Skip to main content

Optimal Algorithms for Binary, Sparse, and L 1-Norm Principal Component Analysis

  • Chapter
  • First Online:
Mathematics Without Boundaries

Abstract

The principal components of a data matrix based on the L 2 norm can be computed with polynomial complexity via the singular-value decomposition (SVD). If, however, the principal components are constrained to be finite-alphabet or sparse or the L 1 norm is used as an alternative of the L 2 norm, then the computation of them is NP-hard. In this work, we show that in all these problems, the optimal solution can be obtained in polynomial time if the rank of the data matrix is constant. Based on the auxiliary-unit-vector technique that we have developed over the past years, we present optimal algorithms and show that they are fully parallelizable and memory efficient, hence readily implementable. We analyze the properties of our algorithms, compare against the state of the art, and comment on communications and signal processing problems where they are directly applicable to. The efficiency of our auxiliary-unit-vector technique allows the development of a binary, sparse, or L 1 principal component analysis (PCA) line of research in parallel to the conventional L 2 PCA theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We ignore the other semicircle because any pair of angles ϕ 1 and ϕ 2 with difference π results in opposite vectors \(\mathbf{c}(\phi _{1}) = -\mathbf{c}(\phi _{2})\) and, hence, opposite binary vectors \(\mathbf{x}(\mathbf{c}(\phi _{1})) = -\mathbf{x}(\mathbf{c}(\phi _{2}))\) in (16) which, however, are equivalent with respect to the optimization metric in (9).

  2. 2.

    As in the rank-2 case, we ignore the other semihypersphere because any pair of vectors \(\boldsymbol{\phi }\) and \(\tilde{\boldsymbol{\phi }}\) whose first elements ϕ 1 and \(\tilde{\phi }_{1}\), respectively, have difference π results in opposite vectors \(\mathbf{c}(\boldsymbol{\phi }) = -\mathbf{c}(\tilde{\boldsymbol{\phi }})\) and, hence, opposite binary vectors \(\mathbf{x}(\mathbf{c}(\boldsymbol{\phi })) = -\mathbf{x}(\mathbf{c}(\tilde{\boldsymbol{\phi }}))\) in (16) which, however, are equivalent with respect to the optimization metric in (9).

  3. 3.

    If V 1: D−1, :  is full-rank, then its null space has rank 1 and \(\mathbf{c}(\boldsymbol{\phi })\) is uniquely determined (within a sign ambiguity which is resolved by c D  ≥ 0). If, instead, V 1: D−1, :  is rank-deficient, then the intersection of the D − 1 hypersurfaces (i.e., the solution of (28)) is a p-manifold (with p ≥ 1) in the (D − 1)-dimensional space and does not generate a new cell. Hence, linearly dependent combinations of D − 1 rows of V are ignored.

  4. 4.

    An alternative way of resolving the sign ambiguities at the intersections of hypersurfaces was developed in [34] and led to the direct construction of a set S of size \(\sum _{i=0}^{D-1}\binom{N - 1}{i} = O(N^{D-1})\) with complexity O(N D).

  5. 5.

    We again allow c(ϕ) to lie on the unit-radius semicircle and ignore the other semicircle because any pair of angles ϕ 1 and ϕ 2 with difference π results in opposite vectors \(\mathbf{c}(\phi _{1}) = -\mathbf{c}(\phi _{2})\) which, however, are equivalent with respect to the optimization metric in (40) and produce the same support \(I(\mathbf{c}(\phi _{1})) = I(\mathbf{c}(\phi _{2}))\) in (42).

  6. 6.

    The exact detailed steps that are taken to define, with complexity O(N), the support I for each interval that is adjacent to an intersection point are described in [4].

  7. 7.

