Skip to main content

Discrete Optimization via Simulation

  • Chapter
  • First Online:
Handbook of Simulation Optimization

Part of the book series: International Series in Operations Research & Management Science ((ISOR,volume 216))

Abstract

This chapter describes tools and techniques that are useful for optimization via simulation—maximizing or minimizing the expected value of a performance measure of a stochastic simulation—when the decision variables are discrete. Ranking and selection, globally and locally convergent random search and ordinal optimization are covered, along with a collection of “enhancements” that may be applied to many different discrete optimization via simulation algorithms. We also provide strategies for using commercial solvers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    One can also define convergence of \(\hat{g}(\mathbf{x}_{m}^{{\ast}})\), the estimated optimal value, but we do not do so here. See for instance Andradóttir [1].

  2. 2.

    Clearly any minimization problem on g(x) can be formulated as a maximization problem. If an estimator \(\hat{g}(\mathbf{x})\) of g(x) could be negative, then MRAS/SMRAS maximizes s(g(x)) instead, where s is a non-negative, strictly increasing function.

References

  1. S. Andradóttir. Accelerating the convergence of random search methods for discrete stochastic optimization. ACM Transactions on Modeling and Computer Simulation, 9:349–380, 1999.

    Article  Google Scholar 

  2. S. Andradóttir. Simulation optimization: integrating research and practice. INFORMS Journal on Computing, 14:216–219, 2002.

    Article  Google Scholar 

  3. J. Banks, J. S. Carson, B. L. Nelson, and D. M. Nicol. Discrete-Event System Simulation. Prentice Hall, Inc., Upper Saddle River, NJ, 5th edition, 2010.

    Google Scholar 

  4. R. E. Bechhofer. A single-sample multiple decision procedure for ranking means of normal populations with known variances. Annals of Mathematical Statistics, 25:16–39, 1954.

    Article  Google Scholar 

  5. R. E. Bechhofer, T. J. Santner, and D. Goldsman. Design and Analysis of Experiments for Statistical Selection, Screening and Multiple Comparisons. John Wiley, New York, 1995.

    Google Scholar 

  6. J. Boesel, B. L. Nelson, and S.-H. Kim. Using ranking and selection to ‘clean up’ after simulation optimization. Operations Research, 51:814–825, 2003.

    Article  Google Scholar 

  7. J. Branke, S. E. Chick, and C. Schmidt. Selecting a selection procedure. Management Science, 53:1916–1932, 2007.

    Article  Google Scholar 

  8. J. A. Buzacott and J. G. Shantikumar. Stochastic Models of Manufacturing Systems. Prentice-Hall, Englewood Cliffs, NJ, 1993.

    Google Scholar 

  9. C.-H. Chen, J. Lin, E. Yücesan, and S. E. Chick. Simulation budget allocation for further enhancing the efficiency of ordinal optimization. Discrete Event Dynamic Systems: Theory and Applications, 10:251–270, 2000.

    Article  Google Scholar 

  10. H. Chen and B. W. Schmeiser. Stochastic rooting-finding via retrospective approximation. IIE Transactions, 33: 259–275, 2001.

    Google Scholar 

  11. S. E. Chick. Subjective probability and Bayesian methodology. In S. G. Henderson and B. L. Nelson, editors, Handbooks in Operations Research and Management Science: Simulation. Elsevier, New York, 2006.

    Google Scholar 

  12. S. E. Chick and K. Inoue. New two-stage and sequential procedures for selecting the best simulated system. Operations Research, 49:732–743, 2001.

    Article  Google Scholar 

  13. L. Dai. Convergence properties of ordinal comparison in simulation of discrete event dynamic systems. Journal of Optimization Theory and Applications, 91:363–388, 1996.

    Article  Google Scholar 

  14. L. Dai and C.-H. Chen. Rates of convergence of ordinal comparison for dependent discrete event dynamic systems. Journal of Optimization Theory and Applications, 94:29–54, 1997.

    Article  Google Scholar 

  15. M. H. DeGroot. Optimal Statistical Decisions. Wiley, New York, 1970.

    Google Scholar 

  16. P. I. Frazier. Decision-theoretic foundations of simulation optimization. Wiley Encyclopedia of Operations Research and Management Sciences. Wiley, New York, 2010.

