Skip to main content

The Functional Properties of the G Protein-Coupled Receptor Melanopsin in Intrinsically Photosensitive Retinal Ganglion Cells

Novel Photoreceptors Controlling Diverse Visual Functions

  • Chapter
  • First Online:
G Protein Signaling Mechanisms in the Retina

Part of the book series: Springer Series in Vision Research ((SSVR,volume 3))

  • 899 Accesses

Abstract

Only slightly over a decade ago, the rods and cones in the outer retina were thought to be the exclusive photoreceptors in mammals. Since then, the discovery of an additional photopigment melanopsin (a G protein-coupled receptor, GPCR) expressed in a small subset of intrinsically photosensitive retinal ganglion cells (ipRGCs) has expanded upon the conventional view of light detection and information flow in the retina. In this chapter, we will highlight our current understanding of the structure and function of melanopsin, the cell biology and physiology of ipRGCs, how ipRGCs are integrated into the retinal circuitry, and the role of ipRGCs in visual behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Foster RG, Provencio I, Hudson D, Fiske S, De Grip W, Menaker M (1991) Circadian photoreception in the retinally degenerate mouse (rd/rd). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 169:39–50

    CAS  Google Scholar 

  2. Czeisler CA, Shanahan TL, Klerman EB, Martens H, Brotman DJ, Emens JS et al (1995) Suppression of melatonin secretion in some blind patients by exposure to bright light. N Eng J Med 332:6–11

    CAS  Google Scholar 

  3. Freedman MS, Lucas RJ, Soni B, von Schantz M, Munoz M, David-Gray ZK et al (1999) Regulation of mammalian circadian behavior by non-rod, non-cone, ocular photoreceptors. Science 284:502–504

    CAS  PubMed  Google Scholar 

  4. Lucas RJ, Freedman MS, Munoz M, Garcia-Fernandez JM, Foster RG (1999) Regulation of the mammalian pineal by non-rod, non-cone ocular photoreceptors. Science 284:505–7

    CAS  PubMed  Google Scholar 

  5. Provencio I, Jiang G, De Grip WJ, Hayes WP, Rollag MD (1998) Melanopsin: an opsin in melanophores, brain, and eye. Proc Natl AcadSci U S A 95:340–345

    CAS  Google Scholar 

  6. Provencio I, Rodriguez IR, Jiang G, Hayes WP, Moreira EF, Rollag MD (2000) A novel human opsin in the inner retina. J Neurosci 20:600–605

    CAS  PubMed  Google Scholar 

  7. Berson DM, Dunn FA, Takao M (2002) Phototransduction by retinal ganglion cells that set the circadian clock. Science 295:1070–1073

    CAS  PubMed  Google Scholar 

  8. Hattar S, Liao H, Takao M, Berson DM, Yau K (2002) Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 295:1065–1070

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Schmidt TM, Taniguchi K, Kofuji P (2008) Intrinsic and extrinsic light responses in melanopsin-expressing ganglion cells during mouse development. J Neurophysiol 100:371–384

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Ecker JL, Dumitrescu ON, Wong KY, Alam NM, Chen S-K, LeGates TA et al (2010) Melanopsin-expressing retinal ganglion-cell photoreceptors: cellular diversity and role in pattern vision. Neuron 67:49–60

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Schmidt TM, Kofuji P (2009) Functional and morphological differences among intrinsically photosensitive retinal ganglion cells. J Neurosci 29:476–482

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Schmidt TM, Chen S-K, Hattar S (2011) Intrinsically photosensitive retinal ganglion cells: many subtypes, diverse functions. Trends Neurosci 34(11):572–580

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Chen S-K, Badea TC, Hattar S (2011) Photoentrainment and pupillary light reflex are mediated by distinct populations of ipRGCs. Nature 476:92–95.