    As in the rank-2 case, we allow \(\mathbf{c}(\boldsymbol{\phi })\) to lie on the unit-radius semihypersphere, since we can ignore the other semihypersphere because any pair of vectors \(\boldsymbol{\phi }\) and \(\tilde{\boldsymbol{\phi }}\) whose first elements ϕ 1 and \(\tilde{\phi }_{1}\), respectively, have difference π results in opposite vectors \(\mathbf{c}(\boldsymbol{\phi }) = -\mathbf{c}(\tilde{\boldsymbol{\phi }})\) which, however, are equivalent with respect to the optimization metric in (40) and produce the same support \(I(\mathbf{c}(\boldsymbol{\phi })) = I(\mathbf{c}(\tilde{\boldsymbol{\phi }}))\) in (42).

  8. 8.

    If the (D − 1) × D matrix is full-rank, then its null space has rank 1 and \(\mathbf{c}(\boldsymbol{\phi })\) is uniquely determined (within a sign ambiguity which, however, does not affect the final decision on the index-set). If, instead, the (D − 1) × D matrix is rank-deficient, then the intersection of the D hypersurfaces (i.e., the solution of (51)) is a p-manifold (with p ≥ 1) on the D-dimensional space and does not generate a new cell. Hence, combinations of D rows of V that result in linearly dependent rows of the (D − 1) × D matrix in (51) can be simply ignored.

  9. 9.

    Absolute-value errors put significantly less emphasis on extreme errors than squared-error expressions.

  10. 10.

    A combined L 1/L 2-norm approach has been followed in [16, 46].

  11. 11.

    We note that without the presented algorithm, computation of the L 1 principal component of A 2×50 would have required complexity proportional to 250, which is of course infeasible.

References

  1. Allemand, K., Fukuda, K., Liebling, T.M., Steiner, E.: A polynomial case of unconstrained zero-one quadratic optimization. Math. Program. A-91, 49–52 (2001)

    MathSciNet  Google Scholar 

  2. Amini, A.A., Wainwright, M.J.: High-dimensional analysis of semidefinite relaxations for sparse principal components. In: Proceedings of IEEE ISIT 2008, pp. 2454–2458. Toronto, July 2008

    Google Scholar 

  3. d’Aspremont, A., El Ghaoui, L., Jordan, M.I., Lanckriet, G.R.G.: A direct formulation for sparse PCA using semidefinite programming. SIAM Rev. 49, 434–448 (2007)

    Google Scholar 

  4. Asteris, M., Papailiopoulos, D.S., Karystinos, G.N.: The sparse principal component of a constant-rank matrix. IEEE Trans. Inf. Theory 60, 2281–2290 (2014)

    Article  MathSciNet  Google Scholar 

  5. Avis, D., Fukuda, K.: Reverse search for enumeration. Discrete Appl. Math. 65, 21–46 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. Barahona, F., Grötschel, M., Jünger, M., Reinelt, G.: An application of combinatorial optimization to statistical physics and circuit layout design. Oper. Res. 36, 493–513 (1988)

    Article  MATH  Google Scholar 

  7. Baraniuk, R.G.: Compressive sensing. IEEE Signal Process. Mag. 24, 118–124 (2007)

    Article  Google Scholar 

  8. Ben-Ameur, W., Neto, J.: A polynomial-time recursive algorithm for some unconstrained quadratic optimization problems. Discrete Appl. Math. 159, 1689–1698 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Boutsidis, C., Drineas, P., Magdon-Ismail, M.: Sparse features for PCA-like linear regression. Adv. Neural Inf. Process. Syst. 24, 2285–2293 (2011)

    Google Scholar 

  10. Brooks, J.P., Dulá, J.H.: The L1-norm best-fit hyperplane problem. Appl. Math. Lett. 26, 51–55 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Brooks, J.P., Dulá, J.H., Boone, E.L.: A pure L 1-norm principal component analysis. J. Comput. Stat. Data Anal. 61, 83–98 (2013)

    Article  Google Scholar 

  12. Candès, E.J.: Compressive sampling. In: Proceedings of International Congress Mathematicians (ICM), pp. 1433–1452. Madrid, August 2006