    Google Scholar 

  17. P. I. Frazier and W. B. Powell. The knowledge-gradient stopping rule for ranking and selection. In S. J. Mason, R. R. Hill, L. Möench, O. Rose, T. Jefferson, and J. W. Fowler, editors, Proceedings of the 2008 Winter Simulation Conference, pages 305–312. IEEE, Piscataway, NJ, 2008.

    Chapter  Google Scholar 

  18. P. I. Frazier, W. B. Powell, and S. Daynik. A knowledge-gradient policy for sequential information collection. SIAM Journal on Control and Optimization, 47:2410–2439, 2008.

    Article  Google Scholar 

  19. P. I. Frazier, W. B. Powell, and S. Daynik. The knowledge gradient policy for correlated normal beliefs. INFORMS Journal on Computing, 21:599–613, 2009.

    Article  Google Scholar 

  20. M. C. Fu and X. Jin. On the convergence rate of ordinal comparison of random variables. IEEE Transactions on Automatic Control, 46: 1950–1954, 2001.

    Article  Google Scholar 

  21. D. Goldsman and B. L. Nelson. Comparing systems via simulation. In J. Banks, editor, Handbook of Simulation. John Wiley, New York, 1998.

    Google Scholar 

  22. S. S. Gupta. On a Decision Rule for a Problem in Ranking Means. PhD thesis, University of North Carolina, Chapel Hill, NC, 1956.

    Google Scholar 

  23. S. S. Gupta. On some multiple decision (ranking and selection) rules. Technometrics, 7:225–245, 1965.

    Article  Google Scholar 

  24. W. J. Gutjahr, A. Hellmayr, and G. Ch. Pflug. Optimal stochastic single-machine-tardiness scheduling by stochastic branch-and-bound. European Journal of Operational Research, 117:396–413, 1999.

    Article  Google Scholar 

  25. Y.-C. Ho, R. Sreenivas and P. Vakili. Ordinal optimization of discrete event dynamic systems. Journal of Discrete Event Dynamic Systems, 2:61–88, 1992.

    Article  Google Scholar 

  26. Y.-C. Ho, Q.-C. Zhao and Q.-S. Jia. Ordinal Optimization: Soft Optimization for Hard Problems. Springer, New York, 2007.

    Book  Google Scholar 

  27. L. J. Hong and B. L. Nelson. The tradeoff between sampling and switching: New sequential procedures for indifference-zone selection. IIE Transactions, 37:623–634, 2005.

    Article  Google Scholar 

  28. L. J. Hong and B. L. Nelson. Discrete optimization via simulation using COMPASS. Operations Research, 54:115–129, 2006.

    Article  Google Scholar 

  29. L. J. Hong and B. L. Nelson. A framework for locally convergent random search algorithms for discrete optimization via simulation. ACM Transactions on Modeling and Computer Simulation, 17:19/1–19/22, 2007.

    Article  Google Scholar 

  30. L. J. Hong and B. L. Nelson. Selecting the best system when systems are revealed sequentially. IIE Transactions, 39:723–734, 2007.

    Article  Google Scholar 

  31. L. J. Hong and B. L. Nelson. A brief introduction to optimization via simulation. In M. D. Rossetti, R. R. Hill, B. Johansson, A. Dunkin and R. G. Ingalls, editors, Proceedings of the 2009 Winter Simulation Conference, pages 75–85. IEEE, Piscataway, NJ, 2009.

    Chapter  Google Scholar 

  32. L. J. Hong, B. L. Nelson and J. Xu. Speeding up COMPASS for high-dimensional discrete optimization via simulation. Operations Research Letters, 38:550–555, 2010.

    Article  Google Scholar 

  33. J. Jin. Retrospective Optimization of Stochastic Systems. PhD thesis, Purdue University, West Lafayette, IN, 1998.

    Google Scholar 

  34. J. Hu, M. C. Fu, and S. I. Marcus. Stochastic optimization using model reference adaptive search. In M. E. Kuhl, N. M. Steiger, F. B. Armstrong, and J. A. Joines, editors, Proceedings of the 2005 Winter Simulation Conference, pages 811–818. IEEE, Piscataway, NJ, 2005.

    Google Scholar 

  35. J. Hu, M. C. Fu, and S. I. Marcus. A model reference adaptive search method for global optimization. Operations Research, 55:549–568, 2007.