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Güler AD, Ecker JL, Lall GS, Haq S, Altimus CM, Liao H et al (2008) Melanopsin cells are the principal conduits for rod-cone input to non-image-forming vision. Nature 453:102–105

    PubMed Central  PubMed  Google Scholar 

  15. Hatori M, Le H, Vollmers C, Keding SR, Tanaka N, Buch T et al (2008) Inducible ablation of melanopsin-expressing retinal ganglion cells reveals their central role in non-image forming visual responses. PLoS ONE 3:e2451

    PubMed Central  PubMed  Google Scholar 

  16. Göz D, Studholme K, Lappi DA, Rollag MD, Provencio I, Morin LP (2008) Targeted destruction of photosensitive retinal ganglion cells with a saporin conjugate alters the effects of light on mouse circadian rhythms. PLoS ONE 3:e3153

    PubMed Central  PubMed  Google Scholar 

  17. Ruby NF, Brennan TJ, Xie X, Cao V, Franken P, Heller HC et al (2002) Role of melanopsin in circadian responses to light. Science 298:2211–2213

    CAS  PubMed  Google Scholar 

  18. Panda S, Sato TK, Castrucci AM, Rollag MD, DeGrip WJ, Hogenesch JB et al (2002) Melanopsin (Opn4) requirement for normal light-induced circadian phase shifting. Science 298:2213–2216

    CAS  PubMed  Google Scholar 

  19. Lucas RJ, Hattar S, Takao M, Berson DM, Foster RG, Yau K (2003) Diminished pupillary light reflex at high irradiances in melanopsin-knockout mice. Science 299:245–247

    CAS  PubMed  Google Scholar 

  20. Lupi D, Oster H, Thompson S, Foster RG (2008) The acute light-induction of sleep is mediated by OPN4-based photoreception. Nat Neurosci 11:1068–1073

    CAS  PubMed  Google Scholar 

  21. Altimus CM, Güler AD, Villa KL, McNeill DS, LeGates TA, Hattar S (2008) Rods-cones and melanopsin detect light and dark to modulate sleep independent of image formation. Proc Natl Acad Sci U S A 105:19998–20003

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Tsai JW, Hannibal J, Hagiwara G, Colas D, Ruppert E, Ruby NF et al (2009) Melanopsin as a sleep modulator: circadian gating of the direct effects of light on sleep and altered sleep homeostasis in Opn4-/- mice. PLoS Biol 7:e1000125

    PubMed Central  PubMed  Google Scholar 

  23. Mrosovsky N, Hattar S (2003) Impaired masking responses to light in melanopsin-knockout mice. Chronobiol Int 20:989–999

    CAS  PubMed  Google Scholar 

  24. Legates TA, Altimus CM, Wang H, Lee H, Yang S, Zhao H et al (2012) Aberrant light directly impairs mood and learning through melanonopsin-expression neurons. Nature 491:594–598

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Güler AD, Altimus CM, Ecker JL, Hattar S (2007) Multiple photoreceptors contribute to nonimage-forming visual functions predominantly through melanopsin-containing retinal ganglion cells. Cold Spring Harb Symp Quant Biol 72:509–515

    PubMed  Google Scholar 

  26. Peirson SN, Foster RG (2006) Melanopsin: another way of signaling light. Neuron 2006:331–339

    Google Scholar 

  27. Lucas RJ (2012) Mammalian inner retinal photoreception. Curr Biol 23:R125–R133

    Google Scholar 

  28. Bellingham J, Chaurasia SS, Melyan Z, Liu C, Cameron MA, Tarttelin EE et al (2006) Evolution of melanopsin photoreceptors: discovery and characterization of a new melanopsin in nonmammalian vertebrates. PLoS Biol 4:e254

    PubMed Central  PubMed  Google Scholar 

  29. Davies WIL, Zheng L, Hughes S, Tamai TK, Turton M, Halford S et al (2011) Functional diversity of melanopsins and their global expression in the teleost retina. Cell Mol Life Sci 68:4115–4132

    CAS  PubMed  Google Scholar 

  30. Matos-Cruz V, Blasic JR, Nickle B, Robinson PR, Hattar S, Halpern ME (2011) Unexpected diversity and photoperiod dependence of the zebrafish melanopsin system. PLoS ONE 6:e25111