    Google Scholar 

  13. Çela, E., Klinz, B., Meyer, C.: Polynomially solvable cases of the constant rank unconstrained quadratic 0–1 programming problem. J. Comb. Optim. 12, 187–215 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. MIT, Cambridge (2001)

    MATH  Google Scholar 

  15. Diederichs, E., Juditsky, A., Spokoiny, V., Schütte, C.: Sparse non-Gaussian component analysis. IEEE Trans. Inf. Theory 56, 3033–3047 (2010)

    Article  Google Scholar 

  16. Ding, C., Zhou, D., He, X., Zha, H.: R 1-PCA: rotational invariant L 1-norm principal component analysis for robust subspace factorization. In: Proceedings of International Conference on Machine Learning Society, pp. 281–288. Pittsburgh (2006)

    Google Scholar 

  17. Dong, K., Prasad, N., Wang, X., Zhu, S.: Adaptive antenna selection and Tx/Rx beamforming for large-scale MIMO systems in 60 GHz channels. EURASIP J. Wireless Commun. Netw. (2011)

    Google Scholar 

  18. Donoho, D.L., Elad, M., Temlyakov, V.N.: Stable recovery of sparse overcomplete representations in the presence of noise. IEEE Trans. Inf. Theory 52, 6–18 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Eckart, C., Young, G.: The approximation of one matrix by another of lower rank. Psychometrika 1, 211–218 (1936)

    Article  MATH  Google Scholar 

  20. Edelsbrunner, H.: Algorithms in Combinatorial Geometry. Springer, New York (1987)

    Book  MATH  Google Scholar 

  21. Edelsbrunner, H., O’Rourke, J., Seidel, R.: Constructing arrangements of lines and hyperplanes with applications. SIAM J. Comput. 15, 341–363 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  22. Eriksson, A., van den Hengel, A.: Efficient computation of robust low-rank matrix approximations in the presence of missing data using the L 1 norm. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 771–778. San Francisco, June 2010

    Google Scholar 

  23. Ferrez, J.-A., Fukuda, K., Liebling, T.M.: Solving the fixed rank convex quadratic maximization in binary variables by a parallel zonotope construction algorithm. Eur. J. Oper. Res. 166, 35–50 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Funatsu, N., Kuroki, Y.: Fast parallel processing using GPU in computing L1-PCA bases. In: Proceedings of IEEE TENCON 2010, pp. 2087–2090. Fukuoka, November 2010

    Google Scholar 

  25. Galpin, J.S., Hawkins, D.M.: Methods of L 1 estimation of a covariance matrix. J. Comput. Stat. Data Anal. 5, 305–319 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  26. Gieseke, F., Pahikkala, T., Igel, C.: Polynomial runtime bounds for fixed-rank unsupervised least-squares classification. In: JMLR: Workshop Conf. Proc. 29, 62–71 (2013)

    Google Scholar 

  27. Gkizeli, M., Karystinos, G.N.: Maximum-SNR antenna selection among a large number of transmit antennas. IEEE J. Select. Topics Signal Process. doi: 10.1109/JSTSP.2014.2328329 (to be published)

    Google Scholar 

  28. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  29. Grötschel, M., Jünger, M., Reinelt, G.: Via minimization with pin preassignments and layer preference. J. Appl. Math. Mech. / Zeitschrift für Angewandte Mathematik und Mechanik 69, 393–399 (1989)

    MATH  Google Scholar 

  30. Gu, Z., Lin, W., Lee, B.-S., Lau, C.T.: Rotated orthogonal transform (ROT) for motion-compensation residual coding. IEEE Trans. Image Process. 21, 4770–4781 (2012)

    Article  MathSciNet  Google Scholar 

  31. He, R., Hu, B.-G., Zheng, W.-S., Kong, X.-W.: Robust principal component analysis based on maximum correntropy criterion. IEEE Trans. Image Process. 20, 1485–1494 (2011)