    Article  Google Scholar 

  36. J. Hu, M. C. Fu, and S. I. Marcus. A model reference adapative search method for stochastic global optimization. Communications in Information and Systems, 8:245–276, 2008.

    Article  Google Scholar 

  37. J. Kiefer and J. Wolfowitz. Stochastic estimation of the maximum of a regression function.Annals of Mathematical Statistics, 23:462–466, 1952.

    Google Scholar 

  38. S.-H. Kim. Comparison with a standard via fully sequential procedure. ACM Transactions on Modeling and Computer Simulation, 15:1–20, 2005.

    Article  Google Scholar 

  39. S.-H. Kim and B. L. Nelson. A fully sequential procedure for indifference-zone selection in simulation. ACM Transactions on Modeling and Computer Simulation, 11:251–273, 2001.

    Article  Google Scholar 

  40. S.-H. Kim and B. L. Nelson. Selecting the best system. In S. G. Henderson and B. L. Nelson, editors, Handbooks in Operations Research and Management Science: Simulation. Elsevier, New York, 2006.

    Google Scholar 

  41. S.-H. Kim and B. L. Nelson. On the asymptotic validity of fully sequential selection procedures for steady-state simulation. Operations Research, 54:475–488, 2006.

    Article  Google Scholar 

  42. L.-H. Lee, T.-W. E. Lau, and Y.-C. Ho. Explanation of goal softening in ordinal optimization. IEEE Transactions on Automatic Control, 44:94–99, 1999.

    Article  Google Scholar 

  43. E. Lim. Stochastic approximation over multidimensional discrete sets with applications to inventory systems and admission control of queueing networks. ACM Transactions on Modeling and Computer Simulation, 22:19:1–19:23, 2012.

    Google Scholar 

  44. J. Luo, L. J. Hong, B. L. Nelson, and Y. Wu. Fully sequential procedures for large-scale ranking-and-selection problems in parallel computing environments. Working paper, Department of Industrial Engineering and Logistics Management, Hong Kong University of Science and Technology, 2013.

    Google Scholar 

  45. S. Mahajan and G. Van Ryzin. Stocking retail assortments under dynamic consumer substitution. Operations Research, 49:334–351, 2001.

    Article  Google Scholar 

  46. H. Mühlenbein and G. Paaß. From recombination of genes to the estimation of distributions I. Binary parameters. In H.-M. Voigt, W. Ebeling, I. Rechenberg, and H.-P. Schwefel, editors, Parallel Problem Solving from Nature – PPSN IV, pages 178–197. Springer Verlag, Berlin, Germany, 1996.

    Google Scholar 

  47. K. Murota. Note on multimodularity and L-convexity. Mathematics of Operations Research, 30:658–661, 2005.

    Article  Google Scholar 

  48. B. L. Nelson. Optimization via simulation over discrete decision variables. In J. J. Hasenbein, editor, TutORials in Operations Research, 7:193–207. INFORMS, Hanover, MD, 2010.

    Google Scholar 

  49. B. L. Nelson, J. Swann, D. Goldsman, and W.-M. Song. Simple procedures for selecting the best simulated system when the number of alternatives is large. Operations Research, 49:950–963, 2001.

    Article  Google Scholar 

  50. J. Nocedal and S. Wright. Numerical Optimization. Springer, New York, 2nd edition, 2006.

    Google Scholar 

  51. V. I. Norkin, Y. M. Ermoliev, and A. Ruszczyński. On optimal allocation of indivisibles under uncertainty. Operations Research, 46:381–395, 1998.

    Article  Google Scholar 

  52. V. I. Norkin, G. Ch. Pflug and A. Ruszczyński. A branch and bound method for stochastic global optimization. Mathematical Programming, 83:425–450, 1998.

    Google Scholar 

  53. T. Osogami. Finding probably best systems quickly via simulations. ACM Transactions onModeling and Computer Simulation, 19:12:1–12:18, 2009.

    Google Scholar 

  54. E. Paulson. A sequential procedure for selecting the population with the largest mean from k normal populations. Annals of Mathematical Statistics, 35:174–180, 1964.

    Article  Google Scholar 

  55. R. Pasupathy. Retrospective-Approximation Algorithms for the Multidimensional Stochastic Rooting-Finding Problem. PhD thesis, Purdue University, West Lafayette, IN, 2005.