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Fernandes AM, Fero K, Arrenberg AB, Bergeron SA, Driever W, Burgess HA (2012) Deep brain photoreceptors control light-seeking behavior in zebrafish larvae. Curr Biol 22:2042–2047

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Pires SS, Hughes S, Turton M, Melyan Z, Peirson SN, Zheng L et al (2009) Differential expression of two distinct functional isoforms of melanopsin (Opn4) in the mammalian retina. J Neurosci 29:12332–12342

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Hughes S, Welsh L, Katti C, González-Menéndez I, Turton M, Halford S et al (2012) Differential expression of melanopsin isoforms Opn4 L and Opn4S during postnatal development of the mouse retina. PLoS ONE 7:e34531

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Sakamoto K, Liu C, Tosini G (2004) Classical photoreceptors regulate melanopsin mRNA levels in the rat retina. J Neurosci 24:9693–9697

    CAS  PubMed  Google Scholar 

  35. Mathes A, Engel L, Holthues H, Wolloscheck T, Spessert R (2007) Daily profile in melanopsin transcripts depends on seasonal lighting conditions in the rat retina. J Neuroendocr 19:952–957

    CAS  Google Scholar 

  36. Weng S, Wong KY, Berson DM (2009) Circadian modulation of melanopsin-driven light response in rat ganglion-cell photoreceptors. J Biol Rhythm 24:391–402

    CAS  Google Scholar 

  37. Gerstner JR, Yin JCP (2010) Circadian rhythms and memory formation. Nat Rev Neurosci 11:577–588

    CAS  PubMed  Google Scholar 

  38. Tarttelin EE, Bellingham J, Bibb LC, Foster RG, Hankins MW, Gregory-Evans K et al (2003) Expression of opsin genes early in ocular development of humans and mice. Exp Eye Res 76:393–396

    CAS  PubMed  Google Scholar 

  39. McNeill DS, Sheely CJ, Ecker JL, Badea TC, Morhardt D, Guido W et al (2011) Development of melanopsin-based irradiance detecting circuitry. Neural Dev 6:8

    PubMed Central  PubMed  Google Scholar 

  40. Livesey FJ, Cepko CL (2001) Vertebrate neural cell-fate determination: lessons from the retina. Nat Rev Neurosci 2:109–118

    CAS  PubMed  Google Scholar 

  41. Lamb TD, Collin SP, Pugh Jr EN (2007) Evolution of the vertebrate eye: opsins, photoreceptors, retina and eye cup. Nat Rev Neurosci 8:960–976

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Hattar S, Kumar M, Park A, Tong P, Tung J, Yau K et al (2006) Central projections of melanopsin- expressing retinal ganglion cells in the mouse. J Comp Neurol 349:326–349

    Google Scholar 

  43. Sekharan S, Wei JN, Batista VS (2012) The active site of melanopsin: the biological clock photoreceptor. J Am Chem Soc 134:19536–19539

    CAS  PubMed  Google Scholar 

  44. Newman LA, Walker MT, Brown RL, Cronin TW, Robinson PR (2003) Melanopsin forms a functional short-wavelength photopigment. Biochemistry 42:12734–12738

    CAS  PubMed  Google Scholar 

  45. Davies WL, Foster RG, Hankins MW (2012) Focus on molecules: melanopsin. Exp Eye Res 97:161–162

    CAS  PubMed  Google Scholar 

  46. Fu Y, Zhong H, Wang MH, Luo D, Liao H, Maeda H et al (2005) Intrinsically photosensitive retinal ganglion cells detect light with a vitamin A-based photopigment, melanopsin. Proc Natl Acad Sci U S A 102:10339–10344

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Walker MT, Brown RL, Cronin TW, Robinson PR (2008) Photochemistry of retinal chromophore in mouse melanopsin. Proc Natl Acad Sci U S A 105:8861–8865

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Nathans J (1999) The evolution and physiology of human color vision: insights from molecular genetic studies of visual pigments. Neuron 24:299–312

    CAS  PubMed  Google Scholar 

  49. Qiu X, Kumbalasiri T, Carlson SM, Wong KY, Krishna V, Provencio I et al (2005) Induction of photosensitivity by heterologous expression of melanopsin. Nature 433:745–749

    CAS  PubMed  Google Scholar 

  50. Bailes HJ, Lucas RJ (2013) Human melanopsin forms a pigment maximally sensitive to blue light (Lmax = 479 nm) supporting activatino of Gq/11 and Gi/o signalling cascades. Proc Biol Sci 280:20122987

    PubMed Central  PubMed  Google Scholar 

  51. Koyanagi M, Kubokawa K, Tsukamoto H, Shichida Y, Terakita A (2005) Cephalochordate melanopsin: evolutionary linkage between invertebrate visual cells and vertebrate photosensitive retinal ganglion cells. Curr Biol 15:1065–1069

    CAS  PubMed  Google Scholar 

  52. Sexton TJ, Golczak M, Palczewski K, Van Gelder RN (2012) Melanopsin is highly resistant to light and chemical bleaching in vivo. J Biol Chem 287:20888–20897

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Melyan Z, Tarttelin EE, Bellingham J, Lucas RJ, Hankins MW (2005) Addition of human melanopsin renders mammalian cells photoresponsive. Nature 94:741–745

    Google Scholar 

  54. Mure LS, Rieux C, Hattar S, Cooper HM (2007) Melanopsin-dependent nonvisual responses: evidence for photopigment bistability in vivo. J Biol Rhythm 22:411–424

    Google Scholar 

  55. Mawad K, Van Gelder RN (2008) Absence of long-wavelength photic potentiation of murine intrinsically photosensitive retinal ganglion cell firing in vitro. J Biol Rhythm 23:387–391

    Google Scholar 

  56. Wang J, Estevez ME, Cornwall MC, Kefalov VJ (2009) Intra-retinal visual cycle required for rapid and complete cone dark adaptation. Nat Neurosci 12:295–302

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Wang J, Kefalov VJ (2009) An alternative pathway mediates the mouse and human cone visual cycle. Curr Biol 19:1665–1669

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Batten ML, Imanishi Y, Maeda T, Tu DC, Moise AR, Bronson D et al (2004) Lecithin-retinol acyltransferase is essential for accumulation of all-trans-retinyl esters in the eye and in the liver. J Biol Chem 279:10422–10432

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Tu DC, Owens LA, Anderson L, Golczak M, Doyle SE, McCall MA et al (2006) Inner retinal photoreception independent of the visual retinoid cycle. Proc Natl Acad Sci U S A 103:10426–10431

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Viney TJ, Balint K, Hillier D, Siegert S, Boldogkoi Z, Enquist LW et al (2007) Local retinal circuits of melanopsin-containing ganglion cells identified by transsynaptic viral tracing. Curr Biol 17:981–988

    CAS  PubMed  Google Scholar 

  61. Fan J, Rohrer B, Moiseyev G, Ma J-X, Crouch RK (2003) Isorhodopsin rather than rhodopsin mediates rod function in RPE65 knock-out mice. Proc Natl Acad Sci U S A 100:13662–13667

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Do MTH, Kang SH, Xue T, Zhong H, Liao H-W, Bergles DE et al (2009) Photon capture and signalling by melanopsin retinal ganglion cells. Nature 457:281–287

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Wong KY (2012) A retinal ganglion cell that can signal irradiance continuously for 10 hours. J Neurosci 32:11478–11485

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Dacey DM, Liao H, Peterson BB, Robinson FR, Smith VC, Pokorny J et al (2005) Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN. Nature 433:749–754

    CAS  PubMed  Google Scholar 

  65. Wong KY, Dunn FA, Berson DM (2005) Photoreceptor adaptation in intrinsically photosensitive retinal ganglion cells. Neuron 48:1001–1010

    CAS  PubMed  Google Scholar 

  66. Do MTH, Yau K (2013) Adaptation to steady light by intrinsically photosensitive retinal ganglion cells. Proc Natl Acad Sci U S A 110:7470–7475

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Scott K, Becker A, Sun Y, Hardy R, Zuker CS (1995) Gqα protein function in vivo: genetic dissection of its role in photoreceptor cell physiology. Neuron 15:919–927

    CAS  PubMed  Google Scholar 

  68. Bloomquist BT, Shortridge RD, Schneuwly S, Perdew M, Montell C, Steller H et al (1988) Isolation of a putative phospholipase C gene of Drosophila, norpA, and its role in phototransduction. Cell 54:723–733

    CAS  PubMed  Google Scholar 

  69. Huang J, Liu C-H, Hughes SA, Postma M, Schwiening CJ, Hardie RC (2010) Activation of TRP channels by protons and phosphoinositide depletion in Drosophila photoreceptors. Curr Biol 20:189–197

    CAS  PubMed  Google Scholar 

  70. Hardie RC, Franze K (2012) Photomechanical responses in Drosophila photoreceptors. Science 338:260–263

    CAS  PubMed  Google Scholar 

  71. Tu DC, Zhang D, Demas J, Slutsky EB, Provencio I, Holy TE et al (2005) Physiologic diversity and development of intrinsically photosensitive retinal ganglion cells. Neuron 48:987–999

    CAS  PubMed  Google Scholar 

  72. Schmidt TM, Kofuji P (2010) Differential cone pathway influence on intrinsically photosensitive retinal ganglion cell subtypes. J Neurosci 30:16262–16271

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Hattar S, Lucas RJ, Mrosovsky N, Thompson S, Douglas RH, Hankins MW et al (2003) Melanopsin and rod-cone photoreceptive systems account for all major accessory visual functions in mice. Nature 424:76–81

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Panda S, Provencio I, Tu DC, Pires SS, Rollag MD, Castrucci AM et al (2003) Melanopsin is required for non-image-forming photic responses in blind mice. Science 301:525–527

    CAS  PubMed  Google Scholar 

  75. Panda S, Nayak SK, Campo B, Walker JR, Hogenesch JB, Jegla T (2005) Illumination of the melanopsin signaling pathway. Science 307:600–604

    CAS  PubMed  Google Scholar 

  76. Hartwick ATE, Bramley JR, Yu J, Stevens KT, Allen CN, Baldridge WH et al (2007) Light-evoked calcium responses of isolated melanopsin-expressing retinal ganglion cells. J Neurosci 27:13468–13480

    CAS  PubMed  Google Scholar 

  77. Graham DM, Wong KY, Shapiro P, Frederick C, Pattabiraman K, Berson DM (2008) Melanopsin ganglion cells use a membrane-associated rhabdomeric phototransduction cascade. J Neurophysiol 99:2522–2532

    CAS  PubMed  Google Scholar 

  78. Siegert S, Cabuy E, Scherf BG, Kohler H, Panda S, Le Y-Z et al (2012) Transcriptional code and disease map for adult retinal cell types. Nat Neurosci 15(3):487–495

    CAS  PubMed  Google Scholar 

  79. Xue T, Do MTH, Riccio A, Jiang Z, Hsieh J, Wang HC et al (2011) Melanopsin signalling in mammalian iris and retina. Nature 479:67–73

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Montell C (2012) Drosophila visual transduction. Trends Neurosci 35:356–363

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Warren EJ, Allen CN, Brown RL, Robinson DW (2006) The light-activated signaling pathway in SCN-projecting rat retinal ganglion cells. Eur J Neurosci 23:2477–2487

    PubMed Central  PubMed  Google Scholar 

  82. Sekaran S, Lall GS, Ralphs KL, Wolstenholme AJ, Lucas RJ, Foster RG et al (2007) 2-aminoethoxydiphenylborane is an acute inhibitor of directly photosensitive retinal ganglion cell activity in vitro and in vivo. J Neurosci 27:3981–3986

    CAS  PubMed  Google Scholar 

  83. Perez-Leighton CE, Schmidt TM, Abramowitz J, Birnbaumer L, Kofuji P (2011) Intrinsic phototransduction persists in melanopsin-expressing ganglion cells lacking diacylglycerol-sensitive TRPC subunits. Eur J Neurosci 7:1–12