    Article  MathSciNet  Google Scholar 

  32. Heath, R.W.,Jr., Paulraj, A.: A simple scheme for transmit diversity using partial channel feedback. In: Proceedings of IEEE Asilomar Conference on Signals, Systems, and Computers, vol. 2, pp. 1073–1078. Pacific Grove, November 1998

    Google Scholar 

  33. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum, New York (1972)

    Chapter  Google Scholar 

  34. Karystinos, G.N., Liavas, A.P.: Efficient computation of the binary vector that maximizes a rank-deficient quadratic form. IEEE Trans. Inf. Theory 56, 3581–3593 (2010)

    Article  MathSciNet  Google Scholar 

  35. Karystinos, G.N., Pados, D.A.: Rank-2-optimal adaptive design of binary spreading codes. IEEE Trans. Inf. Theory 53, 3075–3080 (2007)

    Article  MathSciNet  Google Scholar 

  36. Ke, Q., Kanade, T.: Robust subspace computation using L1 norm. International Technical Report, Computer Science Department, Carnegie Mellon University, CMU-CS-03-172, August 2003

    Google Scholar 

  37. Ke, Q., Kanade, T.: Robust L 1 norm factorization in the presence of outliers and missing data by alternative convex programming. In: Proceedings of IEEE Computer Vision and Pattern Recognition (CVPR), pp. 739–746. San Diego, June 2005

    Google Scholar 

  38. Kim, Y.G., Beaulieu, N.C.: On MIMO beamforming systems using quantized feedback. IEEE Trans. Commun. 58, 820–827 (2010)

    Article  Google Scholar 

  39. Kwak, N.: Principal component analysis based on L1-norm maximization. IEEE Trans. Pattern Anal. Mach. Intell. 30, 1672–1680 (2008)

    Article  Google Scholar 

  40. Kwak, N., Oh, J.: Feature extraction for one-class classification problems: enhancements to biased discriminant analysis. Pattern Recog. 42, 17–26 (2009)

    Article  MATH  Google Scholar 

  41. Kyrillidis, A., Karystinos, G.N.: Fixed-rank Rayleigh quotient maximization by an MPSK sequence. IEEE Trans. Commun. 62, 961–975 (2014)

    Article  Google Scholar 

  42. Leung, K.-K., Sung, C.W., Khabbazian, M., Safari, M.A.: Optimal phase control for equal-gain transmission in MIMO systems with scalar quantization: complexity and algorithms. IEEE Trans. Inf. Theory 56, 3343–3355 (2010)

    Article  MathSciNet  Google Scholar 

  43. Li, D., Sun, X., Gu, S., Gao, J., Liu, C.: Polynomially solvable cases of binary quadratic programs. In: Chinchuluun, A., Pardalos, P.M., Enkhbat, R., Tseveendorj, I. (eds.) Optimization and Optimal Control, pp. 199–225. Springer, New York (2010)

    Chapter  Google Scholar 

  44. Li, J., Petropulu, A.P.: A low complexity algorithm for collaborative-relay beamforming. In: Proceedings of IEEE ICASSP 2013, pp. 5002–5005. Vancouver, May 2013

    Google Scholar 

  45. Li, X., Pang, Y., Yuan, Y.: L1-norm-based 2DPCA. IEEE Trans. Syst. Man. Cybern. B Cybern. 40, 1170–1175 (2009)

    Google Scholar 

  46. Li, X., Hu, W., Wang, H., Zhang, Z.: Linear discriminant analysis using rotational invariant L 1 norm. Neurocomputing 73, 2571–2579 (2010)

    Article  Google Scholar 

  47. Love, D.J., Heath, R.W., Jr., Strohmer, T.: Grassmannian beamforming for multiple-input multiple-output wireless systems. IEEE Trans. Inf. Theory 49, 2735–2747 (2003)

