Skip to main content

The PI3K-AKT-mTOR Signaling Network in AML

  • Chapter
  • First Online:
Targeted Therapy of Acute Myeloid Leukemia

Part of the book series: Current Cancer Research ((CUCR))

Abstract

Acute myelogenous leukemia (AML) is the most common leukemia in adults. Currently, AML patients are treated mainly with combinations of cytotoxic chemotherapies. There is an urgent need for targeted therapies in AML that improve patient survival while limiting side effects. Small molecules that inhibit crucial signaling components have potential to block proliferation and survival of leukemia cells in a selective manner. A cellular signaling network involving phosphoinositide 3-kinase (PI3K), protein kinase B (AKT), and mechanistic target of rapamycin (mTOR), is highly active in most AML cells and contains several components that are druggable. This chapter will focus on the biology of PI3K/AKT/mTOR signaling in AML cells and the potential of novel inhibitors to disrupt oncogenic pathways in leukemia cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham RT (2009) Regulation of the mTOR signaling pathway: from laboratory bench to bedside and back again. F1000 Biol Rep 1:8. doi:10.3410/B1-8

    PubMed Central  PubMed  Google Scholar 

  • Aggarwal BB (2004) Nuclear factor-kappaB: the enemy within. Cancer Cell 3:203–208. doi:10.1016/j.ccr.2004.09.003S1535610804002442 [pii]

    Google Scholar 

  • Akgul C (2009) Mcl-1 is a potential therapeutic target in multiple types of cancer. Cell Mol Life Sci 8:1326–1336. doi:10.1007/s00018-008-8637-6

    Google Scholar 

  • Altman JK, Sassano A, Kaur S, Glaser H, Kroczynska B, Redig AJ, Russo S, Barr S, Platanias LC (2011a) Dual mTORC2/mTORC1 targeting results in potent suppressive effects on acute myeloid leukemia (AML) progenitors. Clin Cancer Res 13:4378–4388. doi:10.1158/1078-0432.CCR-10-2285

    Google Scholar 

  • Altman JK, Sassano A, Platanias LC (2011b) Targeting mTOR for the treatment of AML. New agents and new directions. Oncotarget 6:510–517

    Google Scholar 

  • Apsel B, Blair JA, Gonzalez B, Nazif TM, Feldman ME, Aizenstein B, Hoffman R, Williams RL, Shokat KM, Knight ZA (2008) Targeted polypharmacology: discovery of dual inhibitors of tyrosine and phosphoinositide kinases. Nat Chem Biol 11:691–9. doi:nchembio.117 [pii]10.1038/nchembio.117

    Google Scholar 

  • Ayala F, Dewar R, Kieran M, Kalluri R (2009) Contribution of bone microenvironment to leukemogenesis and leukemia progression. Leukemia 12:2233–2241. doi:10.1038/leu.2009.175

    Google Scholar 

  • Barnett SF, Defeo-Jones D, Fu S, Hancock PJ, Haskell KM, Jones RE, Kahana JA, Kral AM, Leander K, Lee LL, Malinowski J, McAvoy EM, Nahas DD, Robinson RG, Huber HE (2005) Identification and characterization of pleckstrin-homology-domain-dependent and isoenzyme-specific Akt inhibitors. Biochem J Pt 2:399–408. doi:10.1042/BJ20041140

    Google Scholar 

  • Basu S, Totty NF, Irwin MS, Sudol M, Downward J (2003) Akt phosphorylates the Yes-associated protein, YAP, to induce interaction with 14-3-3 and attenuation of p73-mediated apoptosis. Mol Cell 1:11–23. doi:S1097276502007761 [pii]

    Google Scholar 

  • Beghini A, Bellini M, Magnani I, Colapietro P, Cairoli R, Morra E, Larizza L (2005) STI 571 inhibition effect on KITAsn822Lys-mediated signal transduction cascade. Exp Hematol 6:682–688. doi:S0301-472X(05)00131-1 [pii] 10.1016/j.exphem.2005.03.007

    Google Scholar 

  • Bhagwat SV, Crew AP (2010) Novel inhibitors of mTORC1 and mTORC2. Curr Opin Investig Drugs 6:638–645

    Google Scholar 

  • Bilancio A, Okkenhaug K, Camps M, Emery JL, Ruckle T, Rommel C, Vanhaesebroeck B (2006) Key role of the p110delta isoform of PI3K in B-cell antigen and IL-4 receptor signaling: comparative analysis of genetic and pharmacologic interference with p110delta function in B cells. Blood 2:642–650

