Skip to main content

Mechanism of Primary Charge Separation in Photosynthetic Reaction Centers

  • Chapter
  • First Online:
The Biophysics of Photosynthesis

Part of the book series: Biophysics for the Life Sciences ((BIOPHYS,volume 11))

Abstract

This chapter presents a review of primary charge separation processes in various photosynthetic reaction centers. Common motif of the known reaction centers is briefly discussed, followed by a comprehensive overview of the charge separation mechanisms in three major reaction center complexes for which crystal structures have been determined: bacterial reaction center, photosystem II, and photosystem I.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2D-ES:

Two-dimensional electronic spectroscopy

BChl:

Bacteriochlorophyll

BPheo:

Bacteriopheophytin

BRC:

Bacterial reaction center

Chl:

Chlorophyll

CS:

Charge separation

CT:

Charge transfer

DADS:

Decay-associated difference spectra

DAS:

Decay-associated spectra

EET:

Excitation energy transfer

ET:

Electron transfer

FC:

Franck-Condon

FRET:

Förster resonance energy transfer

FWHM:

Full width at half maximum

HB:

Hole burning

PHB:

Photochemical hole burning

Pheo:

Pheophytin

PS I:

Photosystem I

PS II:

Photosystem II

RC:

Reaction center

SHB:

Spectral hole burning

WT:

Wild type

ZPH:

Zero-phonon hole

References

  1. Şener M, Strümpfer J, Hsin J, Chandler D, Scheuring S, Hunter CN, et al. Förster energy transfer theory as reflected in the structures of photosynthetic light-harvesting systems. Chemphyschem. 2011;12(3):518–31.

    Google Scholar 

  2. van Amerongen H, Valkunas L, van Grondelle R. Photosynthetic excitons. Singapore: World Scientific; 2000.

    Google Scholar 

  3. Seely GR, Connolly JS. Fluorescence of photosynthetic pigments in vitro. In: Govindjee J, Amesz J, Fork DC, editors. Light emission by plants and bacteria. New York: Academic; 1986. p. 99–133.

    Google Scholar 

  4. Savikhin S. Ultrafast optical spectroscopy of photosystem I. In: Golbeck J, editor. Photosystem I, the light-driven plastocyanin:ferredoxin oxidoreductase. Advances in photosynthesis and respiration. Dordrecht: Springer; 2006. p. 155–75.

    Google Scholar 

  5. Jankowiak R. Probing electron-transfer times in photosynthetic reaction centers by hole-burning spectroscopy. J Phys Chem Lett. 2012;3(12):1684–94.

    Google Scholar 

  6. Jankowiak R, Reppert M, Zazubovich V, Pieper J, Reinot T. Site selective and single complex laser-based spectroscopies: a window on excited state electronic structure, excitation energy transfer, and electron-phonon coupling of selected photosynthetic complexes. Chem Rev. 2011;111(8):4546–98.

    Google Scholar 

  7. Neupane B, Jaschke P, Saer R, Beatty JT, Reppert M, Jankowiak R. Electron transfer in Rhodobacter sphaeroides reaction centers containing Zn-bacteriochlorophylls: a hole-burning study. J Phys Chem B. 2012;116(10):3457–66.

    Google Scholar 

  8. Myers JA, Lewis KLM, Fuller FD, Tekavec PF, Yocum CF, Ogilvie JP. Two-dimensional electronic spectroscopy of the D1-D2-cyt b559 photosystem II reaction center complex. J Phys Chem Lett. 2010;1(19):2774–80.

    Google Scholar 

  9. Hohmann-Marriott MF, Blankenship RE. Evolution of photosynthesis. Annu Rev Plant Biol. 2011;62:515–48.

    Google Scholar 

  10. Allen JP, Williams JC. Photosynthetic reaction centers. FEBS Lett. 1998;438:5–9.

    Google Scholar 

  11. Cardona T, Sedoud A, Cox N, Rutherford AW. Charge separation in Photosystem II: a comparative and evolutionary overview. Biochim Biophys Acta. 1817;2012:26–43.

    Google Scholar 

  12. Redding K, van der Est A. The directionality of electron transport in photosystem I. In: Golbeck J, editor. Photosystem I. Advances in photosynthesis and respiration, vol. 24. Dordrecht: Springer; 2006. p. 413–37.

    Google Scholar 

  13. Setif P, Leibl W. Functional pattern of photosystem I in oxygen evolving organisms. Primary processes of photosynthesis, Part 2: Principles and apparatus, vol. 9. Cambridge: The Royal Society of Chemistry; 2008. p. 147–91.

    Google Scholar 

  14. Holzwarth AR, Müller MG. Energetics and kinetics of radical pairs in reaction centers from Rhodobacter sphaeroides. A femtosecond transient absorption study. Biochemistry. 1997;36:281–7.

    Google Scholar 

  15. Peloquin JM, Williams JC, Lin X, Alden RG, Taguchi AKW, Allen JP, et al. Time-dependent thermodynamics during early electron transfer in reaction centers from Rhodobacter sphaeroides. Biochemistry. 1994;33:8089–100.

    Google Scholar 

  16. Lauterwasser C, Finkele U, Scheer H, Zinth W. Temperature dependence of the primary electron transfer in photosynthetic reaction centers from Rhodobacter sphaeroides. Chem Phys Lett. 1991;183:471–7.

    ADS  Google Scholar 

  17. Holzapfel W, Finkele U, Kaiser W, Oesterhelt D, Scheer H, Stilz HU, et al. Observation of a bacteriochlorophyll anion radical during the primary charge separation in a reaction center. Chem Phys Lett. 1989;160(1):1–7.

    ADS  Google Scholar 

  18. Martin JL, Breton J, Hoff AJ, Migus A, Antonetti A. Femtosecond spectroscopy of electron transfer in the reaction center of the photosynthetic bacterium Rhodopseudomonas sphaeroides R-26: direct electron transfer from the dimeric bacteriochlorophyll primary donor to the bacteriopheophytin acceptor with a time constant of 2.8 ± 0.2 psec. Proc Natl Acad Sci U S A. 1986;83(4):957–61.

    ADS  Google Scholar 

  19. Diner BA, Rappaport F. Structure, dynamics, and energetics of the primary photochemistry of photosystem II of oxygenic photosynthesis. Annu Rev Plant Biol. 2002;53:551–80.

    Google Scholar 

  20. Marchanka A, Savitsky A, Lubitz W, Möbius K, van Gastel M. B-branch electron transfer in the photosynthetic reaction center of a Rhodobacter sphaeroides quadruple mutant. Q- and W-band electron paramagnetic resonance studies of triplet and radical-pair cofactor states. J Phys Chem B. 2010;114(45):14364–72.

    Google Scholar 

  21. Haffa ALM, Lin S, Williams JC, Bowen BP, Taguchi AKW, Allen JP, et al. Controlling the pathway of photosynthetic charge separation in bacterial reaction centers. J Phys Chem. 2004;108:4–7.

    Google Scholar 

  22. Hiyama T, Ke B. A further study of P430: a possible primary electron acceptor of Photosystem I. Arch Biochem Biophys. 1971;147:99–108.

    Google Scholar 

  23. Parson WW. Mechanism of charge separation in purple bacterial reaction centers. In: Hunter CN, Daldal F, Thurnauer MC, Beatty JT, editors. The purple phototrophic bacteria. New York: Springer Science + Business Media B.V.; 2009. p. 355–77.

    Google Scholar 

  24. Zinth W, Wachtveitl J. The first picoseconds in bacterial photosynthesis—ultrafast electron transfer for the efficient conversion of light energy. Chemphyschem. 2005;6(5):871–80.

    Google Scholar 

  25. Hoff AJ, Deisenhofer J. Photophysics of photosynthesis. Structure and spectroscopy of reaction centers of purple bacteria. Phys Rep. 1997;287(1–2):1–247.

    ADS  Google Scholar 

  26. Deisenhofer J, Epp O, Miki K, Huber R, Michel H. X-ray structure analysis of a membrane protein complex: electron density map at 3 Å resolution and a model of the chromophores of the photosynthetic reaction center from Rhodopseudomonas viridis. J Mol Biol. 1984;180(2):385–98.

    Google Scholar 

  27. Camara-Artigas A, Brune D, Allen JP. Interactions between lipids and bacterial reaction centers determined by protein crystallography. Proc Natl Acad Sci U S A. 2002;99:11055–60.

    ADS  Google Scholar 

  28. Renger T, Trostmann I, Theiss C, Madjet ME, Richter M, Paulsen H, et al. Refinement of a structural model of a pigment–protein complex by accurate optical line shape theory and experiments. J Phys Chem B. 2007;111(35):10487–501.

    Google Scholar 

  29. Zhang WM, Meier T, Chernyak V, Mukamel S. Exciton-migration and three-pulse femtosecond optical spectroscopies of photosynthetic antenna complexes. J Chem Phys. 1998;108(18):7763–74.

    ADS  Google Scholar 

  30. Ishizaki A, Fleming GR. On the adequacy of the Redfield equation and related approaches to the study of quantum dynamics in electronic energy transfer. J Phys Chem. 2009;130(23):234110–8.

    Google Scholar 

  31. Lin S, Jaschke PR, Wang H, Paddock M, Tufts A, Allen JP, et al. Electron transfer in the Rhodobacter sphaeroides reaction center assembled with zinc bacteriochlorophyll. Proc Natl Acad Sci U S A. 2009;106(21):8537–42.

    ADS  Google Scholar 

  32. Mikhailyuk IK, Knox PP, Paschenko VZ, Razjivin AP, Lokstein H. Analysis of absorption spectra of purple bacterial reaction centers in the near infrared region by higher order derivative spectroscopy. Biophys Chem. 2006;122(1):16–26.

    Google Scholar 

  33. Jankowiak R, Hayes JM, Small GJ. Spectral hole-burning spectroscopy in amorphous molecular solids and proteins. Chem Rev. 1993;93(4):1471–502.

    Google Scholar 

  34. Rebane KK. Impurity spectra of solids. New York: Plenum; 1970.

    Google Scholar 

  35. Völker S. Structured hole-burning in crystalline and amorphous organic solids. In: Fünfschilling J, editor. Molecular excited states, optical relaxation processes at low temperatures. Dordrecht: Kluwer; 1989. p. 113–242.

    Google Scholar 

  36. Moerner WE, editor. Topics in current physics, persistent spectral hole burning: science and application. New York: Springer; 1987.

    Google Scholar 

  37. Johnson SG, Tang D, Jankowiak R, Hayes JM, Small GJ, Tiede DM. Structure and marker mode of the primary electron donor state absorption of photosynthetic bacteria: hole-burned spectra. J Phys Chem. 1989;93(16):5953–7.

    Google Scholar 

  38. Guo Z, Woodbury Neal W, Pan J, Lin S. Protein dielectric environment modulates the electron-transfer pathway in photosynthetic reaction centers. Biophys J. 2012;103(9):1979–88.

    Google Scholar 

  39. Kirmaier C, Holten D. Subpicosecond characterization of the optical properties of the primary electron donor and the mechanism of the initial electron transfer in Rhodobacter capsulatus reaction centers. FEBS Lett. 1988;239(2):211–8.

    Google Scholar 

  40. Huppman P, Arlt T, Penzkofer H, Schmidt S, Bibikova M, Dohse B, et al. Kinetics, energetics, and electronic coupling of the primary electron transfer reactions in mutated reaction centers of Blastochloris viridis. Biophys J. 2002;82(6):3186–97.

    Google Scholar 

  41. Wasielewski MR, Tiede DM. Sub-picosecond measurements of primary electron transfer in Rhodopseudomonas viridis reaction centers using near-infrared excitation. FEBS Lett. 1986;204(2):368–72.

    Google Scholar 

  42. Arlt T, Schmidt S, Kaiser W, Lauterwasser C, Meyer M, Scheer H, et al. The accessory bacteriochlorophyll: a real electron carrier in primary photosynthesis. Proc Natl Acad Sci U S A. 1993;90(24):11757–61.

    ADS  Google Scholar 

  43. van Stokkum IHM, Beekman LMP, Jones MR, van Brederode ME, van Grondelle R. Primary electron transfer kinetics in membrane-bound Rhodobacter sphaeroides reaction centers: a global and target analysis. Biochemistry. 1997;36(38):11360–8.

    Google Scholar 

  44. Holzwarth AR, Müller MG. Energetics and kinetics of radical pairs in reaction centers from Rhodobacter sphaeroides. A femtosecond transient absorption study. Biochemistry. 1996;35(36):11820–31.

    Google Scholar 

  45. Shkuropatov AY, Shuvalov VA. Electron transfer in pheophytin a-modified reaction centers from Rhodobacter sphaeroides (R-26). FEBS Lett. 1993;322(2):168–72.

    Google Scholar 

  46. Kennis JTM, Shkuropatov AY, van Stokkum IHM, Gast P, Hoff AJ, Shuvalov VA, et al. Formation of a long-lived P+BA− state in plant pheophytin-exchanged reaction centers of Rhodobacter sphaeroides R26 at low temperature. Biochemistry. 1997;36(51):16231–8.

    Google Scholar 

  47. Kirmaier C, Laporte L, Schenck CC, Holten D. The nature and dynamics of the charge-separated intermediate in reaction centers in which bacteriochlorophyll replaces the photoactive bacteriopheophytin. 1. Spectral characterization of the transient state. J Phys Chem. 1995;99(21):8903–9.

    Google Scholar 

  48. Kirmaier C, Laporte L, Schenck CC, Holten D. The nature and dynamics of the charge-separated intermediate in reaction centers in which bacteriochlorophyll replaces the photoactive bacteriopheophytin. 2. The rates and yields of charge separation and recombination. J Phys Chem. 1995;99(21):8910–7.

    Google Scholar 

  49. Roberts JA, Holten D, Kirmaier C. Primary events in photosynthetic reaction centers with multiple mutations near the photoactive electron carriers. J Phys Chem B. 2001;105(23):5575–84.

    Google Scholar 

  50. Heller BA, Holten D, Kirmaier C. Effects of Asp residues near the L-side pigments in bacterial reaction centers. Biochemistry. 1996;35(48):15418–27.

    Google Scholar 

  51. Pawlowicz NP, van Grondelle R, van Stokkum IHM, Breton J, Jones MR, Groot ML. Identification of the first steps in charge separation in bacterial photosynthetic reaction centers of Rhodobacter sphaeroides by ultrafast mid-infrared spectroscopy: electron transfer and protein dynamics. Biophys J. 2008;95(3):1268–84.

    Google Scholar 

  52. Khatypov RA, Khmelnitskiy AY, Khristin AM, Fufina TY, Vasilieva LG, Shuvalov VA. Primary charge separation within P870 * in wild type and heterodimer mutants in femtosecond time domain. Biochim Biophys Acta. 2012;1817(8):1392–8.

    Google Scholar 

  53. Hamm P, Zinth W. Ultrafast initial reaction in bacterial photosynthesis revealed by femtosecond infrared spectroscopy. J Phys Chem. 1995;99(36):13537–44.

    Google Scholar 

  54. Eisenmayer TJ, de Groot HJM, van de Wetering E, Neugebauer J, Buda F. Mechanism and reaction coordinate of directional charge separation in bacterial reaction centers. J Phys Chem Lett. 2012;3(6):694–7.

    Google Scholar 

  55. Eisenmayer TJ, Lasave JA, Monti A, de Groot HJM, Buda F. Proton displacements coupled to primary electron transfer in the Rhodobacter sphaeroides reaction center. J Phys Chem B. 2013;117(38):11162–8.

    Google Scholar 

  56. Shuvalov VA, Yakovlev AG. Coupling of nuclear wavepacket motion and charge separation in bacterial reaction centers. FEBS Lett. 2003;540(1–3):26–34.

    Google Scholar 

  57. Yakovlev AG, Shkuropatov AY, Shuvalov VA. Nuclear wave packet motion between P* and P+BA − potential surfaces with a subsequent electron transfer to HA in bacterial reaction centers at 90 K. Electron transfer pathway. Biochemistry. 2002;41(47):14019–27.

    Google Scholar 

  58. Vos MH, Rappaport F, Lambry J-C, Breton J, Martin J-L. Visualization of coherent nuclear motion in a membrane protein by femtosecond spectroscopy. Nature. 1993;363(6427):320–5.

    ADS  Google Scholar 

  59. Vos MH, Rischel C, Jones MR, Martin J-L. Electrochromic detection of a coherent component in the formation of the charge pair P+HL − in bacterial reaction centers. Biochemistry. 2000;39(29):8353–61.

    Google Scholar 

  60. Stanley RJ, Boxer SG. Oscillations in the spontaneous fluorescence from photosynthetic reaction centers. J Phys Chem. 1995;99(3):859–63.

    Google Scholar 

  61. Rischel C, Spiedel D, Ridge JP, Jones MR, Breton J, Lambry J-C, et al. Low frequency vibrational modes in proteins: changes induced by point-mutations in the protein-cofactor matrix of bacterial reaction centers. Proc Natl Acad Sci U S A. 1998;95(21):12306–11.

    ADS  Google Scholar 

  62. Spörlein S, Zinth W, Wachtveitl J. Vibrational coherence in photosynthetic reaction centers observed in the bacteriochlorophyll anion band. J Phys Chem B. 1998;102(38):7492–6.

    Google Scholar 

  63. Parson WW, Warshel A. A density-matrix model of photosynthetic electron transfer with microscopically estimated vibrational relaxation times. Chem Phys. 2004;296(2–3):201–16.

    ADS  Google Scholar 

  64. Parson WW, Warshel A. Dependence of photosynthetic electron-transfer kinetics on temperature and energy in a density-matrix model. J Phys Chem B. 2004;108(29):10474–83.

    Google Scholar 

  65. Wang H, Lin S, Allen JP, Williams JC, Blankert S, Laser C, et al. Protein dynamics control the kinetics of initial electron transfer in photosynthesis. Science. 2007;316(5825):747–50.

    ADS  Google Scholar 

  66. Ogrodnik A, Hartwich G, Lossau H, Michel-Beyerle ME. Dispersive charge separation and conformational cooling of P+HA − in reaction centers of Rb. sphaeroides R26: a spontaneous emission study. Chem Phys. 1999;244(2–3):461–78.

    ADS  Google Scholar 

  67. Hamm P, Gray KA, Oesterhelt D, Feick R, Scheer H, Zinth W. Subpicosecond emission studies of bacterial reaction centers. Biochim Biophys Acta. 1993;1142(1–2):99–105.

    Google Scholar 

  68. Kirmaier C, Holten D. Evidence that a distribution of bacterial reaction centers underlies the temperature and detection-wavelength dependence of the rates of the primary electron-transfer reactions. Proc Natl Acad Sci U S A. 1990;87(9):3552–6.

    ADS  Google Scholar 

  69. Hartwich G, Lossau H, Michel-Beyerle ME, Ogrodnik A. Nonexponential fluorescence decay in reaction centers of Rhodobacter sphaeroides reflecting dispersive charge separation up to 1 ns. J Phys Chem B. 1998;102(19):3815–20.

    Google Scholar 

  70. Wang Z, Pearlstein RM, Jia Y, Fleming GR, Norris JR. Inhomogeneous electron transfer kinetics in reaction centers of bacterial photosynthesis. Chem Phys. 1993;176(2–3):421–5.

    ADS  Google Scholar 

  71. Small GJ. On the validity of the standard model for primary charge separation in the bacterial reaction center. Chem Phys. 1995;197(3):239–57.

    ADS  Google Scholar 

  72. Woodbury NW, Peloquin JM, Alden RG, Lin X, Lin S, Taguchi AKW, et al. Relationship between thermodynamics and mechanism during photoinduced charge separation in reaction centers from Rhodobacter sphaeroides. Biochemistry. 1994;33(26):8101–12.

    Google Scholar 

  73. Huppmann P, Spörlein S, Bibikova M, Oesterhelt D, Wachtveitl J, Zinth W. Electron transfer in reaction centers of Blastochloris viridis: photosynthetic reactions approximating the adiabatic regime. J Phys Chem A. 2003;107(40):8302–9.

    Google Scholar 

  74. Haffa ALM, Lin S, Katilius E, Williams JC, Taguchi AKW, Allen JP, et al. The dependence of the initial electron-transfer rate on driving force in Rhodobacter sphaeroides reaction centers. J Phys Chem B. 2002;106(29):7376–84.

    Google Scholar 

  75. Kirmaier C, Holten D, Parson WW. Temperature and detection-wavelength dependence of the picosecond electron-transfer kinetics measured in Rhodopseudomonas sphaeroides reaction centers. Resolution of new spectral and kinetic components in the primary charge-separation process. Biochim Biophys Acta. 1985;810(1):33–48.

    Google Scholar 

  76. Dashdorj N, Yamashita E, Schaibley J, Cramer WA, Savikhin S. Ultrafast optical studies of the cytochrome b 6 f complex in solution and in crystalline states. J Phys Chem B. 2007;111:14405–10.

    Google Scholar 

  77. Huang L, Ponomarenko N, Wiederrecht GP, Tiede DM. Cofactor-specific photochemical function resolved by ultrafast spectroscopy in photosynthetic reaction center crystals. Proc Natl Acad Sci U S A. 2012;109(13):4851–6.

    ADS  Google Scholar 

  78. Blankenship R. Origin and early evolution of photosynthesis. Photosynth Res. 1992;33(2):91–111.

    Google Scholar 

  79. Ogrodnik A, Keupp W, Volk M, Aumeier G, Michel-Beyerle ME. Inhomogeneity of radical pair energies in photosynthetic reaction centers revealed by differences in recombination dynamics of P+HA− when detected in delayed emission and in absorption. J Phys Chem. 1994;98(13):3432–9.

    Google Scholar 

  80. Goldstein RA, Takiff L, Steven GB. Energetics of initial charge separation in bacterial photosynthesis: the triplet decay rate in very high magnetic fields. Biochim Biophys Acta. 1988;934(2):253–63.

    Google Scholar 

  81. Woodbury NW, Parson WW, Gunner MR, Prince RC, Dutton PL. Radical-pair energetics and decay mechanisms in reaction centers containing anthraquinones, naphthoquinones or benzoquinones in place of ubiquinone. Biochim Biophys Acta. 1986;851(1):6–22.

    Google Scholar 

  82. Hörber JKH, Göbel W, Ogrodnik A, Michel-Beyerle ME, Cogdell RJ. Time-resolved measurements of fluorescence from reaction centres of Rhodopseudomonas sphaeroides R26.1. FEBS Lett. 1986;198(2):273–8.

    Google Scholar 

  83. Woodbury NWT, Parson WW. Nanosecond fluorescence from isolated photosynthetic reaction centers of Rhodopseudomonas sphaeroides. Biochim Biophys Acta. 1984;767(2):345–61.

    Google Scholar 

  84. Godik VI, Kotova EA, Borisov A. Nanosecond recombination luminescence of purple bacteria. The lifetime temperature dependence in Rhodospirillum rubrum chromatophores. Photobiochem Photobiophys. 1982;4(4):219–26.

    Google Scholar 

  85. Boxer SG, Goldstein RA, Lockhart DJ, Middendorf TR, Takiff L. Excited states, electron-transfer reactions, and intermediates in bacterial photosynthetic reaction centers. J Phys Chem. 1989;93(26):8280–94.

    Google Scholar 

  86. Volk M, Aumeier G, Langenbacher T, Feick R, Ogrodnik A, Michel-Beyerle M-E. Energetics and mechanism of primary charge separation in bacterial photosynthesis. A comparative study on reaction centers of Rhodobacter sphaeroides and Chloroflexus aurantiacus. J Phys Chem B. 1998;102(4):735–51.

    Google Scholar 

  87. LeBard DN, Matyushov DV. Energetics of bacterial photosynthesis. J Phys Chem B. 2009;113(36):12424–37.

    Google Scholar 

  88. Warshel A, Parson WW. Dynamics of biochemical and biophysical reactions: insight from computer simulations. Q Rev Biophys. 2001;34(04):563–679.

    Google Scholar 

  89. LeBard DN, Kapko V, Matyushov DV. Energetics and kinetics of primary charge separation in bacterial photosynthesis. J Phys Chem B. 2008;112(33):10322–42.

    Google Scholar 

  90. Steffen MA, Lao K, Boxer SG. Dielectric asymmetry in the photosynthetic reaction center. Science. 1994;264:810–6.

    ADS  Google Scholar 

  91. Dashdorj N, Xu W, Martinsson P, Chitnis PR, Savikhin S. Electrochromic shift of chlorophyll absorption in photosystem I from Synechocystis sp. PCC 6803: a probe of optical and dielectric properties around the secondary electron acceptor. Biophys J. 2004;86:3121–30.

    Google Scholar 

  92. Lin S, Katilius E, Haffa ALM, Taguchi AKW, Woodbury NW. Blue light drives B-side electron transfer in bacterial photosynthetic reaction centers. Biochemistry. 2001;40(46):13767–73.

    Google Scholar 

  93. Haffa ALM, Lin S, Williams JC, Taguchi AKW, Allen JP, Woodbury NW. High yield of long-lived B-side charge separation at room temperature in mutant bacterial reaction centers. J Phys Chem B. 2003;107(45):12503–10.

    Google Scholar 

  94. Lin S, Jackson JA, Taguchi AKW, Woodbury NW. B-side electron transfer promoted by absorbance of multiple photons in Rhodobacter sphaeroides R-26 reaction centers. J Phys Chem B. 1999;103(22):4757–63.

    Google Scholar 

  95. Kirmaier C, Laible PD, Hanson DK, Holten D. B-side electron transfer to form P+HB − in reaction centers from the F(L181)Y/Y(M208)F mutant of Rhodobacter capsulatus. J Phys Chem B. 2004;108(31):11827–32.

    Google Scholar 

  96. Chuang JI, Boxer SG, Holten D, Kirmaier C. High yield of M-side electron transfer in mutants of Rhodobacter capsulatus reaction centers lacking the L-side bacteriopheophytin. Biochemistry. 2006;45(12):3845–51.

    Google Scholar 

  97. Katilius E, Babendure J, Lin S, Woodbury N. Electron transfer dynamics in Rhodobacter sphaeroides reaction center mutants with a modified ligand for the monomer bacteriochlorophyll on the active side. Photosynth Res. 2004;81(2):165–80.

    Google Scholar 

  98. Lin S, Xiao W, Eastman JE, Taguchi AKW, Woodbury NW. Low-temperature femtosecond-resolution transient absorption spectroscopy of large-scale symmetry mutants of bacterial reaction centers. Biochemistry. 1996;35(10):3187–96.

    Google Scholar 

  99. Kirmaier C, Laible PD, Czarnecki K, Hata AN, Hanson DK, Bocian DF, et al. Comparison of M-side electron transfer in Rb. sphaeroides and Rb. capsulatus reaction centers. J Phys Chem B. 2002;106(7):1799–808.

    Google Scholar 

  100. Alden RG, Parson WW, Chu ZT, Warshel A. Orientation of the OH dipole of tyrosine (M)210 and its effect on electrostatic energies in photosynthetic bacterial reaction centers. J Phys Chem. 1996;100(41):16761–70.

    Google Scholar 

  101. Pawlowicz NP, van Stokkum IHM, Breton J, van Grondelle R, Jones MR. An investigation of slow charge separation in a tyrosine M210 to tryptophan mutant of the Rhodobacter sphaeroides reaction center by femtosecond mid-infrared spectroscopy. Phys Chem Chem Phys. 2010;12(11):2693–705.

    Google Scholar 

  102. van Brederode ME, van Mourik F, van Stokkum IHM, Jones MR, van Grondelle R. Multiple pathways for ultrafast transduction of light energy in the photosynthetic reaction center of Rhodobacter sphaeroides. Proc Natl Acad Sci U S A. 1999;96(5):2054–9.

    ADS  Google Scholar 

  103. van der Vos R, Franken EM, Sexton SJ, Shochat S, Gast P, Hore PJ, et al. Optically detected magnetic field effects on reaction centers of Rhodobacter sphaeroides 2.4.1 and its Tyr M210 Trp mutant. Biochim Biophys Acta. 1995;1230(1–2):51–61.

    Google Scholar 

  104. Shochat S, Arlt T, Francke C, Gast P, Noort P, Otte SM, et al. Spectroscopic characterization of reaction centers of the (M)Y210W mutant of the photosynthetic bacterium Rhodobacter sphaeroides. Photosynth Res. 1994;40(1):55–66.

    Google Scholar 

  105. Nagarajan V, Parson WW, Davis D, Schenck CC. Kinetics and free energy gaps of electron-transfer reactions in Rhodobacter sphaeroides reaction centers. Biochemistry. 1993;32(46):12324–36.

    Google Scholar 

  106. Jia Y, DiMagno TJ, Chan CK, Wang Z, Popov MS, Du M, et al. Primary charge separation in mutant reaction centers of Rhodobacter capsulatus. J Phys Chem. 1993;97(50):13180–91.

    Google Scholar 

  107. Finkele U, Lauterwasser C, Zinth W, Gray KA, Oesterhelt D. Role of tyrosine M210 in the initial charge separation of reaction centers of Rhodobacter sphaeroides. Biochemistry. 1990;29(37):8517–21.

    Google Scholar 

  108. Nagarajan V, Parson WW, Gaul D, Schenck C. Effect of specific mutations of tyrosine-(M)210 on the primary photosynthetic electron-transfer process in Rhodobacter sphaeroides. Proc Natl Acad Sci U S A. 1990;87(20):7888–92.

    ADS  Google Scholar 

  109. McAuley KE, Fyfe PK, Cogdell RJ, Isaacs NW, Jones MR. X-ray crystal structure of the YM210W mutant reaction centre from Rhodobacter sphaeroides. FEBS Lett. 2000;467(2–3):285–90.

    Google Scholar 

  110. Wakeham MC, Jones MR. Rewiring photosynthesis: engineering wrong-way electron transfer in the purple bacterial reaction centre. Biochem Soc Trans. 2005;33(Pt 4):851–7.

    Google Scholar 

  111. Carter B, Boxer SG, Holten D, Kirmaier C. Photochemistry of a bacterial photosynthetic reaction center missing the initial bacteriochlorophyll electron acceptor. J Phys Chem B. 2012;116(33):9971–82.

    Google Scholar 

  112. de Boer AL, Neerken S, de Wijn R, Permentier HP, Gast P, Vijgenboom E, et al. High yield of B-branch electron transfer in a quadruple reaction center mutant of the photosynthetic bacterium Rhodobacter sphaeroides. Biochemistry. 2002;41(9):3081–8.

    Google Scholar 

  113. de Boer A, Neerken S, de Wijn R, Permentier H, Gast P, Vijgenboom E, et al. B-branch electron transfer in reaction centers of Rhodobacter sphaeroides assessed with site-directed mutagenesis. Photosynth Res. 2002;71(3):221–39.

    Google Scholar 

  114. Czarnecki K, Kirmaier C, Holten D, Bocian DF. Vibrational and photochemical consequences of an Asp residue near the photoactive accessory bacteriochlorophyll in the photosynthetic reaction center. J Phys Chem A. 1999;103(14):2235–46.

    Google Scholar 

  115. Marcus RA. On the energy of oxidation-reduction reactions involving electron transfer. I. J Chem Phys. 1956;24:966–78.

    ADS  Google Scholar 

  116. Marcus RA, Sutin N. Electron transfers in chemistry and biology. Biochim Biophys Acta. 1985;811:265–322.

    Google Scholar 

  117. May V, Kühn O. Charge and energy transfer dynamics in molecular systems. Berlin: Wiley-VCH; 2000.

    Google Scholar 

  118. Marcus RA. Chemical and electrochemical electron-transfer theory. Annu Rev Phys Chem. 1964;15:155–96.

    ADS  Google Scholar 

  119. McMahon BH, Müller JD, Wraight CA, Nienhaus GU. Electron transfer and protein dynamics in the photosynthetic reaction center. Biophys J. 1998;74(5):2567–87.

    Google Scholar 

  120. Schulten K, Tesch M. Coupling of protein motion to electron transfer: molecular dynamics and stochastic quantum mechanics study of photosynthetic reaction centers. Chem Phys. 1991;158(2–3):421–46.

    ADS  Google Scholar 

  121. Ando K, Sumi H. Nonequilibrium oscillatory electron transfer in bacterial photosynthesis. J Phys Chem B. 1998;102(52):10991–1000.

    Google Scholar 

  122. Acharya K, Zazubovich V, Reppert M, Jankowiak R. Primary electron donor(s) in isolated reaction center of photosystem II from Chlamydomonas reinhardtii. J Phys Chem B. 2012;116(16):4860–70.

    Google Scholar 

  123. Riley K, Jankowiak R, Rätsep M, Small GJ, Zazubovich V. Evidence for highly dispersive primary charge separation kinetics and gross heterogeneity in the isolated PS II reaction center of green plants. J Phys Chem B. 2004;108(29):10346–56.

    Google Scholar 

  124. Renger T, Schlodder E. Primary photophysical processes in photosystem II: bridging the gap between crystal structure and optical spectra. Chemphyschem. 2010;11(6):1141–53.

    Google Scholar 

  125. Novoderezhkin VI, Romero E, Dekker JP, van Grondelle R. Multiple charge-separation pathways in photosystem II: modeling of transient absorption kinetics. Chemphyschem. 2011;12(3):681–8.

    Google Scholar 

  126. Caffarri S, Kouril R, Kereiche S, Boekema EJ, Croce R. Functional architecture of higher plant photosystem II supercomplexes. EMBO J. 2009;28(19):3052–63.

    Google Scholar 

  127. Durrant JR, Klug DR, Kwa SL, van Grondelle R, Porter G, Dekker JP. A multimer model for P680, the primary electron donor of photosystem II. Proc Natl Acad Sci U S A. 1995;92(11):4798–802.

    ADS  Google Scholar 

  128. Jankowiak R, Hayes JM, Small GJ. An excitonic pentamer model for the core Qy states of the isolated photosystem II reaction center. J Phys Chem B. 2002;106(34):8803–14.

    Google Scholar 

  129. Novoderezhkin VI, Dekker JP, van Grondelle R. Mixing of exciton and charge-transfer states in photosystem II reaction centers: modeling of Stark spectra with modified Redfield theory. Biophys J. 2007;93(4):1293–311.

    Google Scholar 

  130. Umena Y, Kawakami K, Shen J-R, Kamiya N. Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature. 2011;473(7345):55–60.

    ADS  Google Scholar 

  131. Acharya K, Neupane B, Zazubovich V, Sayre RT, Picorel R, Seibert M, et al. Site energies of active and inactive pheophytins in the reaction center of photosystem II from Chlamydomonas reinhardtii. J Phys Chem B. 2012;116(12):3890–9.

    Google Scholar 

  132. Jankowiak R, Rätsep M, Hayes J, Zazubovich V, Picorel R, Seibert M, et al. Primary charge-separation rate at 5 K in isolated photosystem II reaction centers containing five and six chlorophyll a molecules. J Phys Chem B. 2003;107(9):2068–74.

    Google Scholar 

  133. Prokhorenko VI, Holzwarth AR. Primary processes and structure of the photosystem II reaction center: a photon echo study. J Phys Chem B. 2000;104(48):11563–78.

    Google Scholar 

  134. Romero E, Diner Bruce A, Nixon Peter J, Coleman Wiliam J, Dekker Jan P, van Grondelle R. Mixed exciton–charge-transfer states in photosystem II: Stark spectroscopy on site-directed mutants. Biophys J. 2012;103(2):185–94.

    Google Scholar 

  135. van Stokkum IHM, Larsen DS, van Grondelle R. Global and target analysis of time-resolved spectra. Biochim Biophys Acta. 2004;1657(2–3):82–104.

    Google Scholar 

  136. Mukamel S. Principles of nonlinear optical spectroscopy. New York: Oxford University Press; 1995.

    Google Scholar 

  137. Savikhin S, Buck DR, Struve WS. Oscillating anisotropies in a bacteriochlorophyll protein: evidence for quantum beating between exciton levels. Chem Phys. 1997;223:303–12.

    ADS  Google Scholar 

  138. Brixner T, Stenger J, Vaswani HM, Cho M, Blankenship RE, Fleming GR. Two-dimensional spectroscopy of electronic couplings in photosynthesis. Nature. 2005;434(7033):625–8.

    ADS  Google Scholar 

  139. Wasielewski MR, Johnson DG, Seibert M, Govindjee. Determination of the primary charge separation rate in isolated photosystem II reaction centers with 500-fs time resolution. Proc Natl Acad Sci U S A. 1989;86(2):524–8.

    ADS  Google Scholar 

  140. Jankowiak R, Tang D, Small GJ, Seibert M. Transient and persistent hole burning of the reaction center of photosystem II. J Phys Chem. 1989;93(4):1649–54.

    Google Scholar 

  141. Tang D, Jankowiak R, Seibert M, Small G. Effects of detergent on the excited state structure and relaxation dynamics of the photosystem II reaction center: a high resolution hole burning study. Photosynth Res. 1991;27(1):19–29.

    Google Scholar 

  142. Krausz E, Hughes JL, Smith P, Pace R, Peterson Arsköld S. Oxygen-evolving photosystem II core complexes: a new paradigm based on the spectral identification of the charge-separating state, the primary acceptor and assignment of low-temperature fluorescence. Photochem Photobiol Sci. 2005;4(9):744–53.

    Google Scholar 

  143. Herascu N, Ahmouda S, Picorel R, Seibert M, Jankowiak R, Zazubovich V. Effects of the distributions of energy or charge transfer rates on spectral hole burning in pigment–protein complexes at low temperatures. J Phys Chem B. 2011;115(50):15098–109.

    Google Scholar 

  144. Romero E, van Stokkum IHM, Novoderezhkin VI, Dekker JP, van Grondelle R. Two different charge separation pathways in photosystem II. Biochemistry. 2010;49(20):4300–7.

    Google Scholar 

  145. Schlodder E, Coleman WJ, Nixon PJ, Cohen RO, Renger T, Diner BA. Site-directed mutations at D1-His198 and D1-Thr179 of photosystem II in Synechocystis sp. PCC 6803: deciphering the spectral properties of the PSII reaction centre. Philos Trans R Soc Lond B Biol Sci. 2008;363(1494):1197–202.

    Google Scholar 

  146. Hillmann B, Brettel K, van Mieghem F, Kamlowski A, Rutherford AW, Schlodder E. Charge recombination reactions in photosystem II. 2. Transient absorbance difference spectra and their temperature dependence. Biochemistry. 1995;34(14):4814–27.

    Google Scholar 

  147. Raszewski G, Saenger W, Renger T. Theory of optical spectra of photosystem II reaction centers: location of the triplet state and the identity of the primary electron donor. Biophys J. 2005;88(2):986–98.

    Google Scholar 

  148. Jordan P, Fromme P, Witt HT, Klukas O, Saenger W, Krauss N. Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature. 2001;411:909–17.

    ADS  Google Scholar 

  149. Amunts A, Toporik H, Borovikova A, Nelson N. Structure determination and improved model of plant photosystem I. J Biol Chem. 2010;285(5):3478–86.

    Google Scholar 

  150. Amunts A, Drory O, Nelson N. The structure of a plant photosystem I supercomplex at 3.4 Å resolution. Nature. 2007;447(7140):58–63.

    ADS  Google Scholar 

  151. Brettel K. Electron transfer and arrangement of the redox cofactors in photosystem I. Biochim Biophys Acta. 1997;1318:322–73.

    Google Scholar 

  152. Brettel K, Leibl W. Electron transfer in photosystem I. Biochim Biophys Acta. 2001;1507:100–14.

    Google Scholar 

  153. Hastings G, Kleinherenbrink FAM, Lin S, McHugh TJ, Blankenship RE. Observation of the reduction and reoxidation of the primary electron acceptor in photosystem I. Biochemistry. 1994;33(11):3193–200.

    Google Scholar 

  154. Savikhin S, Xu W, Martinsson P, Chitnis PR, Struve WS. Kinetics of charge separation and A0–A1 electron transfer in photosystem I reaction centers. Biochemistry. 2001;40:9282–90.

    Google Scholar 

  155. Chauvet A, Dashdorj N, Golbeck JH, Johnson WT, Savikhin S. Spectral resolution of the primary electron acceptor A0 in photosystem I. J Phys Chem B. 2012;116:3380–6.

    Google Scholar 

  156. Byrdin M, Jordan P, Krauss N, Fromme P, Stehlik D, Schlodder E. Light harvesting in photosystem I: modeling based on the 2.5-Å structure of photosystem I from Synechococcus elongatus. Biophys J. 2002;83:433–57.

    Google Scholar 

  157. Damjanovic A, Vaswani HM, Fromme P, Fleming GR. Chlorophyll excitations in photosystem I of Synechococcus elongatus. J Phys Chem B. 2002;106:10251–62.

    Google Scholar 

  158. Dorra D, Fromme P, Karapetyan NV, Holzwarth AR. Fluorescence kinetics of photosystem I: multiple fluorescence components. In: Garab G, editor. Photosynthesis: mechanisms and effects. Dordrecht: Kluwer; 1998. p. 587–90.

    Google Scholar 

  159. Karapetyan NV, Holzwarth AR, Rögner M. The photosystem I trimer of cyanobacteria: molecular organization, excitation dynamics and physiological significance. FEBS Lett. 1999;460:395–400.

    Google Scholar 

  160. Gobets B, van Grondelle R. Energy transfer and trapping in photosystem I. Biochim Biophys Acta. 2001;1507:80–99.

    Google Scholar 

  161. Melkozernov AN. Excitation energy transfer in photosystem I from oxygenic organisms. Photosynth Res. 2001;70:129–53.

    Google Scholar 

  162. Savikhin S, Xu W, Soukoulis V, Chitnis PR, Struve WS. Ultrafast primary processes in photosystem I of the cyanobacterium Synechocystis sp. PCC 6803. Biophys J. 1999;76:3278–88.

    Google Scholar 

  163. Hayes JM, Matsuzaki S, Rätsep M, Small GJ. Red chlorophyll a antenna states of photosystem I of the cyanobacterium Synechocystis sp. PCC 6803. J Phys Chem B. 2000;104:5625–33.

    Google Scholar 

  164. Zazubovich V, Matsuzaki S, Johnson TW, Hayes JM, Chitnis PR, Small GJ. Red antenna states of photosystem I from cyanobacterium Synechococcus elongatus: a spectral hole burning study. Chem Phys. 2002;275:47–59.

    ADS  Google Scholar 

  165. Rätsep M, Johnson TW, Chitnis PR, Small GJ. The red-absorbing chlorophyll a antenna states of photosystem I: a hole-burning study of Synechocystis sp. PCC 6803 and its mutants. J Phys Chem B. 2000;104:836–47.

    Google Scholar 

  166. Jelezko F, Tietz C, Gerken U, Wrachtrup J, Bittl R. Single-molecule spectroscopy on photosystem I pigment–protein complexes. J Phys Chem B. 2000;104(34):8093–6.

    Google Scholar 

  167. Şener MK, Jolley C, Ben-Shem A, Fromme P, Nelson N, Croce R, et al. Comparison of the light-harvesting networks of plant and cyanobacterial photosystem I. Biophys J. 2005;89(3):1630–42.

    Google Scholar 

  168. Gatzen G, Müller MG, Griebenow K, Holzwarth AR. Primary processes and structure of the photosystem II reaction center. 3. Kinetic analysis of picosecond energy transfer and charge separation processes in the D1-D2-cyt-b559 complex measured by time resolved fluorescence. J Phys Chem. 1996;100:7269–78.

    Google Scholar 

  169. Müller MG, Niklas J, Lubitz W, Holzwarth AR. Ultrafast transient absorption studies on photosystem I reaction centers from Chlamydomonas reinhardtii. 1. A new interpretation of the energy trapping and early electron transfer steps in photosystem I. Biophys J. 2003;85:3899–922.

    Google Scholar 

  170. Savikhin S, Xu W, Chitnis PR, Struve WS. Ultrafast primary processes in PS I from Synechocystis sp. PCC 6803: roles of P700 and A0. Biophys J. 2000;79:1573–86.

    Google Scholar 

  171. Kumazaki S, Iwaki M, Ikegami I, Kandori H, Yoshihara K, Itoh S. Rates of primary electron transfer reactions in the photosystem I reaction center reconstituted with different quinones as the secondary acceptor. J Phys Chem. 1994;98:11220–5.

    Google Scholar 

  172. Kumazaki S, Kandori H, Petek H, Yoshihara I, Ikegami I. Primary photochemical processes in P700-enriched photosystem I particles—trap-limited excitation decay and primary charge separation. J Phys Chem. 1994;98:10335–42.

    Google Scholar 

  173. Kumazaki S, Ikegami I, Furusawa H, Yasuda S, Yoshihara K. Observation of the excited state of the primary electron donor chlorophyll (P700) and the ultrafast charge separation in the spinach photosystem I reaction center. J Phys Chem B. 2001;105:1093–9.

    Google Scholar 

  174. Nuijs AM, Shuvalov VA, van Gorkom HJ, Plijter JJ, Duysens LNM. Picosecond absorbance difference spectroscopy on the primary reactions and the antenna-excited states in photosystem I particles. Biochim Biophys Acta. 1986;850:310–8.

    Google Scholar 

  175. Shuvalov VA, Nuijs AM, van Gorkom HJ, Smit HWJ, Duysens LNM. Picosecond absorbance changes upon selective excitation of the primary electron donor P700 in photosystem I. Biochim Biophys Acta. 1986;850:319–23.

    Google Scholar 

  176. Wasielewski MR, Fenton JM, Govindjee. The rate of formation of P700 +-A0 − in photosystem I particles from spinach as measured by picosecond transient absorption spectroscopy. Photosynth Res. 1987;12:181–90.

    Google Scholar 

  177. White NTH, Beddard GS, Thorne JRG, Feehan TM, Keyes TE, Heathcote P. Primary charge separation and energy transfer in the photosystem I reaction center of higher plants. J Phys Chem. 1996;100:12086–99.

    Google Scholar 

  178. Brettel K, Setif P, Mathis P. Flash-induced absorption changes in photosystem I at low temperature: evidence that the electron acceptor A1 is vitamin K1. FEBS Lett. 1986;203:220–4.

    Google Scholar 

  179. Brettel K. Electron transfer from A1- to an iron-sulfur center with t1/2 = 200 ns at room temperature in photosystem I. Characterization by absorption spectroscopy. FEBS Lett. 1988;239:93–8.

    Google Scholar 

  180. Brettel K, Vos MH. Spectroscopic resolution of the picosecond reduction kinetics of the secondary electron acceptor A1 in photosystem I. FEBS Lett. 1999;447:315–7.

    Google Scholar 

  181. Lüneberg J, Fromme P, Jekow P, Schlodder E. Spectroscopic characterization of PS I core complexes from thermophilic Synechococcus sp.: identical reoxidation kinetics of A1 − before and after removal of the iron-sulfur-clusters FA and FB. FEBS Lett. 1994;338:197–202.

    Google Scholar 

  182. Holzwarth AR, Müller MG, Niklas J, Lubitz W. Ultrafast transient absorption studies on photosystem I reaction centers from Chlamydomonas reinhardtii. 2: mutations near the P700 reaction center chlorophylls provide new insight into the nature of the primary electron donor. Biophys J. 2006;90(2):552–65.

    Google Scholar 

  183. Müller MG, Slavov C, Luthra R, Redding KE, Holzwarth AR. Independent initiation of primary electron transfer in the two branches of the photosystem I reaction center. Proc Natl Acad Sci U S A. 2010;107(9):4123–8.

    ADS  Google Scholar 

  184. Guergova-Kuras M, Boudreaux B, Joliot A, Joliot P, Redding K. Evidence for two active branches for electron transfer in photosystem I. Proc Natl Acad Sci U S A. 2001;98:4437–42.

    ADS  Google Scholar 

  185. Santabarbara S, Reifschneider K, Jasaitis A, Gu F, Agostini G, Carbonera D, et al. Interquinone electron transfer in photosystem I as evidenced by altering the hydrogen bond strength to the phylloquinone(s). J Phys Chem B. 2010;114(28):9300–12.

    Google Scholar 

  186. Giera W, Ramesh VM, Webber AN, van Stokkum I, van Grondelle R, Gibasiewicz K. Effect of the P700 pre-oxidation and point mutations near A0 on the reversibility of the primary charge separation in photosystem I from Chlamydomonas reinhardtii. Biochim Biophys Acta. 2010;1797(1):106–12.

    Google Scholar 

  187. Di Donato M, Stahl AD, van Stokkum IHM, van Grondelle R, Groot M-L. Cofactors involved in light-driven charge separation in photosystem I identified by subpicosecond infrared spectroscopy. Biochemistry. 2010;50(4):480–90.

    Google Scholar 

  188. Shelaev IV, Gostev FE, Mamedov MD, Sarkisov OM, Nadtochenko VA, Shuvalov VA, et al. Femtosecond primary charge separation in Synechocystis sp. PCC 6803 photosystem I. Biochim Biophys Acta. 2010;1797(8):1410–20.

    Google Scholar 

  189. Joliot P, Joliot A. In vivo analysis of the electron transfer within photosystem I: are the two phylloquinones involved? Biochemistry. 1999;38(34):11130–6.

    Google Scholar 

  190. Santabarbara S, Kuprov I, Fairclough WV, Purton S, Hore PJ, Heathcote P, et al. Bidirectional electron transfer in photosystem I: determination of two distances between P700+ and A1- in spin-correlated radical pairs. Biochemistry. 2005;44(6):2119–28.

    Google Scholar 

  191. Santabarbara S, Kuprov I, Hore PJ, Casal A, Heathcote P, Evans MCW. Analysis of the spin-polarized electron spin echo of the [P700 +A1 −] radical pair of photosystem I indicates that both reaction center subunits are competent in electron transfer in cyanobacteria, green algae, and higher plants. Biochemistry. 2006;45(23):7389–403.

    Google Scholar 

  192. Santabarbara S, Jasaitis A, Byrdin M, Gu F, Rappaport F, Redding K. Additive effect of mutations affecting the rate of phylloquinone reoxidation and directionality of electron transfer within photosystem I. Photochem Photobiol. 2008;84(6):1381–7.

    Google Scholar 

  193. Poluektov OG, Paschenko SV, Utschig LM, Lakshmi KV, Thurnauer MC. Bidirectional electron transfer in photosystem I: direct evidence from high-frequency time-resolved EPR spectroscopy. J Am Chem Soc. 2005;127(34):11910–1.

    Google Scholar 

  194. Cohen RO, Shen G, Golbeck JH, Xu W, Chitnis PR, Valieva A, et al. Evidence for asymmetric electron transfer in cyanobacterial photosystem I: analysis of a methionine to leucine mutation of the ligand to the primary electron acceptor A0. Biochemistry. 2004;43:4741–54.

    Google Scholar 

  195. Dashdorj N, Xu W, Cohen RO, Golbeck JH, Savikhin S. Asymmetric electron transfer in cyanobacterial photosystem I: charge separation and secondary electron transfer dynamics of mutations near the primary electron acceptor A0. Biophys J. 2005;88:1238–49.

    Google Scholar 

  196. Bautista JA, Rappaport F, Guergova-Kuras M, Cohen RO, Golbeck JH, Wang JY, et al. Biochemical and biophysical characterization of photosystem I from phytoene desaturase and ζ-carotene desaturase deletion mutants of Synechocystis Sp. PCC 6803: evidence for PsaA- and PsaB-side electron transport in cyanobacteria. J Biol Chem. 2005;280(20):20030–41.

    Google Scholar 

  197. Srinivasan N, Karyagina I, Bittl R, van der Est A, Golbeck JH. Role of the hydrogen bond from Leu722 to the A1A phylloquinone in photosystem I. Biochemistry. 2009;48(15):3315–24.

    Google Scholar 

  198. Santabarbara S, Kuprov I, Poluektov O, Casal A, Russell CA, Purton S, et al. Directionality of electron-transfer reactions in photosystem I of prokaryotes: universality of the bidirectional electron-transfer model. J Phys Chem B. 2010;114(46):15158–71.

    Google Scholar 

  199. Agalarov R, Brettel K. Temperature dependence of biphasic forward electron transfer from the phylloquinone(s) A1 in photosystem I: only the slower phase is activated. Biochim Biophys Acta. 2003;1604(1):7–12.

    Google Scholar 

  200. Mula S, Savitsky A, Mobius K, Lubitz W, Golbeck JH, Mamedov MD, et al. Incorporation of a high potential quinone reveals that electron transfer in photosystem I becomes highly asymmetric at low temperature. Photochem Photobiol Sci. 2012;11(6):946–56.

    Google Scholar 

  201. Fairclough WV, Forsyth A, Evans MCW, Rigby SEJ, Purton S, Heathcote P. Bidirectional electron transfer in photosystem I: electron transfer on the PsaA side is not essential for phototrophic growth in Chlamydomonas. Biochim Biophys Acta. 2003;1606:43–55.

    Google Scholar 

  202. Moser C, Dutton PL. Application of Marcus theory to photosystem I electron transfer. In: Golbeck J, editor. Photosystem I. Advances in photosynthesis and respiration, vol. 24. Dordrecht: Springer; 2006. p. 583–94.

    Google Scholar 

  203. Nakamura A, Suzawa T, Kato Y, Watanabe T. Species dependence of the redox potential of the primary electron donor P700 in photosystem I of oxygenic photosynthetic organisms revealed by spectroelectrochemistry. Plant Cell Physiol. 2011;52(5):815–23.

    Google Scholar 

  204. Mamedov MD, Gadzhieva RM, Gourovskaya KN, Drachev LA, Semenov AY. Electrogenicity at the donor/acceptor sides of cyanobacterial photosystem I. J Bioenerg Biomembr. 1996;28(6):517–22.

    Google Scholar 

  205. Nakamura A, Suzawa T, Kato Y, Watanabe T. Significant species-dependence of P700 redox potential as verified by spectroelectrochemistry: comparison of spinach and Theromosynechococcus elongatus. FEBS Lett. 2005;579(11):2273–6.

    Google Scholar 

  206. Krabben L, Schlodder E, Jordan R, Carbonera D, Giacometti G, Lee H, et al. Influence of the axial ligands on the spectral properties of P700 of photosystem I: a study of site-directed mutants. Biochemistry. 2000;39(42):13012–25.

    Google Scholar 

  207. Witt H, Schlodder E, Teutloff C, Niklas J, Bordignon E, Carbonera D, et al. Hydrogen bonding to P700: site-directed mutagenesis of threonine A739 of photosystem I in Chlamydomonas reinhardtii. Biochemistry. 2002;41(27):8557–69.

    Google Scholar 

  208. Hamacher E, Kruip J, Rögner M, Mäntele W. Characterization of the primary electron donor of photosystem I, P700, by electrochemistry and Fourier transform infrared (FTIR) difference spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc. 1996;52(1):107–21.

    ADS  Google Scholar 

  209. Kleinherenbrink FAM, Hastings G, Wittmershaus BP, Blankenship RE. Delayed fluorescence from Fe-S type photosynthetic reaction centers at low redox potential. Biochemistry. 1994;33:3096–105.

    Google Scholar 

  210. Vos MH, van Gorkom HJ. Thermodynamics of electron transport in photosystem I studied by electric field-stimulated charge recombination. Biochim Biophys Acta. 1988;934(3):293–302.

    Google Scholar 

  211. Setif P, Bottin H. Identification of electron-transfer reactions involving the acceptor A1 of photosystem I at room temperature. Biochemistry. 1989;28(6):2689–97.

    Google Scholar 

  212. Vos MH, van Gorkom HJ. Thermodynamical and structural information on photosynthetic systems obtained from electroluminescence kinetics. Biophys J. 1990;58(6):1547–55.

    Google Scholar 

  213. Holzwarth AR, Müller MG, Niklas J, Lubitz W. Charge recombination fluorescence in photosystem I reaction centers from Chlamydomonas reinhardtii. J Phys Chem B. 2005;109(12):5903–11.

    Google Scholar 

  214. Hu Q, Miyashita H, Iwasaki I, Kurano N, Miyachi S, Iwaki M, et al. A photosystem I reaction center driven by chlorophyll d in oxygenic photosynthesis. Proc Natl Acad Sci U S A. 1998;95(22):13319–23.

    ADS  Google Scholar 

  215. Ishikita H, Saenger W, Biesiadka J, Loll B, Knapp E-W. How photosynthetic reaction centers control oxidation power in chlorophyll pairs P680, P700, and P870. Proc Natl Acad Sci U S A. 2006;103(26):9855–60.

    ADS  Google Scholar 

  216. Ishikita H, Stehlik D, Golbeck JH, Knapp E-W. Electrostatic influence of PsaC protein binding to the PsaA/PsaB heterodimer in photosystem I. Biophys J. 2006;90(3):1081–9.

    Google Scholar 

  217. Ishikita H, Knapp EW. Redox potential of quinones in both electron transfer branches of photosystem I. J Biol Chem. 2003;278(52):52002–11.

    Google Scholar 

  218. Ptushenko V, Cherepanov D, Krishtalik L, Semenov A. Semi-continuum electrostatic calculations of redox potentials in photosystem I. Photosynth Res. 2008;97(1):55–74.

    Google Scholar 

  219. Srinivasan N, Santabarbara S, Rappaport F, Carbonera D, Redding K, van der Est A, et al. Alteration of the H-bond to the A1A phylloquinone in photosystem I: influence on the kinetics and energetics of electron transfer. J Phys Chem B. 2011;115(8):1751–9.

    Google Scholar 

  220. Moser CC, Dutton PL. Engineering protein structure for electron transfer function in photosynthetic reaction centers. Biochim Biophys Acta. 1992;1101:171–6.

    Google Scholar 

  221. Moser CC, Keske JM, Warncke K, Farid RS, Dutton PL. Nature of biological electron transfer. Nature. 1992;355:796–802.

    ADS  Google Scholar 

  222. Ramesh VM, Guergova-Kuras M, Joliot P, Webber AN. Electron transfer from plastocyanin to the photosystem I reaction center in mutants with increased potential of the primary donor in Chlamydomonas reinhardtii. Biochemistry. 2002;41(50):14652–8.

    Google Scholar 

  223. Zybailov B, van der Est A, Zech SG, Teutloff C, Johnson TW, Shen G, et al. Recruitment of a foreign quinone into the A1 site of Photosystem I: II. Structural and functional characterization of phylloquinone biosynthetic pathway mutants by electron paramagnetic resonance and electron-nuclear double resonance spectroscopy. J Biol Chem. 2000;275(12):8531–9.

    Google Scholar 

  224. Sakuragi Y, Zybailov B, Shen G, Jones AD, Chitnis PR, van der Est A, et al. Insertional inactivation of the menG gene, encoding 2-phytyl-1,4-naphthoquinone methyltransferase of Synechocystis sp. PCC 6803, results in the incorporation of 2-phytyl-1,4-naphthoquinone into the A1 site and alteration of the equilibrium constant between A1 and FX in Photosystem I. Biochemistry. 2002;41:394–405.

    Google Scholar 

  225. Iwaki M, Itoh S. Electron transfer in spinach photosystem I reaction center containing benzo-, naphtho- and anthraquinones in place of phylloquinone. FEBS Lett. 1989;256(1–2):11–6.

    Google Scholar 

  226. Itoh S, Iwaki M, Ikegami I. Modification of photosystem I reaction center by the extraction and exchange of chlorophylls and quinones. Biochim Biophys Acta. 2001;1507(1–3):115–38.

    Google Scholar 

Download references

Acknowledgments

The authors thank Dan Hartzler, Su Lin, and Valter Zazubovich for useful discussions. The authors acknowledge the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the US Department of Energy, through Grant DE-FG02-09ER16084 (to S.S.) and DE-FG02-11ER16281 (to R.J.) for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergei Savikhin Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Savikhin, S., Jankowiak, R. (2014). Mechanism of Primary Charge Separation in Photosynthetic Reaction Centers. In: Golbeck, J., van der Est, A. (eds) The Biophysics of Photosynthesis. Biophysics for the Life Sciences, vol 11. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1148-6_7

Download citation

Publish with us

Policies and ethics