    Article  Google Scholar 

  48. Luong, H.Q., Goossens, B., Aelterman, J., Pižurica, A., Philips, W.: A primal-dual algorithm for joint demosaicking and deconvolution. In: Proceedings of IEEE ICIP 2012, pp. 2801–2804, October 2012

    Google Scholar 

  49. Mackenthun, K.M., Jr.: A fast algorithm for multiple-symbol differential detection of MPSK. IEEE Trans. Commun. 42, 1471–1474 (1994)

    Article  Google Scholar 

  50. Magnus, J.R., Neudecker, H.: Matrix Differential Calculus with Applications in Statistics and Econometrics, 2nd edn. Wiley, Chichester (1999)

    MATH  Google Scholar 

  51. Malik, U., Jaimoukha, I.M., Halikias, G.D., Gungah, S.K.: On the gap between the quadratic integer programming problem and its semidefinite relaxation. Math. Program. A-107, 505–515 (2006)

    Article  MathSciNet  Google Scholar 

  52. Markopoulos, P.P., Karystinos, G.N.: Novel full-rate noncoherent Alamouti encoding that allows polynomial-complexity optimal decoding. In: Proceedings of IEEE ICASSP 2013, pp. 5075–5079. Vancouver, May 2013

    Google Scholar 

  53. Markopoulos, P.P., Karystinos, G.N., Pados, D.A.: Some options for L 1-subspace signal processing. In: Proceedings of IEEE ISWCS 2013, pp. 622–626. Ilmenau, August 2013

    Google Scholar 

  54. Markopoulos, P.P., Karystinos, G.N., Pados, D.A.: Optimal algorithms for L 1-subspace signal processing. IEEE Trans. Signal Process (to be published)

    Google Scholar 

  55. McCoy, M., Tropp, J.A.: Two proposals for robust PCA using semidefinite programming. Electron. J. Stat. 5, 1123–1160 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  56. McKilliam, R.G., Ryan, D.J., Clarkson, I.V.L., Collings, I.B.: An improved algorithm for optimal noncoherent QAM detection. In: Proceedings of 2008 Australian Communications Theory Workshop, pp. 64–68. Christchurch, Feberary 2008

    Google Scholar 

  57. Megiddo, N.: Linear programming in linear time when the dimension is fixed. J. ACM 31, 114–127 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  58. Meng, D., Zhao, Q., Xu, Z.: Improve robustness of sparse PCA by L 1-norm maximization. Pattern Recog. 45, 487–497 (2012)

    Article  MATH  Google Scholar 

  59. Moghaddam, B., Weiss, Y., Avidan, S.: Spectral bounds for sparse PCA: Exact and greedy algorithms. Adv. Neural Inf. Process. Syst. 18, 915–922 (2006)

    Google Scholar 

  60. Molisch, A.F., Win, M.Z.: MIMO systems with antenna selection. IEEE Microw. Mag. 5, 46–56 (2004)

    Article  Google Scholar 

  61. Molisch, A.F., Win, M.Z., Winters, J.H.: Reduced-complexity transmit/receive-diversity systems. IEEE Trans. Signal. Process. 51, 2729–2738 (2003)

    Article  MathSciNet  Google Scholar 

  62. Motedayen-Aval, I., Anastasopoulos, A.: Polynomial-complexity noncoherent symbol-by-symbol detection with application to adaptive iterative decoding of turbo-like codes. IEEE Trans. Commun. 51, 197–207 (2003)

    Article  Google Scholar 

  63. Motedayen, I., Krishnamoorthy, A., Anastasopoulos, A.: Optimal joint detection/estimation in fading channels with polynomial complexity. IEEE Trans. Inf. Theory 53, 209–223 (2007)

    Article  Google Scholar 

  64. Nguyen, T.-D.: A fast approximation algorithm for solving the complete set packing problem. Eur. J. Oper. Res. 237, 62–70 (2014)