    Google Scholar 

  56. R. Pasupathy and B. W. Schmeiser. Retrospective-approximation algorithms for the multidimensional stochastic rooting-finding problem. ACM Transactions on Modeling and Computer Simulation, 19:2:1–2:36, 2009.

    Google Scholar 

  57. R. Pasupathy. On choosing parameters in retrospective-approximation algorithms for stochastic rooting-finding and simulation optimization. Operations Research, 58:889–901, 2010.

    Article  Google Scholar 

  58. J. Pichitlamken and B. L. Nelson. A combined procedure for optimization via simulation. ACM Transactions on Modeling and Computer Simulation, 13:155–179, 2003.

    Article  Google Scholar 

  59. J. Pichitlamken, B. L. Nelson, and L. J. Hong. A sequential procedure for neighborhood selection-of-the-best in optimization via simulation. European Journal of Operational Research, 173:283–298, 2006.

    Article  Google Scholar 

  60. A. A. Prudius and S. Andradóttir. Balanced explorative and exploitative search with estimation for simulation optimization. INFORMS Journal on Computing, 21:193–208, 2009.

    Article  Google Scholar 

  61. H. Robbins and S. Monro. A stochastic approximation method. Annals of Mathematical Statistics, 22:400–407, 1951.

    Article  Google Scholar 

  62. R. Y. Rubinstein and D. P. Kroese. The Cross-Entropy Method: A Unified Approach to Combinatorial Optimization, Monte Carlo Simulation, and Machine Learning. Springer, New York, 2004.

    Book  Google Scholar 

  63. L. Shi and S. Ólafsson. Nested partitions method for stochastic optimization. Methodology and Computing in Applied Probability, 2:271–291, 2000.

    Article  Google Scholar 

  64. L. Shi and S. Ólafsson. Nested Partitions Method, Theory and Applications. Springer, New York, 2009.

    Google Scholar 

  65. L. Sun, L. J. Hong, and Z. Hu. Optimization via simulation using Gaussian process-based search. In S. Jain, R. R. Creasey, J. Himmelspach, K. P. White, and M. Fu, editors, Proceedings of the 2011 Winter Simulation Conference, pages 4139–4150. IEEE, Piscataway, NJ, 2011.

    Google Scholar 

  66. H. Wang. Retrospective Optimization of Discrete Stochastic Systems Using Simplicial Linear Interpolation. PhD thesis, Purdue University, West Lafayette, IN, 2009.

    Google Scholar 

  67. H. Wang, R. Pasupathy, and B. W. Schmeiser. Integer-ordered simulation optimization using R-SPLINE: Retrospective search with piecewise-linear interpolation and neighborhood enumeration. ACM Transactions on Modeling and Computer Simulation, 23:17:1–17:24, 2013.

    Google Scholar 

  68. X. Xie. Dynamics and convergence rate of ordinal comparison of stochastic discrete-event systems. IEEE Transactions on Automatic Control, 42: 586–590, 1998.

    Google Scholar 

  69. J. Xu, B. L. Nelson, and L. J. Hong. Industrial Strength COMPASS: A comprehensive algorithm and software for optimization via simulation. ACM Transactions on Modeling and Computer Simulation, 20:1–29, 2010.

    Article  Google Scholar 

  70. J. Xu, B. L. Nelson, and L. J. Hong. An adaptive hyperbox algorithm for high-dimensional discrete optimization via simulation problems. INFORMS Journal on Computing, 25:133–146, 2013.

    Article  Google Scholar 

  71. W. L. Xu and B. L. Nelson. Empirical stochastic branch-and-bound for optimization via simulation. IIE Transactions, 45:685–698, 2013.

    Article  Google Scholar 

  72. R. R. Wilcox. A table for Rinott’s selection procedure. Journal of Quality Technology, 16:97–100, 1984.

    Google Scholar 

  73. D. Yan and H. Mukai. Stochastic discrete optimization. SIAM Journal of Control and Optimization, 30:594–612, 1992.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Science Foundation 1099 under Grant CMMI-1233376, and by the Hong Kong Research Grants Council under Project 613011, 613012 and N_HKUST626/10.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hong, L.J., Nelson, B.L., Xu, J. (2015). Discrete Optimization via Simulation. In: Fu, M. (eds) Handbook of Simulation Optimization. International Series in Operations Research & Management Science, vol 216. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1384-8_2

Download citation

Publish with us

Policies and ethics