1417–38.

    Google Scholar 

  54. Croft MA, Glasser A, Kaufman PL. Accommodation and presbyopia. Int Ophthalmol Clin. 2001;41:33–46.

    Article  PubMed  CAS  Google Scholar 

  55. Koretz JF, Handelman GH. Modeling age-related accommodative loss in the human eye. Math Model. 1986;7:1003–14.

    Article  Google Scholar 

  56. Koretz JF, Handelman GH. Model of accommodative mechanism in the human eye. Vision Res. 1982;22:917–27.

    Article  PubMed  CAS  Google Scholar 

  57. Armaly MF, Burian HM. Changes in the tonogram during accommodation. Arch Ophthalmol. 1958;60(1):60–9.

    Article  CAS  Google Scholar 

  58. Martin H, Guthoff R, Terwee T, Schmitz KP. Comparison of the accommodation theories of Coleman and of Helmholtz by finite element simulations. Vision Res. 2005;45(22):2910–5.

    Article  PubMed  Google Scholar 

  59. Nankivil D, Manns F, Arrieta-Quintero E, et al. Effect of anterior zonule transection on the change in lens diameter and power in cynomolgus monkeys during simulated accommodation. Invest Ophthalmol Vis Sci. 2009;50(8):4017–21.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Strenk SA, Strenk LM, Koretz JF. The mechanism of presbyopia. Prog Retin Eye Res. 2005;24:379–93.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Jackson Coleman MD .

Editor information

Editors and Affiliations

Electronic Supplementary Material

Video IV.D-1

(AVI 5871 kb)

http://www.springerimages.com/Videos/Show/1-10.1007_978-1-4939-1086-1_28-11?httproute=True

Video IV.D-2

(AVI 4800 kb)

http://www.springerimages.com/Videos/Show/1-10.1007_978-1-4939-1086-1_28-11?httproute=True

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Coleman, D.J., Silverman, R.H., Lloyd, H. (2014). IV.D. Physiology of Accommodation and Role of the Vitreous Body. In: Sebag, J. (eds) Vitreous. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1086-1_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1086-1_28

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1085-4

  • Online ISBN: 978-1-4939-1086-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics