Skip to main content

Abstract

Carotenoids are valuable biotechnological compounds because of their health-promoting properties and their use as food and feed additives. Carotenoid biosynthesis is a widespread trait in fungi, and the easy detection of carotenoid mutants have made them useful visual markers for genetic analysis in model species. These features have attracted the interest of researchers towards the analysis of their biosynthetic pathways. The genetics and biochemistry of fungal carotenogenesis have reached high levels of knowledge for three biosynthetic carotenoid pathways: those for β-carotene in zygomycetes, neurosporaxanthin in ascomycetes, and astaxanthin in basidiomycetes. The information on astaxanthin biosynthesis is presented in another chapter. This chapter reviews the current knowledge on the genes and enzymes responsible for β-carotene and neurosporaxanthin biosynthesis in some model fungi, describes the available information on the relevant regulatory factors that affect the production of them, and their potential biological roles. Less information is available on the biosynthesis of other fungal carotenoids, which are also briefly reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Britton G, Liaaen-Jensen S, Pfander H. Carotenoids. Basel: Birkhäuser; 1998.

    Google Scholar 

  2. Britton G, Liaaen-Jensen S, Pfander H. Carotenoids: handbook. Boston: Birkhauser; 2004.

    Book  Google Scholar 

  3. Sandmann G, Misawa N. Fungal carotenoids. In: Osiewacz HD, editor. The Mycota X industrial applications. Berlin: Springer; 2002. p. 247–62.

    Chapter  Google Scholar 

  4. Sieiro C, Poza M, de Miguel T, Villa TG. Genetic basis of microbial carotenogenesis. Int Microbiol. 2003;6:11–6.

    CAS  PubMed  Google Scholar 

  5. Fraser PD, Bramley PM. The biosynthesis and nutritional uses of carotenoids. Prog Lipid Res. 2004;43:228–65.

    Article  CAS  PubMed  Google Scholar 

  6. Domonkos I, Kis M, Gombos Z, Ughy B. Carotenoids, versatile components of oxygenic photosynthesis. Prog Lipid Res. 2013;52:539–61.

    Article  CAS  PubMed  Google Scholar 

  7. Blomhoff R, Blomhoff HK. Overview of retinoid metabolism and function. J Neurobiol. 2006;66:606–30.

    Article  CAS  PubMed  Google Scholar 

  8. Moran NA, Jarvik T. Lateral transfer of genes from fungi underlies carotenoid production in aphids. Science. 2010;328:624–7.

    Article  CAS  PubMed  Google Scholar 

  9. Avalos J, Cerdá-Olmedo E. Fungal carotenoid production. In: Arora DK, editor. Handbook of fungal biotechnology. 2nd ed. New York: Marcel Dekker, Inc.; 2004. p. 367–78.

    Google Scholar 

  10. Del Campo JA, García-González M, Guerrero MG. Outdoor cultivation of microalgae for carotenoid production: current state and perspectives. Appl Microbiol Biotechnol. 2007;74:1163–74.

    Article  CAS  PubMed  Google Scholar 

  11. Rohmer M, Knani M, Simonin P, Sutter B, Sahm H. Isoprenoid biosynthesis in bacteria: a novel pathway for the early steps leading to isopentenyl diphosphate. Biochem J. 1993;15: 517–24.

    Article  Google Scholar 

  12. Cerdá-Olmedo E. Carotene. In: Cerdá-Olmedo E, Lipson ED, editors. Phycomyces. Cold Spring Harbor: Cold Spring Harbor Laboratory Press; 1987. p. 199–222.

    Google Scholar 

  13. Navarro E, Sandmann G, Torres-Martínez S. Mutants of the carotenoid biosynthetic pathway of Mucor circinelloides. Exp Mycol. 1995;19:186–90.

    Article  CAS  Google Scholar 

  14. Fraser PD, Ruiz-Hidalgo MJ, López-Matas MA, Álvarez MI, Eslava AP, Bramley PM. Carotenoid biosynthesis in wild type and mutant strains of Mucor circinelloides. Biochim Biophys Acta. 1996;1289:203–8.

    Article  PubMed  Google Scholar 

  15. de Miguel T, Calo P, Díaz A, Villa TG. The genus Rhodosporidium: a potential source of β-carotene. Microbiologia. 1997;13:67–70.

    PubMed  Google Scholar 

  16. Georgiou CD, Zervoudakis G, Tairis N, Kornaros M. β-Carotene production and its role in sclerotial differentiation of Sclerotium rolfsii. Fungal Genet Biol. 2001;34:11–20.

    Article  CAS  PubMed  Google Scholar 

  17. Georgiou CD, Tairis N, Polycratis A. Production of β-carotene by Sclerotinia sclerotiorum and its role in sclerotium differentiation. Mycol Res. 2001;105:1110–5.

    Article  CAS  Google Scholar 

  18. Han M, He Q, Zhang WG. Carotenoids production in different culture conditions by Sporidiobolus pararoseus. Prep Biochem Biotechnol. 2012;42:293–303.

    Article  CAS  PubMed  Google Scholar 

  19. Estrada AF, Brefort T, Mengel C, Díaz-Sánchez V, Alder A, Al-Babili S, et al. Ustilago maydis accumulates β-carotene at levels determined by a retinal-forming carotenoid oxygenase. Fungal Genet Biol. 2010;46:803–13.

    Article  CAS  Google Scholar 

  20. Will OH, Ruddat M, Garber ED, Kezdy FJ. Characterization of carotene accumulation in Ustilago violacea using high-performance liquid chromatography. Curr Microbiol. 1984;10:57–63.

    Article  CAS  Google Scholar 

  21. Will OH, Ruddat M, Newland NA. Characterization of carotene accumulation in species of the fungal genus Ustilago using high-performance liquid chromatography. Bot Gaz. 1985;146:204–7.

    Article  CAS  Google Scholar 

  22. El-Jack M, Mackenzie A, Bramley PM. The photoregulation of carotenoid biosynthesis in Aspergillus giganteus mut. alba. Planta. 1988;174:59–66.

    Article  CAS  PubMed  Google Scholar 

  23. Daub ME, Payne GA. The role of carotenoids in resistance of fungi to cercosporin. Phytopathology. 1989;79:180–5.

    Article  CAS  Google Scholar 

  24. Han JR, Zhao WJ, Gao YY, Yuan JM. Effect of oxidative stress and exogenous β-carotene on sclerotial differentiation and carotenoid yield of Penicillium sp. PT95. Lett Appl Microbiol. 2005;40:412–7.

    Article  CAS  PubMed  Google Scholar 

  25. van Eijk GW, Mummery RS, Roeymans HJ, Valadon LR. A comparative study of carotenoids of Aschersonia aleyroides and Aspergillus giganteus. Antonie Van Leeuwenhoek. 1979;45:417–22.

    Article  PubMed  Google Scholar 

  26. Johnson EA. Phaffia rhodozyma: colorful odyssey. Int Microbiol. 2003;6:169–74.

    Article  CAS  PubMed  Google Scholar 

  27. Bhosale PB, Gadre RV. Production of β-carotene by a mutant of Rhodotorula glutinis. Appl Microbiol Biotechnol. 2001;55:423–7.

    Article  CAS  PubMed  Google Scholar 

  28. Bejarano ER, Govind NS, Cerdá-Olmedo E. ξ-Carotene and other carotenes in a Phycomyces mutant. Phytochemistry. 1987;26:2251–4.

    Article  CAS  Google Scholar 

  29. Ruiz-Hidalgo MJ, Benito EP, Sandmann G, Eslava AP. The phytoene dehydrogenase gene of Phycomyces: regulation of its expression by blue light and vitamin A. Mol Gen Genet. 1997;253:734–44.

    Article  CAS  PubMed  Google Scholar 

  30. Velayos A, Blasco JL, Alvarez MI, Iturriaga EA, Eslava AP. Blue-light regulation of phytoene dehydrogenase (carB) gene expression in Mucor circinelloides. Planta. 2000;210:938–46.

    Article  CAS  PubMed  Google Scholar 

  31. Rodríguez-Saiz M, Paz B, De la Fuente JL, López-Nieto MJ, Cabri W, Barredo JL. Blakeslea trispora genes for carotene biosynthesis. Appl Environ Microbiol. 2004;70:5589–94.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  32. Ehrenshaft M, Daub ME. Isolation, sequence, and characterization of the Cercospora nicotianae phytoene dehydrogenase gene. Appl Environ Microbiol. 1994;60:2766–71.

    PubMed Central  CAS  PubMed  Google Scholar 

  33. Verdoes JC, Krubasik KP, Sandmann G, van Ooyen AJ. Isolation and functional characterisation of a novel type of carotenoid biosynthetic gene from Xanthophyllomyces dendrorhous. Mol Gen Genet. 1999;262:453–61.

    Article  CAS  PubMed  Google Scholar 

  34. Arrach N, Fernández-Martín R, Cerdá-Olmedo E, Avalos J. A single gene for lycopene cyclase, phytoene synthase, and regulation of carotene biosynthesis in Phycomyces. Proc Natl Acad Sci USA. 2001;98:1687–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Velayos A, Eslava AP, Iturriaga EA. A bifunctional enzyme with lycopene cyclase and phytoene synthase activities is encoded by the carRP gene of Mucor circinelloides. Eur J Biochem. 2000;267:5509–19.

    Article  CAS  PubMed  Google Scholar 

  36. Sanz C, Velayos A, Alvarez MI, Benito EP, Eslava AP. Functional analysis of the Phycomyces carRA gene encoding the enzymes phytoene synthase and lycopene cyclase. PLoS One. 2011;6:e23102.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Torres-Martínez S, Murillo FJ, Cerdá-Olmedo E. Genetics of lycopene cyclization and substrate transfer in β-carotene biosynthesis in Phycomyces. Genet Res. 1980;36:299–309.

    Article  PubMed  Google Scholar 

  38. Breitenbach J, Fraser PD, Sandmann G. Carotenoid synthesis and phytoene synthase activity during mating of Blakeslea trispora. Phytochemistry. 2012;76:40–5.

    Article  CAS  PubMed  Google Scholar 

  39. Cerdá-Olmedo E. Carotene mutants of Phycomyces. Methods Enzymol. 1985;110:220–43.

    Article  Google Scholar 

  40. Velayos A, López-Matas MA, Ruiz-Hidalgo MJ, Eslava AP. Complementation analysis of carotenogenic mutants of Mucor circinelloides. Fungal Genet Biol. 1997;22:19–27.

    Article  CAS  PubMed  Google Scholar 

  41. Mehta BJ, Cerdá-Olmedo E. Mutants of carotene production in Blakeslea trispora. Appl Microbiol Biotechnol. 1995;42:836–8.

    Article  CAS  Google Scholar 

  42. Mehta BJ, Obraztsova IN, Cerdá-Olmedo E. Mutants and intersexual heterokaryons of Blakeslea trispora for production of β-carotene and lycopene. Appl Environ Microbiol. 2003;69:4043–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Goodwin TW. The biochemistry of the carotenoids. 2nd ed. London: Chapman & Hall; 1980.

    Book  Google Scholar 

  44. Fraser PD, Bramley PM. The purification of phytoene dehydrogenase from Phycomyces blakesleeanus. Biochim Biophys Acta. 1994;1212:59–66.

    Article  CAS  PubMed  Google Scholar 

  45. Ootaki T, Crafts-Lighty A, Delbrück M, Hsu WJ. Complementation between mutants of Phycomyces deficient with respect to carotenogenesis. Mol Gen Genet. 1973;121:57–70.

    Article  CAS  PubMed  Google Scholar 

  46. Avalos J, Cerdá-Olmedo E. Chemical modification of carotenogenesis in Gibberella fujikuroi. Phytochemistry. 1986;25:1837–41.

    Article  CAS  Google Scholar 

  47. Bejarano ER, Cerdá-Olmedo E. Inhibition of phytoene dehydrogenation and activation of carotenogenesis in Phycomyces. Phytochemistry. 1989;28:1623–6.

    Article  CAS  Google Scholar 

  48. De la Guardia MD, Aragón CM, Murillo FJ, Cerdá-Olmedo E. A carotenogenic enzyme aggregate in Phycomyces: evidence from quantitive complementation. Proc Natl Acad Sci USA. 1971;68:2012–5.

    Article  PubMed Central  PubMed  Google Scholar 

  49. Aragón CM, Murillo FJ, de la Guardia MD, Cerdá-Olmedo E. An enzyme complex for the dehydrogenation of phytoene in Phycomyces. Eur J Biochem. 1976;63:71–5.

    Article  PubMed  Google Scholar 

  50. Candau R, Bejarano ER, Cerdá-Olmedo E. In vivo channeling of substrates in an enzyme aggregate for β-carotene biosynthesis. Proc Natl Acad Sci USA. 1991;88:4936–40.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Sanz C, Alvarez MI, Orejas M, Velayos A, Eslava AP, Benito EP. Interallelic complementation provides genetic evidence for the multimeric organization of the Phycomyces blakesleeanus phytoene dehydrogenase. Eur J Biochem. 2002;269:902–8.

    Article  CAS  PubMed  Google Scholar 

  52. Mehta BJ, Cerdá-Olmedo E. Lycopene cyclization in Blakeslea trispora. Mycoscience. 1999;40:307–10.

    Article  CAS  Google Scholar 

  53. Lampila LE, Wallen SE, Bullerman LB. A review of factors affecting biosynthesis of carotenoids by the order Mucorales. Mycopathologia. 1985;90:65–80.

    Article  CAS  PubMed  Google Scholar 

  54. Avalos J, Bejarano ER, Cerdá-Olmedo E. Photoinduction of carotenoid biosynthesis. Methods Enzymol. 1993;214:283–94.

    Article  CAS  Google Scholar 

  55. Bergman K, Eslava AP, Cerdá-Olmedo E. Mutants of Phycomyces with abnormal phototropism. Mol Gen Genet. 1973;123:1–16.

    Article  CAS  PubMed  Google Scholar 

  56. Bejarano ER, Avalos J, Lipson ED, Cerdá-Olmedo E. Photoinduced accumulation of carotene in Phycomyces. Planta. 1991;183:1–9.

    Article  CAS  PubMed  Google Scholar 

  57. Sutter RP. Effect of light on β-carotene accumulation in Blakeslea trispora. J Gen Microbiol. 1970;64:215–21.

    Article  CAS  PubMed  Google Scholar 

  58. Blasco JL, Roessink D, Iturriaga EA, Eslava AP, Galland P. Photocarotenogenesis in Phycomyces: expression of the carB gene encoding phytoene dehydrogenase. J Plant Res. 2001;114:25–31.

    Article  CAS  Google Scholar 

  59. Almeida ER, Cerdá-Olmedo E. Gene expression in the regulation of carotene biosynthesis in Phycomyces. Curr Genet. 2008;53:129–37.

    Article  CAS  PubMed  Google Scholar 

  60. Sanz C, Benito EP, Orejas M, Alvarez MI, Eslava AP. Protein-DNA interactions in the promoter region of the Phycomyces carB and carRA genes correlate with the kinetics of their mRNA accumulation in response to light. Fungal Genet Biol. 2010;47:773–81.

    Article  CAS  PubMed  Google Scholar 

  61. Quiles-Rosillo MD, Ruiz-Vázquez RM, Torres-Martínez S, Garre V. Light induction of the carotenoid biosynthesis pathway in Blakeslea trispora. Fungal Genet Biol. 2005;42:141–53.

    Article  CAS  PubMed  Google Scholar 

  62. López-Díaz I, Cerdá-Olmedo E. Relationship of photocarotenogenesis to other behavioural and regulatory responses in Phycomyces. Planta. 1980;150:134–9.

    Article  PubMed  Google Scholar 

  63. Jayaram M, Leutwiler L, Delbrück M. Light-induced carotene synthesis in mutants of Phycomyces with abnormal phototropism. Photochem Photobiol. 1980;32:241–5.

    Article  CAS  Google Scholar 

  64. Flores R, Cerdá-Olmedo E, Corrochano LM. Separate sensory pathways for photomorphogenesis in Phycomyces. Photochem Photobiol. 1998;67:467–72.

    Article  CAS  Google Scholar 

  65. Tsolakis G, Parashi E, Galland P, Kotzabasis K. Blue light signaling chains in Phycomyces: phototransduction of carotenogenesis and morphogenesis involves distinct protein kinase/phosphatase elements. Fungal Genet Biol. 1999;28:201–13.

    Article  CAS  PubMed  Google Scholar 

  66. Idnurm A, Rodríguez-Romero J, Corrochano LM, Sanz C, Iturriaga EA, Eslava AP, et al. The Phycomyces madA gene encodes a blue-light photoreceptor for phototropism and other light responses. Proc Natl Acad Sci USA. 2006;103:4546–51.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Liu Y, He Q, Cheng P. Photoreception in Neurospora: a tale of two White Collar proteins. Cell Mol Life Sci. 2003;60:2131–8.

    Article  CAS  PubMed  Google Scholar 

  68. Sanz C, Rodríguez-Romero J, Idnurm A, Christie JM, Heitman J, Corrochano LM, et al. Phycomyces MADB interacts with MADA to form the primary photoreceptor complex for fungal phototropism. Proc Natl Acad Sci USA. 2009;106:7095–100.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Corrochano LM, Garre V. Photobiology in the Zygomycota: multiple photoreceptor genes for complex responses to light. Fungal Genet Biol. 2010;47:893–9.

    Article  CAS  PubMed  Google Scholar 

  70. Torres-Martínez S, Ruiz-Vázquez RM, Garre V, López-García S, Navarro E, Vila A. Molecular tools for carotenogenesis analysis in the zygomycete Mucor circinelloides. Methods Mol Biol. 2012;898:85–107.

    Article  PubMed  CAS  Google Scholar 

  71. Silva F, Torres-Martínez S, Garre V. Distinct white collar-1 genes control specific light responses in Mucor circinelloides. Mol Microbiol. 2006;61:1023–37.

    Article  CAS  PubMed  Google Scholar 

  72. Murillo FJ, Cerdá-Olmedo E. Regulation of carotene synthesis in Phycomyces. Mol Gen Genet. 1976;148:19–24.

    Article  CAS  PubMed  Google Scholar 

  73. Salgado LM, Bejarano ER, Cerdá-Olmedo E. Carotene-superproducing mutants of Phycomyces blakesleeanus. Exp Mycol. 1989;13:332–6.

    Article  CAS  Google Scholar 

  74. Mehta BJ, Salgado LM, Bejarano ER, Cerdá-Olmedo E. New mutants of Phycomyces blakesleeanus for β-carotene production. Appl Environ Microbiol. 1997;63:3657–61.

    PubMed Central  CAS  PubMed  Google Scholar 

  75. Salgado LM, Avalos J, Bejarano ER, Cerdá-Olmedo E. Correlation between in vivo and in vitro carotenogenesis in Phycomyces. Phytochemistry. 1991;30:2587–91.

    Article  CAS  Google Scholar 

  76. Murillo FJ, Torres-Martínez S, Aragón CM, Cerdá-Olmedo E. Substrate transfer in carotene biosynthesis in Phycomyces. Eur J Biochem. 1981;119:511–6.

    Article  CAS  PubMed  Google Scholar 

  77. Corrochano LM, Cerdá-Olmedo E. Photomorphogenesis in behavioural and colour mutants of Phycomyces. J Photochem Photobiol B. 1990;6:325–35.

    Article  Google Scholar 

  78. Revuelta JL, Eslava AP. A new gene (carC) involved in the regulation of carotenogenesis in Phycomyces. Mol Gen Genet. 1983;192:225–9.

    Article  CAS  Google Scholar 

  79. Bejarano ER, Cerdá-Olmedo E. Independence of the carotene and sterol pathways of Phycomyces. FEBS Lett. 1992;306:209–12.

    Article  CAS  PubMed  Google Scholar 

  80. Kuzina V, Domenech C, Cerdá-Olmedo E. Relationships among the biosyntheses of ubiquinone, carotene, sterols, and triacylglycerols in zygomycetes. Arch Microbiol. 2006;186: 485–93.

    Article  CAS  PubMed  Google Scholar 

  81. Navarro E, Ruiz-Pérez VL, Torres-Martínez S. Overexpression of the crgA gene abolishes light requirement for carotenoid biosynthesis in Mucor circinelloides. Eur J Biochem. 2000;267:800–7.

    Article  CAS  PubMed  Google Scholar 

  82. Navarro E, Lorca-Pascual JM, Quiles-Rosillo MD, Nicolás FE, Garre V, Torres-Martínez S, et al. A negative regulator of light-inducible carotenogenesis in Mucor circinelloides. Mol Genet Genomics. 2001;266:463–70.

    Article  CAS  PubMed  Google Scholar 

  83. Lorca-Pascual JM, Murcia-Flores L, Garre V, Torres-Martínez S, Ruiz-Vázquez RM. The RING-finger domain of the fungal repressor crgA is essential for accurate light regulation of carotenogenesis. Mol Microbiol. 2004;52:1463–74.

    Article  CAS  PubMed  Google Scholar 

  84. Silva F, Navarro E, Peñaranda A, Murcia-Flores L, Torres-Martínez S, Garre V. A RING-finger protein regulates carotenogenesis via proteolysis-independent ubiquitylation of a White Collar-1-like activator. Mol Microbiol. 2008;70:1026–36.

    CAS  PubMed  Google Scholar 

  85. Quiles-Rosillo MD, Torres-Martínez S, Garre V. cigA, a light-inducible gene involved in vegetative growth in Mucor circinelloides is regulated by the carotenogenic repressor crgA. Fungal Genet Biol. 2003;38:122–32.

    Article  CAS  PubMed  Google Scholar 

  86. Murcia-Flores L, Lorca-Pascual JM, Garre V, Torres-Martínez S, Ruiz-Vázquez RM. Non-AUG translation initiation of a fungal RING finger repressor involved in photocarotenogenesis. J Biol Chem. 2007;282:15394–403.

    Article  CAS  PubMed  Google Scholar 

  87. Bejarano ER, Parra F, Murillo FJ, Cerdá-Olmedo E. End-product regulation of carotenogenesis in Phycomyces. Arch Microbiol. 1988;150:209–14.

    Article  CAS  Google Scholar 

  88. Eslava AP, Alvarez MI, Cerdá-Olmedo E. Regulation of carotene biosynthesis in Phycomyces by vitamin A and β-ionone. Eur J Biochem. 1974;48:617–23.

    Article  CAS  Google Scholar 

  89. Cerdá-Olmedo E, Hüttermann A. Förderung und Hemmung der Carotinsynthese bei Phycomyces durch Aromaten. Angew Botanik. 1986;60:59–70.

    Google Scholar 

  90. Choudhari SM, Ananthanarayan L, Singhal RS. Use of metabolic stimulators and inhibitors for enhanced production of β-carotene and lycopene by Blakeslea trispora NRRL 2895 and 2896. Bioresour Technol. 2008;99:3166–73.

    Article  CAS  PubMed  Google Scholar 

  91. Ninet L, Renaut J, Tissier R. Activation of the biosynthesis of carotenoids by Blakeslea trispora. Biotechnol Bioeng. 1969;11:1195–210.

    Article  CAS  Google Scholar 

  92. Hu X, Sun J, Yuan Q. Improved β-carotene biosynthesis and gene transcription in Blakeslea trispora with arachidonic acid. Biotechnol Lett. 2012;34:2107–11.

    Article  CAS  PubMed  Google Scholar 

  93. Tang Q, Li Y, Yuan QP. Effects of an ergosterol synthesis inhibitor on gene transcription of terpenoid biosynthesis in Blakeslea trispora. Curr Microbiol. 2008;57:527–31.

    Article  CAS  PubMed  Google Scholar 

  94. Blakeslee AF. Sexual reproduction in the Mucorineae. Proc Am Acad Arts Sci. 1904;40:205–319.

    Article  Google Scholar 

  95. Burgeff H. Untersuchungen über Sexualität und Parasitismus bei Mucorineen. Bot Abh. 1924;4:1–135.

    Google Scholar 

  96. Govind NS, Cerdá-Olmedo E. Sexual activation of carotenogenesis in Phycomyces blakesleeanus. J Gen Microbiol. 1986;132:2775–80.

    CAS  Google Scholar 

  97. Sutter RP, Harrison TL, Galasko G. Trisporic acid biosynthesis in Blakeslea trispora via mating type-specific precursors. J Biol Chem. 1974;249:2282–4.

    CAS  PubMed  Google Scholar 

  98. Sutter RP. Sexual development. In: Cerdá-Olmedo E, Lipson ED, editors. Phycomyces. Cold Spring Harbor: Cold Spring Harbor Laboratory Press; 1987. p. 317–36.

    Google Scholar 

  99. Sahadevan Y, Richter M, Hoffmann K, Voigt K, Boland W. Early and late trisporoids differentially regulate β-carotene production and gene transcript levels in the mucoralean fungi Blakeslea trispora and Mucor mucedo. Appl Environ Microbiol. 2013;79(23):7466–75.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  100. Murillo FJ, Calderón IL, López-Díaz I, Cerdá-Olmedo E. Carotene-superproducing strains of Phycomyces. Appl Environ Microbiol. 1978;36:639–42.

    PubMed Central  CAS  PubMed  Google Scholar 

  101. Austin DG, Bu’Lock JD, Winstanley DJ. Trisporic acid biosynthesis and carotenogenesis in Blakesleea trispora. Biochem J. 1969;113:34P.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  102. Sutter RP. Mutations affecting sexual development in Phycomyces blakesleeanus. Proc Natl Acad Sci USA. 1975;72:127–30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  103. Kuzina V, Cerdá-Olmedo E. Modification of sexual development and carotene production by acetate and other small carboxylic acids in Blakeslea trispora and Phycomyces blakesleeanus. Appl Environ Microbiol. 2006;72:4917–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  104. Schmidt AD, Heinekamp T, Matuschek M, Liebmann B, Bollschweiler C, Brakhage AA. Analysis of mating-dependent transcription of Blakeslea trispora carotenoid biosynthesis genes carB and carRA by quantitative real-time PCR. Appl Microbiol Biotechnol. 2005;67:549–55.