    Article  Google Scholar 

  65. Nie, F., Huang, H., Ding, C., Luo, D., Wang, H.: Robust principal component analysis with non-greedy l 1-norm maximization. In: Proceedings of International Joint Conference on Artificial Intelligence (IJCAI), pp. 1433–1438. Barcelona, July 2011

    Google Scholar 

  66. Onn, S., Rothblum, U.G.: Convex combinatorial optimization. Discrete Comput. Geom. 32, 549–566 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  67. Pang, Y., Li, X., Yuan, Y.: Robust tensor analysis with L1-norm. IEEE Trans. Circuits Syst. Video Technol. 20, 172–178 (2010)

    Article  Google Scholar 

  68. Papailiopoulos, D.S., Karystinos, G.N.: Maximum-likelihood noncoherent OSTBC detection with polynomial complexity. IEEE Trans. Wireless Commun. 9, 1935–1945 (2010)

    Article  Google Scholar 

  69. Papailiopoulos, D.S., Abou Elkheir, G., Karystinos, G.N.: Maximum-likelihood noncoherent PAM detection. IEEE Trans. Commun. 61, 1152–1159 (2013)

    Article  Google Scholar 

  70. Pardalos, P.M., Rendl, F., Wolkowicz, H.: The quadratic assignment problem: a survey and recent developments. In: Proceedings of DIMACS Workshop on Quadratic Assignment Problems, vol. 16, pp. 1–42. DIMACS Series on Discrete Mathematics and Theoretical Computer Science. American Mathematical Society, Providence (1994)

    Google Scholar 

  71. Pauli, V., Lampe, L., Schober, R., Fukuda, K.: Multiple-symbol differential detection based on combinatorial geometry. IEEE Trans. Commun. 56, 1596–1600 (2008)

    Article  Google Scholar 

  72. Pinter, R.Y.: Optimal layer assignment for interconnect. Adv. VLSI Comput. Syst. 1, 123–137 (1984)

    MATH  Google Scholar 

  73. Punnen, A., Sripratak, P., Karapetyan, D.: The bipartite unconstrained 0-1 quadratic programming problem: Polynomially solvable cases (2012). arXiv:1212.3736v3 [math.OC]. (ArXiv preprint)

    Google Scholar 

  74. Ryan, D.J., Collings, I.B., Clarkson, I.V.L.: GLRT-optimal noncoherent lattice decoding. IEEE Trans. Signal. Process. 55, 3773–3786 (2007)

    Article  MathSciNet  Google Scholar 

  75. Ryan, D.J., Clarkson, I.V.L., Collings, I.B., Guo, D., Honig, M.L.: QAM and PSK codebooks for limited feedback MIMO beamforming. IEEE Trans. Commun. 57, 1184–1196 (2009)

    Article  Google Scholar 

  76. Sanayei, S., Nosratinia, A.: Antenna selection in MIMO systems. IEEE Commun. Mag. 42, 68–73 (2004)

    Article  Google Scholar 

  77. Santipach, W., Mamat, K.: Tree-structured random vector quantization for limited-feedback wireless channels. IEEE Trans. Wireless Commun. 10, 3012–3019 (2011)

    Article  Google Scholar 

  78. Schizas, I.D., Giannakis, G.B.: Covariance eigenvector sparsity for compression and denoising. IEEE Trans. Signal Process. 60, 2408–2421 (2012)

    Article  MathSciNet  Google Scholar 

  79. Shen, C., Paisitkriangkrai, S., Zhang, J.: Efficiently learning a detection cascade with sparse eigenvectors. IEEE Trans. Image Process. 20, 22–35 (2011)

    Article  MathSciNet  Google Scholar 

  80. Singh, N., Miller, B.A., Bliss, N.T., Wolfe, P.J.: Anomalous subgraph detection via sparse principal component analysis. In: Proceedings of IEEE SSP 2011, pp. 485–488. Nice, June 2011