    Google Scholar 

  84. Sekaran S, Foster RG, Lucas RJ, Hankins MW (2003) Calcium imaging reveals a network of intrinsically light-sensitive inner-retinal neurons. Curr Biol 13:1290–1298

    CAS  PubMed  Google Scholar 

  85. Peirson SN, Oster H, Jones SL, Leitges M, Hankins MW, Foster RG (2007) Microarray analysis and functional genomics identify novel components of melanopsin signaling. Curr Biol 17:1363–1372

    CAS  PubMed  Google Scholar 

  86. Estevez ME, Fogerson PM, Ilardi MC, Borghuis BG, Chan E, Weng S et al (2012) Form and function of the M4 cell, an intrinsically photosensitive retinal ganglion cell type contributing to geniculocortical vision. J Neurosci 32:13608–13620

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Lin B, Koizumi A, Tanaka N, Panda S, Masland RH (2008) Restoration of visual function in retinal degeneration mice by ectopic expression of melanopsin. Proc Natl Acad Sci U S A 105:16009–16014

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Wilden U, Hall SW, Kühn H (1986) Phosphodiesterase activation by photoexcited rhodopsin is quenched when rhodopsin is phosphorylated and binds the intrinsic 48-kDa protein of rod outer segments. Proc Natl Acad Sci U S A 83:1174–1178

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Nikonov SS, Brown BM, Davis JA, Zuniga FI, Bragin A, Pugh EN et al (2008) Mouse cones require an arrestin for normal inactivation of phototransduction. Neuron 59:462–474

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Blasic JR, Brown RL, Robinson PR (2012) Light-dependent phosphorylation of the carboxy tail of mouse melanopsin. Cell Mol Life Sci 69:1551–1562

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Schmidt TM, Kofuji P (2010) Structure and function of bistratified intrinsically, photosensitive retinal ganglion cells in the mouse. J Comp Neurol 1504:1492–1504

    Google Scholar 

  92. Wong KY, Dunn FA, Graham DM, Berson DM (2007) Synaptic influences on rat ganglion-cell photoreceptors. J Physiol 582:279–296

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Weng S, Estevez ME, Berson DM (2013) Mouse ganglion-cell photoreceptors are driven by the most sensitive rod pathway and by both types of cones. Barnes S (ed) PLoS ONE 8:e66480

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Dumitrescu ON, Pucci FG, Wong KY, Berson DM (2009) Ectopic retinal ON bipolar cell synapses in the OFF inner plexiform layer: contacts with dopaminergic amacrine cells and melanopsin ganglion cells. J Comp Neurol 517:226–244

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Hoshi H, Liu W-L, Massey SC, Mills SL (2009) ON inputs to the OFF layer: bipolar cells that break the stratification rules of the retina. J Neurosci 29:8875–8883

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Grünert U, Jusuf PR, Lee SCS, Nguyen DT (2011) Bipolar input to melanopsin containing ganglion cells in primate retina. Vis Neurosci 28:39–50

    PubMed  Google Scholar 

  97. Belenky MA, Smeraski CA, Provencio I, Sollars PJ, Pickard GE (2003) Melanopsin retinal ganglion cells receive bipolar and amacrine cell synapses. J Comp Neurol 460:380–393

    PubMed  Google Scholar 

  98. Østergaard J, Hannibal J, Fahrenkrug J (2007) Synaptic contact between melanopsin-containing retinal ganglion cells and rod bipolar cells. Invest Ophthalmol Vis Sci 48:3812–3820

    PubMed  Google Scholar 

  99. Kolb H, Famiglietti Jr EV (1974) Rod and cone pathways in the inner plexiform layer of cat retina. Science 186:47–49

    CAS  PubMed  Google Scholar 

  100. Ribelayga C, Cao Y, Mangel SC (2008) The circadian clock in the retina controls rod-cone coupling. Neuron 59:790–801