    Article  CAS  PubMed  Google Scholar 

  105. Kuzina V, Ramírez-Medina H, Visser H, van Ooyen AJ, Cerdá-Olmedo E, van den Berg JA. Genes involved in carotene synthesis and mating in Blakeslea trispora. Curr Genet. 2008;54:143–52.

    Article  CAS  PubMed  Google Scholar 

  106. Cerdá-Olmedo E. Production of carotenoids with fungi. In: Vandamme E, editor. Biotechnology of vitamin, growth factor and pigment production. London: Elsevier Applied Science; 1989. p. 27–42.

    Chapter  Google Scholar 

  107. Mehta BJ, Cerdá-Olmedo E. Intersexual partial diploids of Phycomyces. Genetics. 2001;158:635–41.

    PubMed Central  CAS  PubMed  Google Scholar 

  108. Lilly VG, Barnett HL, Krause RF. The production of carotene by Phycomyces blakesleeanus. W Va Agric Exp Stn Bull. 1960;441T:1–80.

    Google Scholar 

  109. Csernetics A, Nagy G, Iturriaga EA, Szekeres A, Eslava AP, Vágvölgyi C, et al. Expression of three isoprenoid biosynthesis genes and their effects on the carotenoid production of the zygomycete Mucor circinelloides. Fungal Genet Biol. 2011;48:696–703.

    Article  CAS  PubMed  Google Scholar 

  110. Papp T, Velayos A, Bartok T, Eslava AP, Vagvolgyi C, Iturriaga EA. Heterologous expression of astaxanthin biosynthesis genes in Mucor circinelloides. Appl Microbiol Biotechnol. 2006;69:526–31.

    Article  CAS  PubMed  Google Scholar 

  111. Papp T, Csernetics A, Nagy G, Bencsik O, Iturriaga EA, Eslava AP, et al. Canthaxanthin production with modified Mucor circinelloides strains. Appl Microbiol Biotechnol. 2013;97:4937–50.

    Article  CAS  PubMed  Google Scholar 

  112. Nicolás-Molina FE, Navarro E, Ruiz-Vázquez RM. Lycopene over-accumulation by disruption of the negative regulator gene crgA in Mucor circinelloides. Appl Microbiol Biotechnol. 2008;78:131–7.

    Article  PubMed  CAS  Google Scholar 

  113. Austin DJ, Bu'Lock JD, Drake D. The biosynthesis of trisporic acids from β-carotene via retinal and trisporol. Experientia. 1970;26:348–9.

    Article  CAS  PubMed  Google Scholar 

  114. Caglioti L, Cainelli G, Camerino B, Mondelli R, Prieto A, Quilico A, et al. The structure of trisporic-C acid. Tetrahedron. 1966;22:175–87.

    Article  Google Scholar 

  115. Sutter RP, Dadok J, Bothner-By AA, Smith RR, Mishra PK. Cultures of separated mating types of Blakeslea trispora make D and E forms of trisporic acids. Biochemistry. 1989;28:4060–6.

    Article  CAS  PubMed  Google Scholar 

  116. Barrero AF, Herrador MM, Arteaga P, Gil J, González JA, Alcalde E, et al. New apocarotenoids and β-carotene cleavage in Blakeslea trispora. Org Biomol Chem. 2011;9:7190–5.

    Article  CAS  PubMed  Google Scholar 

  117. Polaino S, González-Delgado JA, Arteaga P, Herrador MM, Barrero AF, Cerdá-Olmedo E. Apocarotenoids in the sexual interaction of Phycomyces blakesleeanus. Org Biomol Chem. 2012;10:3002–9.

    Article  CAS  PubMed  Google Scholar 

  118. Burmester A, Richter M, Schultze K, Voelz K, Schachtschabel D, Boland W, et al. Cleavage of β-carotene as the first step in sexual hormone synthesis in zygomycetes is mediated by a trisporic acid regulated β-carotene oxygenase. Fungal Genet Biol. 2007;44: 1096–108.

    Article  CAS  PubMed  Google Scholar 

  119. Polaino S, Herrador MM, Cerdá-Olmedo E, Barrero AF. Splitting of β-carotene in the sexual interaction of Phycomyces. Org Biomol Chem. 2010;8:4229–31.

    Article  CAS  PubMed  Google Scholar 

  120. Tagua VG, Medina HR, Martín-Domínguez R, Eslava AP, Corrochano LM, Cerdá-Olmedo E, et al. A gene for carotene cleavage required for pheromone biosynthesis and carotene regulation in the fungus Phycomyces blakesleeanus. Fungal Genet Biol. 2012;49:398–404.

    Article  CAS  PubMed  Google Scholar 

  121. Medina HR, Cerdá-Olmedo E, Al-Babili S. Cleavage oxygenases for the biosynthesis of trisporoids and other apocarotenoids in Phycomyces. Mol Microbiol. 2011;82:199–208.

    Article  CAS  PubMed  Google Scholar 

  122. Salgado LM, Cerdá-Olmedo E. Genetic interactions in the regulation of carotenogenesis in Phycomyces. Curr Genet. 1992;21:67–71.

    Article  CAS  Google Scholar 

  123. Czempinski K, Kruft V, Wöstemeyer J, Burmester A. 4-Dihydromethyltrisporate dehydrogenase from Mucor mucedo, an enzyme of the sexual hormone pathway: purification, and cloning of the corresponding gene. Microbiology. 1996;142:2647–54.

    Article  CAS  PubMed  Google Scholar 

  124. Schimek C, Petzold A, Schultze K, Wetzel J, Wolschendorf F, Burmester A, et al. 4-Dihydromethyltrisporate dehydrogenase, an enzyme of the sex hormone pathway in Mucor mucedo, is constitutively transcribed but its activity is differently regulated in (+) and (-) mating types. Fungal Genet Biol. 2005;42:804–12.

    Article  CAS  PubMed  Google Scholar 

  125. Wetzel J, Scheibner O, Burmester A, Schimek C, Wöstemeyer J. 4-dihydrotrisporin-dehydrogenase, an enzyme of the sex hormone pathway of Mucor mucedo: purification, cloning of the corresponding gene, and developmental expression. Eukaryot Cell. 2009;8:88–95.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  126. Schimek C, Wöstemeyer J. Carotene derivatives in sexual communication of zygomycete fungi. Phytochemistry. 2009;70:1867–75.

    Article  CAS  PubMed  Google Scholar 

  127. Polaino S. Apocarotenoides en la interacción sexual de Phycomyces. PhD thesis, University of Seville; 2009.

    Google Scholar 

  128. Haxo F. Studies on the carotenoid pigments of Neurospora; composition of the pigment. Arch Biochem. 1949;20:400–21.

    CAS  PubMed  Google Scholar 

  129. Zalokar M. Studies on biosynthesis of carotenoids in Neurospora crassa. Arch Biochem Biophys. 1954;50:71–80.

    Article  CAS  PubMed  Google Scholar 

  130. Zalokar M. Isolation of an acidic pigment in Neurospora. Arch Biochem Biophys. 1957;70:568–71.

    Article  CAS  PubMed  Google Scholar 

  131. Aasen AJ, Jensen SL. Fungal carotenoids II. The structure of the carotenoid acid neurosporaxanthin. Acta Chem Scand. 1965;19:1843–53.

    Article  CAS  PubMed  Google Scholar 

  132. Bindl E, Lang W, Rau W. Untersuchungen über die lichtabhängige Carotinoidsynthese. VI. Zeitlicher Verlauf der Synthese der einzelnen Carotinoide bei Fusarium aquaeductuum unter verschiedenen Induktionsbedingungen. Planta. 1970;94:156–74.

    Article  CAS  PubMed  Google Scholar 

  133. Valadon LRG, Mummery RS. Biosynthesis of neurosporaxanthin. Microbios. 1969;1A:3–8.

    Google Scholar 

  134. Valadon LRG, Osman M, Mummery RS, Jerebzoff-Quintin S, Jerebzoff S. The effect of monochromatic radiation in the range 350 to 750 nm on the carotenogenesis in Verticillium agaricinum. Physiol Plant. 1982;56:199–203.

    Article  CAS  Google Scholar 

  135. Strobel I, Breitenbach J, Scheckhuber CQ, Osiewacz HD, Sandmann G. Carotenoids and carotenogenic genes in Podospora anserina: engineering of the carotenoid composition extends the life span of the mycelium. Curr Genet. 2009;55:175–84.

    Article  CAS  PubMed  Google Scholar 

  136. Harding RW, Huang PC, Mitchell HK. Photochemical studies of the carotenoid biosynthetic pathway in Neurospora crassa. Arch Biochem Biophys. 1969;129:696–707.

    Article  CAS  PubMed  Google Scholar 

  137. Mitzka U, Rau W. Composition and photoinduced biosynthesis of the carotenoids of a protoplast-like Neurospora crassa “slime” mutant. Arch Microbiol. 1977;111:261–3.

    Article  CAS  PubMed  Google Scholar 

  138. Avalos J, Cerdá-Olmedo E. Carotenoid mutants of Gibberella fujikuroi. Curr Genet. 1987;25:1837–41.

    Google Scholar 

  139. Valadon LRG, Mummery RS. Natural β-apo-4′-carotenoic acid methyl ester in the fungus Verticillium agaricinum. Phytochemistry. 1977;16:613–4.

    Article  CAS  Google Scholar 

  140. Sakaki H, Kaneno H, Sumiya Y, Tsushima M, Miki W, Kishimoto N, et al. A new carotenoid glycosyl ester isolated from a marine microorganism, Fusarium strain T-1. J Nat Prod. 2002;65:1683–4.

    Article  CAS  PubMed  Google Scholar 

  141. Spurgeon SL, Turner RV, Harding RW. Biosynthesis of phytoene from isopentenyl pyrophosphate by a Neurospora enzyme system. Arch Biochem Biophys. 1979;195:23–9.

    Article  CAS  PubMed  Google Scholar 

  142. Huang PC. Recombination and complementation of albino mutants in Neurospora. Genetics. 1964;49:453–69.

    PubMed Central  CAS  PubMed  Google Scholar 

  143. Wang SS, Magill JM, Phillips RW. Auxotrophic and visible mutations in white spore (ws-1). Neurospora Newsl. 1971;18:16–7.

    Google Scholar 

  144. Goldie AH, Subden RE. The neutral carotenoids of wild-type and mutant strains of Neurospora crassa. Biochem Genet. 1973;10:275–84.

    Article  CAS  PubMed  Google Scholar 

  145. Nelson MA, Morelli G, Carattoli A, Romano N, Macino G. Molecular cloning of a Neurospora crassa carotenoid biosynthetic gene (albino-3) regulated by blue light and the products of the white collar genes. Mol Cell Biol. 1989;9:1271–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  146. Carattoli A, Romano N, Ballario P, Morelli G, Macino G. The Neurospora crassa carotenoid biosynthetic gene (albino 3) reveals highly conserved regions among prenyltransferases. J Biol Chem. 1991;266:5854–9.

    CAS  PubMed  Google Scholar 

  147. Sandmann G, Misawa N, Wiedemann M, Vittorioso P, Carattoli A, Morelli G, et al. Functional identification of al-3 from Neurospora crassa as the gene for geranylgeranyl pyrophosphate synthase by complementation with crt genes, in vitro characterization of the gene product and mutant analysis. J Photochem Photobiol B. 1993;18:245–51.

    Article  CAS  PubMed  Google Scholar 

  148. Barbato C, Calissano M, Pickford A, Romano N, Sandmann G, Macino G. Mild RIP-an alternative method for in vivo mutagenesis of the albino-3 gene in Neurospora crassa. Mol Gen Genet. 1996;252:353–61.

    CAS  PubMed  Google Scholar 

  149. Schmidhauser TJ, Lauter FR, Russo VE, Yanofsky C. Cloning, sequence, and photoregulation of al-1, a carotenoid biosynthetic gene of Neurospora crassa. Mol Cell Biol. 1990;10:5064–70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  150. Bartley GE, Schmidhauser TJ, Yanofsky C, Scolnik PA. Carotenoid desaturases from Rhodobacter capsulatus and Neurospora crassa are structurally and functionally conserved and contain domains homologous to flavoprotein disulfide oxidoreductases. J Biol Chem. 1990;265:16020–4.

    CAS  PubMed  Google Scholar 

  151. Sandmann G. Evolution of carotene desaturation: the complication of a simple pathway. Arch Biochem Biophys. 2009;483:169–74.

    Article  CAS  PubMed  Google Scholar 

  152. Hausmann A, Sandmann G. A single five-step desaturase is involved in the carotenoid biosynthesis pathway to β-carotene and torulene in Neurospora crassa. Fungal Genet Biol. 2000;30:147–53.

    Article  CAS  PubMed  Google Scholar 

  153. Fernández-Martín R, Cerdá-Olmedo E, Avalos J. Homologous recombination and allele replacement in transformants of Fusarium fujikuroi. Mol Gen Genet. 2000;263: 838–45.

    Article  PubMed  Google Scholar 

  154. Linnemannstöns P, Prado MM, Fernández-Martín R, Tudzynski B, Avalos J. A carotenoid biosynthesis gene cluster in Fusarium fujikuroi: the genes carB and carRA. Mol Genet Genomics. 2002;267:593–602.

    Article  PubMed  CAS  Google Scholar 

  155. Prado-Cabrero A, Schaub P, Díaz-Sánchez V, Estrada AF, Al-Babili S, Avalos J. Deviation of the neurosporaxanthin pathway towards β-carotene biosynthesis in Fusarium fujikuroi by a point mutation in the phytoene desaturase gene. FEBS J. 2009;276:4582–97.

    Article  CAS  PubMed  Google Scholar 

  156. Schmidhauser TJ, Lauter FR, Schumacher M, Zhou W, Russo VE, Yanofsky C. Characterization of al-2, the phytoene synthase gene of Neurospora crassa. Cloning, sequence analysis, and photoregulation. J Biol Chem. 1994;269:12060–6.

    CAS  PubMed  Google Scholar 

  157. Arrach N, Schmidhauser TJ, Avalos J. Mutants of the carotene cyclase domain of al-2 from Neurospora crassa. Mol Genet Genomics. 2002;266:914–21.

    Article  CAS  PubMed  Google Scholar 

  158. Díaz-Sánchez V, Estrada AF, Trautmann D, Limón MC, Al-Babili S, Avalos J. Analysis of al-2 mutations in Neurospora. PLoS One. 2011;6:e21948.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  159. Sandmann G, Zhu C, Krubasik P, Fraser PD. The biotechnological potential of the al-2 gene from Neurospora crassa for the production of monocyclic keto hydroxy carotenoids. Biochim Biophys Acta. 2006;1761:1085–92.

    Article  CAS  PubMed  Google Scholar 

  160. Sui X, Kiser PD, Lintig JV, Palczewski K. Structural basis of carotenoid cleavage: from bacteria to mammals. Arch Biochem Biophys. 2013;539(2):203–13.

    Article  CAS  PubMed  Google Scholar 

  161. Prado-Cabrero A, Estrada AF, Al-Babili S, Avalos J. Identification and biochemical characterization of a novel carotenoid oxygenase: elucidation of the cleavage step in the Fusarium carotenoid pathway. Mol Microbiol. 2007;64:448–60.

    Article  CAS  PubMed  Google Scholar 

  162. Saelices L, Youssar L, Holdermann I, Al-Babili S, Avalos J. Identification of the gene responsible for torulene cleavage in the Neurospora carotenoid pathway. Mol Genet Genomics. 2007;278:527–37.

    Article  CAS  PubMed  Google Scholar 

  163. Jin JM, Lee J, Lee YW. Characterization of carotenoid biosynthetic genes in the ascomycete Gibberella zeae. FEMS Microbiol Lett. 2010;302:197–202.

    Article  CAS  PubMed  Google Scholar 

  164. Estrada AF, Youssar L, Scherzinger D, Al-Babili S, Avalos J. The ylo-1 gene encodes an aldehyde dehydrogenase responsible for the last reaction in the Neurospora carotenoid pathway. Mol Microbiol. 2008;69:1207–20.

    Article  CAS  PubMed  Google Scholar 

  165. Díaz-Sánchez V, Estrada AF, Trautmann D, Al-Babili S, Avalos J. The gene carD encodes the aldehyde dehydrogenase responsible for neurosporaxanthin biosynthesis in Fusarium fujikuroi. FEBS J. 2011;278:3164–76.

    Article  PubMed  CAS  Google Scholar 

  166. Sandmann G. Photoregulation of carotenoid biosynthesis in mutants of Neurospora crassa: activities of enzymes involved in the synthesis and conversion of phytoene. Z Naturforsch. 1993;48c:570–4.

    Google Scholar 

  167. Sandmann G, Takaichi S, Fraser PD. C(35)-apocarotenoids in the yellow mutant Neurospora crassa YLO. Phytochemistry. 2008;69:2886–90.

    Article  CAS  PubMed  Google Scholar 

  168. Mitzka-Schnabel U, Rau W. The subcellular distribution of carotenoids in Neurospora crassa. Phytochemistry. 1980;19:1409–13.

    Article  CAS  Google Scholar 

  169. Mitzka-Schnabel U. Carotenogenic enzymes from Neurospora. Pure Appl Chem. 1985;57: 667–9.

    Article  CAS  Google Scholar 

  170. Domenech CE, Giordano W, Avalos J, Cerdá-Olmedo E. Separate compartments for the production of sterols, carotenoids and gibberellins in Gibberella fujikuroi. Eur J Biochem. 1996;239:720–5.

    Article  CAS  PubMed  Google Scholar 

  171. Bieszke JA, Braun EL, Bean LE, Kang S, Natvig DO, Borkovich KA. The nop-1 gene of Neurospora crassa encodes a seven transmembrane helix retinal-binding protein homologous to archaeal rhodopsins. Proc Natl Acad Sci USA. 1999;96:8034–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  172. Prado MM, Prado-Cabrero A, Fernández-Martín R, Avalos J. A gene of the opsin family in the carotenoid gene cluster of Fusarium fujikuroi. Curr Genet. 2004;46:47–58.

    Article  CAS  PubMed  Google Scholar 

  173. Estrada AF, Avalos J. Regulation and targeted mutation of opsA, coding for the NOP-1 opsin orthologue in Fusarium fujikuroi. J Mol Biol. 2009;387:59–73.

    Article  CAS  PubMed  Google Scholar 

  174. Bieszke JA, Spudich EN, Scott KL, Borkovich KA, Spudich JL. A eukaryotic protein, NOP-1, binds retinal to form an archaeal rhodopsin-like photochemically reactive pigment. Biochemistry. 1999;38:14138–45.

    Article  CAS  PubMed  Google Scholar 

  175. Wyss A. Carotene oxygenases: a new family of double bond cleavage enzymes. J Nutr. 2004;134:246S–50.

    CAS  PubMed  Google Scholar 

  176. Thewes S, Prado-Cabrero A, Prado MM, Tudzynski B, Avalos J. Characterization of a gene in the car cluster of Fusarium fujikuroi that codes for a protein of the carotenoid oxygenase family. Mol Genet Genomics. 2005;274:217–28.

    Article  CAS  PubMed  Google Scholar 

  177. Prado-Cabrero A, Scherzinger D, Avalos J, Al-Babili S. Retinal biosynthesis in fungi: characterization of the carotenoid oxygenase CarX from Fusarium fujikuroi. Eukaryot Cell. 2007;6:650–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  178. Díaz-Sánchez V, Estrada AF, Limón MC, Al-Babili S, Avalos J. The oxygenase CAO-1 of Neurospora crassa is a resveratrol cleavage enzyme. Eukaryot Cell. 2013;12:1305–14.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  179. Avalos J, Estrada AF. Regulation by light in Fusarium. Fungal Genet Biol. 2010;47:930–8.

    Article  CAS  PubMed  Google Scholar 

  180. Avalos J, Corrochano LM. Carotenoid biosynthesis in Neurospora. In: Kasbekar DP, McCluskey K, editors. Neurospora: genomics and molecular biology. Norfolk: Caister Academic Press; 2013.

    Google Scholar 

  181. Rau W, Lindemann I, Rau-Hund A. Untersuchungen über die lichtabhängige Carotinoidsynthese. III Die Farbstoffbildung von Neurospora crassa in Submerskultur. Planta. 1968;80:309–16.

    Article  CAS  Google Scholar 

  182. Zalokar M. Biosynthesis of carotenoids in Neurospora. Action spectrum of photoactivation. Arch Biochem Biophys. 1955;56:318–25.

    Article  CAS  PubMed  Google Scholar 

  183. Schrott EL. Fluence response relationship of carotenogenesis in Neurospora crassa. Planta. 1980;150:174–9.

    Article  CAS  PubMed  Google Scholar 

  184. Rau W. Untersuchungen über die lichtabhängige Carotinoidsynthese. IV. Die Rolle des Sauerstoffs bei der Lichtinduktion. Planta. 1969;84:30–42.

    Article  CAS  Google Scholar 

  185. Avalos J, Schrott EL. Photoinduction of carotenoid biosynthesis in Gibberella fujikuroi. FEMS Microbiol Lett. 1990;66:295–8.

    Article  CAS  Google Scholar 

  186. Schrott EL. The biphasic fluence response of carotenogenesis in Neurospora crassa: temporary insensitivity of the photoreceptor system. Planta. 1981;151:371–4.

    Article  CAS  PubMed  Google Scholar 

  187. Rau W, Feuser B, Rau-Hund A. Substitution of p-chloro- or p-hydroxymercuribenzoate for light in carotenoid synthesis by Fusarium aquaeductuum. Biochim Biophys Acta. 1967;136:589–90.

    Article  CAS  PubMed  Google Scholar 

  188. Theimer RR, Rau W. Untersuchungen über die lichtabhängige Carotinoidsynthese V. Aufhebung der Lichtinduktion dutch Reduktionsmittel und Ersatz des Lichts durch Wasserstoffperoxid. Planta. 1970;92:129–37.

    Article  CAS  PubMed  Google Scholar 

  189. Theimer RR, Rau W. Untersuchungen über die lichtabhängige Carotinoidsynthese VIII. Die unterschiedlichen Wirkungsmechanismen von Licht und Mercuribenzoat. Planta. 1972;106: 331–43.

    Article  CAS  PubMed  Google Scholar 

  190. de Fabo EC, Harding RW, Shropshire Jr W. Action spectrum between 260 and 800 nanometers for the photoinduction of carotenoid biosynthesis in Neurospora crassa. Plant Physiol. 1976;57:440–5.

    Article  PubMed Central  PubMed  Google Scholar 

  191. Paietta J, Sargent ML. Photoreception in Neurospora crassa: correlation of reduced light sensitivity with flavin deficiency. Proc Natl Acad Sci USA. 1981;78:5573–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  192. Paietta J, Sargent ML. Modification of blue light photoresponses by riboflavin analogs in Neurospora crassa. Plant Physiol. 1983;72:764–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  193. Rau W. Untersuchungen über die lichtabhängige Carotinoidsynthese. I. Das Wirkungsspektrum von Fusarium aquaeductuum. Planta. 1967;72:14–28.

    Article  CAS  Google Scholar 

  194. Schrott EL, Huber-Willer A, Rau W. Is phytochrome involved in the light-mediated carotenogenesis in Fusarium aquaeductuum and Neurospora crassa? Photochem Photobiol. 1982;35:213–6.

    Article  CAS  Google Scholar 

  195. Lang-Feulner J, Rau W. Redox dyes as artificial photoreceptors in light-dependent carotenoid synthesis. Photochem Photobiol. 1975;21:179–83.

    Article  CAS  PubMed  Google Scholar 

  196. Harding RW, Turner RV. Photoregulation of the carotenoid biosynthetic pathway in albino and white collar mutants of Neurospora crassa. Plant Physiol. 1981;68:745–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  197. Degli-Innocenti F, Russo VE. Isolation of new white collar mutants of Neurospora crassa and studies on their behavior in the blue light-induced formation of protoperithecia. J Bacteriol. 1984;159:757–61.

    PubMed Central  CAS  PubMed  Google Scholar 

  198. He Q, Liu Y. Molecular mechanism of light responses in Neurospora: from light-induced transcription to photoadaptation. Genes Dev. 2005;19:2888–99.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  199. Carattoli A, Cogoni C, Morelli G, Macino G. Molecular characterization of upstream regulatory sequences controlling the photoinduced expression of the albino-3 gene of Neurospora crassa. Mol Microbiol. 1994;13:787–95.

    Article  CAS  PubMed  Google Scholar 

  200. Estrada AF, Avalos J. The White Collar protein WcoA of Fusarium fujikuroi is not essential for photocarotenogenesis, but is involved in the regulation of secondary metabolism and conidiation. Fungal Genet Biol. 2008;45:705–18.

    Article  CAS  PubMed  Google Scholar 

  201. Ruiz-Roldán MC, Garre V, Guarro J, Mariné M, Roncero MI. Role of the white collar 1 photoreceptor in carotenogenesis, UV resistance, hydrophobicity, and virulence of Fusarium oxysporum. Eukaryot Cell. 2008;7:1227–30.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  202. Castrillo M, García-Martínez J, Avalos J. Light-dependent functions of the Fusarium fujikuroi CryD DASH cryptochrome in development and secondary metabolism. Appl Environ Microbiol. 2013;79:2777–88.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  203. García-Martínez J, Ádám AL, Avalos J. Adenylyl cyclase plays a regulatory role in development, stress resistance and secondary metabolism in Fusarium fujikuroi. PLoS One. 2012;7:e28849.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  204. Ádám AL, García-Martínez J, Szücs EP, Avalos J, Hornok L. The MAT1-2-1 mating-type gene upregulates photo-inducible carotenoid biosynthesis in Fusarium verticillioides. FEMS Microbiol Lett. 2011;318:76–83.

    Article  PubMed  CAS  Google Scholar 

  205. Rodríguez-Ortiz R, Michielse C, Rep M, Limón MC, Avalos J. Genetic basis of carotenoid overproduction in Fusarium oxysporum. Fungal Genet Biol. 2012;49:684–96.

    Article  PubMed  CAS  Google Scholar 

  206. Baima S, Macino G, Morelli G. Photoregulation of the albino-3 gene in Neurospora crassa. J Photochem Photobiol B. 1991;11:107–15.

    Article  CAS  PubMed  Google Scholar 

  207. Velayos A, Papp T, Aguilar-Elena R, Fuentes-Vicente M, Eslava AP, Iturriaga EA, et al. Expression of the carG gene, encoding geranylgeranyl pyrophosphate synthase, is up-regulated by blue light in Mucor circinelloides. Curr Genet. 2003;43:112–20.

    CAS  PubMed  Google Scholar 

  208. Homann V, Mende K, Arntz C, Ilardi V, Macino G, Morelli G, et al. The isoprenoid pathway: cloning and characterization of fungal FPPS genes. Curr Genet. 1996;30:232–9.

    Article  CAS  PubMed  Google Scholar 

  209. Mende K, Homann V, Tudzynski B. The geranylgeranyl diphosphate synthase gene of Gibberella fujikuroi: isolation and expression. Mol Gen Genet. 1997;255:96–105.

    Article  CAS  PubMed  Google Scholar 

  210. Tudzynski B, Holter K. Gibberellin biosynthetic pathway in Gibberella fujikuroi: evidence for a gene cluster. Fungal Genet Biol. 1998;25:157–70.

    Article  CAS  PubMed  Google Scholar 

  211. Shrode LB, Lewis ZA, White LD, Bell-Pedersen D, Ebbole DJ. vvd is required for light adaptation of conidiation-specific genes of Neurospora crassa, but not circadian conidiation. Fungal Genet Biol. 2001;32:169–81.

    Article  CAS  PubMed  Google Scholar 

  212. Schwerdtfeger C, Linden H. VIVID is a flavoprotein and serves as a fungal blue light photoreceptor for photoadaptation. EMBO J. 2003;22:4846–55.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  213. Youssar L, Schmidhauser TJ, Avalos J. The Neurospora crassa gene responsible for the cut and ovc phenotypes encodes a protein of the haloacid dehalogenase family. Mol Microbiol. 2005;55:828–38.

    Article  CAS  PubMed  Google Scholar 

  214. Navarro-Sampedro L, Yanofsky C, Corrochano LM. A genetic selection for Neurospora crassa mutants altered in their light regulation of transcription. Genetics. 2008;178:171–83.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  215. Li C, Schmidhauser TJ. Developmental and photoregulation of al-1 and al-2, structural genes for two enzymes essential for carotenoid biosynthesis in Neurospora. Dev Biol. 1995;169: 90–5.

    Article  CAS  PubMed  Google Scholar 

  216. Arpaia G, Carattoli A, Macino G. Light and development regulate the expression of the albino-3 gene in Neurospora crassa. Dev Biol. 1995;170:626–35.

    Article  CAS  PubMed  Google Scholar 

  217. Li C, Sachs MS, Schmidhauser TJ. Developmental and photoregulation of three Neurospora crassa carotenogenic genes during conidiation induced by desiccation. Fungal Genet Biol. 1997;21:101–8.

    Article  CAS  Google Scholar 

  218. Vittorioso P, Carattoli A, Londei P, Macino G. Internal translational initiation in the mRNA from the Neurospora crassa albino-3 gene. J Biol Chem. 1994;269:26650–4.

    CAS  PubMed  Google Scholar 

  219. Baima S, Carattoli A, Macino G, Morelli G. Photoinduction of albino-3 gene expression in Neurospora crassa conidia. J Photochem Photobiol B. 1992;15:233–8.

    Article  CAS  PubMed  Google Scholar 

  220. Yang Q, Borkovich KA. Mutational activation of a Gαi causes uncontrolled proliferation of aerial hyphae and increased sensitivity to heat and oxidative stress in Neurospora crassa. Genetics. 1999;151:107–17.

    PubMed Central  CAS  PubMed  Google Scholar 

  221. Kritsky MS, Sokolovsky VY, Belozerskaya TA, Chernysheva EK. Relationship between cyclic AMP level and accumulation of carotenoid pigments in Neurospora crassa. Arch Microbiol. 1982;133:206–8.

    Article  CAS  Google Scholar 

  222. Harding RW. Inhibition of conidiation and photoinduced carotenoid biosynthesis by cyclic AMP. Neurospora Newsl. 1973;20:20–1.

    Google Scholar 

  223. Barba-Ostria C, Lledias F, Georgellis D. The Neurospora crassa DCC-1 protein, a putative histidine kinase, is required for normal sexual and asexual development and carotenogenesis. Eukaryot Cell. 2011;10:1733–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  224. Harding RW. The effect of temperature on photo-induced carotenoid biosynthesis in Neurospora crassa. Plant Physiol. 1974;54:142–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  225. Rau W. Über den Einfluss der Temperatur auf die lichtabhängige Carotinoidbildung von Fusarium aquaeductuum. Planta. 1962;59:123–37.

    Article  CAS  Google Scholar 

  226. Estrada AF, Maier D, Scherzinger D, Avalos J, Al-Babili S. Novel apocarotenoid intermediates in Neurospora crassa mutants imply a new biosynthetic reaction sequence leading to neurosporaxanthin formation. Fungal Genet Biol. 2008;45:1497–505.

    Article  CAS  PubMed  Google Scholar 

  227. Garbayo I, Vílchez C, Nava-Saucedo JE, Barbotin JN. Nitrogen, carbon and light-mediated regulation studies of carotenoid biosynthesis in immobilized mycelia of Gibberella fujikuroi. Enzyme Microb Technol. 2003;33:629–34.

    Article  CAS  Google Scholar 

  228. Rodríguez-Ortiz R, Limón MC, Avalos J. Regulation of carotenogenesis and secondary metabolism by nitrogen in wild-type Fusarium fujikuroi and carotenoid-overproducing mutants. Appl Environ Microbiol. 2009;75:405–13.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  229. Sokolovsky VY, Lauter FR, Müller-Röber B, Ricci M, Schmidhauser TJ, Russo VEA. Nitrogen regulation of blue light-inducible genes in Neurospora crassa. J Gen Microbiol. 1992;138:2045–9.

    Article  Google Scholar 

  230. Avalos J, Mackenzie A, Nelki DS, Bramley PM. Terpenoid biosynthesis in cell-extracts of wild type and mutant strains of Gibberella fujikuroi. Biochim Biophys Acta. 1988;966: 257–65.

    Article  CAS  Google Scholar 

  231. Candau R, Avalos J, Cerdá-Olmedo E. Gibberellins and carotenoids in the wild type and mutants of Gibberella fujikuroi. Appl Environ Microbiol. 1991;57:3378–82.

    PubMed Central  CAS  PubMed  Google Scholar 

  232. Rodríguez-Ortiz R, Limón MC, Avalos J. Functional analysis of the carS gene of Fusarium fujikuroi. Mol Genet Genomics. 2013;288:157–73.

    Article  PubMed  CAS  Google Scholar 

  233. Linden H, Rodríguez-Franco M, Macino G. Mutants of Neurospora crassa defective in regulation of blue light perception. Mol Gen Genet. 1997;254:111–8.

    Article  CAS  PubMed  Google Scholar 

  234. Harding RW, Philip DQ, Drozdowicz BZ, Williams NP. A Neurospora crassa mutant which overaccumulates carotenoid pigments. Neurospora newsl. 1984;31:23–5.

    Google Scholar 

  235. Youssar L, Avalos J. Genetic basis of the ovc phenotype of Neurospora: identification and analysis of a 77 kb deletion. Curr Genet. 2007;51:19–30.

    Article  CAS  PubMed  Google Scholar 

  236. Imblum RL, Rodwell VW. 3-Hydroxy-3-methylglutaryl CoA reductase and mevalonate kinase of Neurospora crassa. J Lipid Res. 1974;15:211–22.

    CAS  PubMed  Google Scholar 

  237. Wang GY, Keasling JD. Amplification of HMG-CoA reductase production enhances carotenoid accumulation in Neurospora crassa. Metab Eng. 2002;4:193–201.

    Article  CAS  PubMed  Google Scholar 

  238. Bhosale P, Bernstein PS. Microbial xanthophylls. Appl Microbiol Biotechnol. 2005;68: 445–55.

    Article  CAS  PubMed  Google Scholar 

  239. Moliné M, Libkind D, van Broock M. Production of torularhodin, torulene, and β-carotene by Rhodotorula yeasts. Methods Mol Biol. 2012;898:275–83.

    Article  PubMed  CAS  Google Scholar 

  240. Frengova GI, Beshkova DM. Carotenoids from Rhodotorula and Phaffia: yeasts of biotechnological importance. J Ind Microbiol Biotechnol. 2009;36:163–80.