    Google Scholar 

  81. Soltanalian, M., Stoica, P.: Designing unimodular codes via quadratic optimization. IEEE Trans. Signal Process. 62, 1221–1234 (2014)

    Article  MathSciNet  Google Scholar 

  82. Sung, C.W., Kwan, H.Y.: Heuristic algorithms for binary sequence assignment in DS-CDMA systems. In: Proceedings of IEEE PIMRC 2002, vol. 5, pp. 2327–2331. Lisbon, September 2002

    Google Scholar 

  83. Sweldens, W.: Fast block noncoherent decoding. IEEE Commun. Lett. 5, 132–134 (2001)

    Article  Google Scholar 

  84. Tropp, J.A.: Just relax: convex programming methods for identifying sparse signals in noise. IEEE Trans. Inf. Theory 52, 1030–1051 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  85. Ulfarsson, M.O., Solo, V.: Vector l 0 sparse variable PCA. IEEE Trans. Signal Process. 59, 1949–1958 (2011)

    Article  MathSciNet  Google Scholar 

  86. Van Trees, H.L.: Detection, Estimation, and Modulation Theory (Part I). Wiley, Hoboken (2001)

    Book  Google Scholar 

  87. Wang, H.: Block principal component analysis with L1-norm for image analysis. Pattern Recog. Lett. 33, 537–542 (2012)

    Article  Google Scholar 

  88. Wang, H., Tang, Q., Zheng, W.: L1-norm-based common spatial patterns. IEEE Trans. Biomed. Eng. 59, 653–662 (2012)

    Article  Google Scholar 

  89. Wei, D., Sestok, C.K., Oppenheim, A.V.: Sparse filter design under a quadratic constraint: low-complexity algorithms. IEEE Trans. Signal Process. 61, 857–870 (2013)

    Article  MathSciNet  Google Scholar 

  90. Wong, T.F., Lok, T.M.: Transmitter adaptation in multicode DS-CDMA systems. IEEE J. Select. Areas Commun. 19, 69–82 (2001)

    Article  Google Scholar 

  91. Wu, M., Kam, P.Y.: Sequence detection on fading channels without explicit channel estimation. In: Proceedings of IEEE Wireless VITAE 2009, pp. 370–374. Aalborg, May 2009

    Google Scholar 

  92. Wu, M., Kam, P.Y.: Performance analysis and computational complexity comparison of sequence detection receivers with no explicit channel estimation. IEEE Trans. Vehic. Tech. 59, 2625–2631 (2010)

    Article  Google Scholar 

  93. Xu, W., Stojnic, M., Hassibi, B.: Low-complexity blind maximum-likelihood detection for SIMO systems with general constellations. In: Proceedings of IEEE ICASSP 2008, pp. 2817–2820. Las Vegas, April 2008

    Google Scholar 

  94. Xu, M., Guo, D., Honig, M.L.: MIMO precoding with limited rate feedback: simple quantizers work well. In: Proceedings of IEEE GLOBECOM 2009. Honolulu, December 2009

    Google Scholar 

  95. Yu, L., Zhang, M., Ding, C.: An efficient algorithm for L1-norm principal component analysis. In: Proceedings of IEEE ICASSP 2012, pp. 1377–1380. Kyoto, March 2012

    Google Scholar 

  96. Zheng, X., Xie, Y., Li, J., Stoica, P.: MIMO transmit beamforming under uniform elemental power constraint. IEEE Trans. Signal Process. 55, 5395–5406 (2007)

    Article  MathSciNet  Google Scholar 

  97. Zou, H., Hastie, T., Tibshirani, R.: Sparse principal component analysis. J. Comput. Graph. Stat. 15, 265–286 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George N. Karystinos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Karystinos, G.N. (2014). Optimal Algorithms for Binary, Sparse, and L 1-Norm Principal Component Analysis. In: Pardalos, P., Rassias, T. (eds) Mathematics Without Boundaries. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1124-0_11

Download citation

Publish with us

Policies and ethics