    CAS  PubMed  Google Scholar 

  101. Matsuoka RL, Nguyen-Ba-Charvet KT, Parray A, Badea TC, Chédotal A, Kolodkin AL (2011) Transmembrane semaphorin signalling controls laminar stratification in the mammalian retina. Nature 470:259–263

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Vugler AA, Redgrave P, Semo M, Lawrence J, Greenwood J, Coffey PJ (2007) Dopamine neurones form a discrete plexus with melanopsin cells in normal and degenerating retina. Exp Neurol 205:26–35

    CAS  PubMed  Google Scholar 

  103. Sakamoto K, Liu C, Kasamatsu M, Pozdeyev NV, Iuvone PM, Tosini G (2005) Dopamine regulates melanopsin mRNA expression in intrinsically photosensitive retinal ganglion cells. Eur J Neurosci 22:3129–3136

    PubMed  Google Scholar 

  104. Van Hook MJ, Wong KY, Berson DM (2012) Dopaminergic modulation of ganglion-cell photoreceptors in rat. Eur J Neurosci 35:507–518

    PubMed Central  PubMed  Google Scholar 

  105. Blasic JR, Brown RL, Robinson PR (2012) Phosphorylation of mouse melanopsin by protein kinase A. PLoS ONE 7:e45387

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Hirasawa H, Betensky RA, Raviola E (2012) Corelease of dopamine and GABA by a retinal dopaminergic neuron. J Neurosci 32:13281–13291

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Zhang D-Q, Wong KY, Sollars PJ, Berson DM, Pickard GE, McMahon DG (2008) Intraretinal signaling by ganglion cell photoreceptors to dopaminergic amacrine neurons. Proc Natl Acad Sci U S A 105:14181–14186

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Zhang D, Belenky MA, Sollars PJ, Pickard GE, Mcmahon DG (2012) Melanopsin mediates retrograde visual signaling in the retina. PLoS ONE 7:e42647

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Barnard AR, Hattar S, Hankins MW, Lucas RJ (2006) Melanopsin regulates visual processing in the mouse retina. Curr Biol 16:389–395

    CAS  PubMed  Google Scholar 

  110. Joo HR, Peterson BB, Dacey DM, Hattar S, Chen S-K (2013) Recurrent axon collaterals of intrinsically photosensitive retinal ganglion cells. Vis Neurosci 4:175–182

    Google Scholar 

  111. Johnson J, Wu V, Donovan M, Majumdar S, Rentería RC, Porco T et al (2010) Melanopsin-dependent light avoidance in neonatal mice. Proc Natl Acad Sci U S A 107:17374–17378

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Tian N, Copenhagen DR (2003) Visual stimulation is required for refinement of ON and OFF pathways in postnatal retina. Neuron 39:85–96

    CAS  PubMed  Google Scholar 

  113. Renna JM, Weng S, Berson DM (2011) Light acts through melanopsin to alter retinal waves and segregation of retinogeniculate afferents. Nat Neurosci 14:827–829

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Rao S, Chun C, Fan J, Kofron JM, Yang MB, Hegde RS et al (2013) A direct and melanopsin-dependent fetal light response regulates mouse eye development. Nature 494:243–246

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Kim EB, Fang X, Fushan AA, Huang Z, Lobanov AV, Han L et al (2011) Genome sequencing reveals insights into physiology and longevity of the naked mole rat. Nature 479:223–237

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Davies WL, Hankins MW, Foster RG (2010) Vertebrate ancient opsin and melanopsin: divergent irradiance detectors. Photochem Photobiol Sci 9:1444–1457

    CAS  PubMed  Google Scholar 

  117. Murakami M, Kouyama T (2008) Crystal structure of squid rhodopsin. Nature 453:363–367

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samer Hattar PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rupp, A., Hattar, S. (2014). The Functional Properties of the G Protein-Coupled Receptor Melanopsin in Intrinsically Photosensitive Retinal Ganglion Cells. In: Martemyanov, K., Sampath, A. (eds) G Protein Signaling Mechanisms in the Retina. Springer Series in Vision Research, vol 3. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1218-6_10

Download citation

Publish with us

Policies and ethics