    Article  CAS  PubMed  Google Scholar 

  241. Arpin N, Lebreton P, Fiasson JL. Chemotaxonomic research on fungi. II. Carotenoids of Peniophora aurantiaca (Bres.) (Basidiomycete). Bull Soc Mycol Fr. 1966;82:450–9.

    Google Scholar 

  242. Davoli P, Mierau V, Weber RWS. Carotenoids and fatty acids in red yeasts Sporobolomyces roseus and Rhodotorula glutinis. Appl Biochem Microbiol. 2004;40:392–7.

    Article  CAS  Google Scholar 

  243. Iurkov AM, Vustin MM, Tiaglov BV, Maksimova IA, Sineokii SP. Pigmented basidiomycete yeasts are a promising source of carotenoids and ubiquinone Q10. Mikrobiologiya. 2008;77:5–10.

    CAS  Google Scholar 

  244. Buzzini P, Innocenti M, Turchetti B, Libkind D, van Broock M, Mulinacci N. Carotenoid profiles of yeasts belonging to the genera Rhodotorula, Rhodosporidium, Sporobolomyces, and Sporidiobolus. Can J Microbiol. 2007;53:1024–31.

    Article  CAS  PubMed  Google Scholar 

  245. Herz S, Weber RW, Anke H, Mucci A, Davoli P. Intermediates in the oxidative pathway from torulene to torularhodin in the red yeasts Cystofilobasidium infirmominiatum and C. capitatum (Heterobasidiomycetes, Fungi). Phytochemistry. 2007;68:2503–11.

    Article  CAS  PubMed  Google Scholar 

  246. Haxo F. Carotenoids of the mushroom Cantharellus cinnabarinus. Bot Gaz. 1950;112: 228–32.

    Article  CAS  Google Scholar 

  247. Madhour A, Anke H, Mucci A, Davoli P, Weber RWS. Biosynthesis of the xanthophyll plectaniaxanthin as a stress response in the red yeast Dioszegia (Tremellales, Heterobasidiomycetes, Fungi). Phytochemistry. 2005;66:2617–26.

    Article  CAS  PubMed  Google Scholar 

  248. Arpin N, Liaaen-Jensen S. Chemotaxonomic research on fungi. Fungal carotenoids. IV. Carotenoids of Phillipsia carminea (Pat.) Le Gal; isolation and identification of a new natural xanthophyll. Bull Soc Chim Biol. 1967;49:527–36.

    CAS  PubMed  Google Scholar 

  249. Brown LS. Fungal rhodopsins and opsin-related proteins: eukaryotic homologues of bacteriorhodopsin with unknown functions. Photochem Photobiol Sci. 2004;3:555–65.

    Article  CAS  PubMed  Google Scholar 

  250. Brown LS, Dioumaev AK, Lanyi JK, Spudich EN, Spudich JL. Photochemical reaction cycle and proton transfers in Neurospora rhodopsin. J Biol Chem. 2001;276:32495–505.

    Article  CAS  PubMed  Google Scholar 

  251. Edge R, McGarvey DJ, Truscott TG. The carotenoids as anti-oxidants—a review. J Photochem Photobiol B. 1997;41:189–200.

    Article  CAS  PubMed  Google Scholar 

  252. Jeong JC, Lee IY, Kim SW, Park YH. Stimulation of β-carotene synthesis by hydrogen peroxide in Blakeslea trispora. Biotech Lett. 1999;21:683–6.

    Article  CAS  Google Scholar 

  253. Liu YS, Wu JY. Hydrogen peroxide-induced astaxanthin biosynthesis and catalase activity in Xanthophyllomyces dendrorhous. Appl Microbiol Biotechnol. 2006;73:663–8.

    Article  CAS  PubMed  Google Scholar 

  254. Iigusa H, Yoshida Y, Hasunuma K. Oxygen and hydrogen peroxide enhance light-induced carotenoid synthesis in Neurospora crassa. FEBS Lett. 2005;579:4012–6.

    Article  CAS  PubMed  Google Scholar 

  255. Yoshida Y, Hasunuma K. Reactive oxygen species affect photomorphogenesis in Neurospora crassa. J Biol Chem. 2004;279:6986–93.

    Article  CAS  PubMed  Google Scholar 

  256. Michán S, Lledías F, Hansberg W. Asexual development is increased in Neurospora crassa cat-3-null mutant strains. Eukaryot Cell. 2003;2:798–808.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  257. Ukibe K, Hashida K, Yoshida N, Takagi H. Metabolic engineering of Saccharomyces cerevisiae for astaxanthin production and oxidative stress tolerance. Appl Environ Microbiol. 2009;75:7205–11.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  258. Nanou K, Roukas T. Oxidative stress response of Blakeslea trispora induced by iron ions during carotene production in shake flask culture. Appl Biochem Biotechnol. 2013;169: 2281–9.

    Article  CAS  PubMed  Google Scholar 

  259. Nanou K, Roukas T. Stimulation of the biosynthesis of carotenes by oxidative stress in Blakeslea trispora induced by elevated dissolved oxygen levels in the culture medium. Bioresour Technol. 2011;102:8159–64.

    Article  CAS  PubMed  Google Scholar 

  260. Nanou K, Roukas T. Oxidative stress response and morphological changes of Blakeslea trispora induced by butylated hydroxytoluene during carotene production. Appl Biochem Biotechnol. 2010;160:2415–23.

    Article  CAS  PubMed  Google Scholar 

  261. Gessler NN, Sokolov AV, Bykhovsky VY, Belozerskaya TA. Superoxide dismutase and catalase activities in carotenoid-synthesizing fungi Blakeslea trispora and Neurospora crassa in oxidative stress. Appl Biochem Microbiol. 2002;38:205–9.

    Article  CAS  Google Scholar 

  262. Hu X, Ma X, Tang P, Yuan Q. Improved β-carotene production by oxidative stress in Blakeslea trispora induced by liquid paraffin. Biotechnol Lett. 2013;35:559–63.

    Article  CAS  PubMed  Google Scholar 

  263. Sakaki H, Nochide H, Komemushi S, Miki W. Effect of active oxygen species on the productivity of torularhodin by Rhodotorula glutinis No. 21. J Biosci Bioeng. 2002;93:338–40.

    Article  CAS  PubMed  Google Scholar 

  264. Sakaki H, Nakanishi T, Satonaka K, Miki W, Fujita T, Komemushi S. Properties of a high-torularhodin-producing mutant of Rhodotorula glutinis cultivated under oxidative stress. J Biosci Bioeng. 2000;89:203–5.

    Article  CAS  PubMed  Google Scholar 

  265. Sakaki H, Nakanishi T, Tada A, Miki W, Komemushi S. Activation of torularhodin production by Rhodotorula glutinis using weak white light irradiation. J Biosci Bioeng. 2001;92: 294–7.

    Article  CAS  PubMed  Google Scholar 

  266. Shimizu M, Egashira T, Takahama U. Inactivation of Neurospora crassa conidia by singlet molecular oxygen generated by a photosensitized reaction. J Bacteriol. 1979;138:293–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  267. Ramadan-Talib Z, Prebble J. Photosensitivity of respiration in Neurospora mitochondria. A protective role for carotenoid. Biochem J. 1978;176:767–75.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  268. Luque EM, Gutiérrez G, Navarro-Sampedro L, Olmedo M, Rodríguez-Romero J, Ruger-Herreros C, et al. A relationship between carotenoid accumulation and the distribution of species of the fungus Neurospora in Spain. PLoS One. 2012;7:e33658.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  269. Morris SA, Subden RE. Effects of ultraviolet radiation on carotenoid-containing and albino strains of Neurospora crassa. Mut Res. 1974;22:105–9.

    Article  CAS  Google Scholar 

  270. Blanc PL, Tuveson RW, Sargent ML. Inactivation of carotenoid-producing and albino strains of Neurospora crassa by visible light, blacklight, and ultraviolet radiation. J Bacteriol. 1976;125:616–25.

    PubMed Central  CAS  PubMed  Google Scholar 

  271. Chen SJ, Wang Q, Han JR. Influence of oxidative stress and grains on sclerotial biomass and carotenoid yield of Penicillium sp. PT95. J Basic Microbiol. 2010;50:388–91.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Spanish Government (Ministerio de Ciencia y Tecnología, projects BIO2006-01323 and BIO2009-11131) and Andalusian Government (project P07-CVI-02813 and CTS-6638) for funding support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Ávalos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ávalos, J., Díaz-Sánchez, V., García-Martínez, J., Castrillo, M., Ruger-Herreros, M., Limón, M.C. (2014). Carotenoids. In: Martín, JF., García-Estrada, C., Zeilinger, S. (eds) Biosynthesis and Molecular Genetics of Fungal Secondary Metabolites. Fungal Biology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1191-2_8

Download citation

Publish with us

Policies and ethics