    Google Scholar 

  • Billottet C, Grandage VL, Gale RE, Quattropani A, Rommel C, Vanhaesebroeck B, Khwaja A (2006) A selective inhibitor of the p110delta isoform of PI 3-kinase inhibits AML cell proliferation and survival and increases the cytotoxic effects of VP16. Oncogene 50:6648–6659. doi:10.1038/sj.onc.1209670

    Google Scholar 

  • Billottet C, Banerjee L, Vanhaesebroeck B, Khwaja A (2009) Inhibition of class I phosphoinositide 3-kinase activity impairs proliferation and triggers apoptosis in acute promyelocytic leukemia without affecting atra-induced differentiation. Cancer Res 3:1027–1036. doi:0008-5472.CAN-08-2608 [pii] 10.1158/0008-5472.CAN-08-2608

    Google Scholar 

  • Birkenkamp KU, Geugien M, Schepers H, Westra J, Lemmink HH, Vellenga E (2004) Constitutive NF-kappaB DNA-binding activity in AML is frequently mediated by a Ras/PI3-K/PKB-dependent pathway. Leukemia 1:103–112. doi:10.1038/sj.leu.2403145

    Google Scholar 

  • van Blitterswijk WJ, Verheij M (2008) Anticancer alkylphospholipids: mechanisms of action, cellular sensitivity and resistance, and clinical prospects. Curr Pharm Des 21:2061–2074

    Google Scholar 

  • Bortul R, Tazzari PL, Cappellini A, Tabellini G, Billi AM, Bareggi R, Manzoli L, Cocco L, Martelli AM (2003) Constitutively active Akt1 protects HL60 leukemia cells from TRAIL-induced apoptosis through a mechanism involving NF-kappaB activation and cFLIP(L) up-regulation. Leukemia 2:379–389. doi:10.1038/sj.leu.24027932402793 [pii]

    Google Scholar 

  • Bortul R, Tazzari PL, Billi AM, Tabellini G, Mantovani I, Cappellini A, Grafone T, Martinelli G, Conte R, Martelli AM (2005) Deguelin, A PI3K/AKT inhibitor, enhances chemosensitivity of leukaemia cells with an active PI3K/AKT pathway. Br J Haematol 5:677–686. doi:BJH5504 [pii] 10.1111/j.1365-2141.2005.05504.x

    Google Scholar 

  • Bousquet M, Recher C, Queleen C, Demur C, Payrastre B, Brousset P (2005) Assessment of somatic mutations in phosphatidylinositol 3-kinase gene in human lymphoma and acute leukaemia. Br J Haematol 3:411–413. doi:BJH5784 [pii] 10.1111/j.1365-2141.2005.05784.x

    Google Scholar 

  • Brandts CH, Sargin B, Rode M, Biermann C, Lindtner B, Schwable J, Buerger H, Muller-Tidow C, Choudhary C, McMahon M, Berdel WE, Serve H (2005) Constitutive activation of Akt by Flt3 internal tandem duplications is necessary for increased survival, proliferation, and myeloid transformation. Cancer Res 21:9643–9650. doi:10.1158/0008-5472.CAN-05-0422

    Google Scholar 

  • Calnan DR, Brunet A (2008) The FoxO code. Oncogene 16:2276–2288. doi:10.1038/onc.2008.21

    Google Scholar 

  • Cao Y, Arbiser J, D’Amato RJ, D’Amore PA, Ingber DE, Kerbel R, Klagsbrun M, Lim S, Moses MA, Zetter B, Dvorak H, Langer R (2011) Forty-year journey of angiogenesis translational research. Sci Transl Med 114:114rv113. doi:10.1126/scitranslmed.3003149

    Google Scholar 

  • Cappellini A, Tabellini G, Zweyer M, Bortul R, Tazzari PL, Billi AM, Fala F, Cocco L, Martelli AM (2003) The phosphoinositide 3-kinase/Akt pathway regulates cell cycle progression of HL60 human leukemia cells through cytoplasmic relocalization of the cyclin-dependent kinase inhibitor p27(Kip1) and control of cyclin D1 expression. Leukemia 11:2157–2167. doi:10.1038/sj.leu.24031112403111 [pii]

    Google Scholar 

  • Carayol N, Vakana E, Sassano A, Kaur S, Goussetis DJ, Glaser H, Druker BJ, Donato NJ, Altman JK, Barr S, Platanias LC (2010) Critical roles for mTORC2- and rapamycin-insensitive mTORC1-complexes in growth and survival of BCR-ABL-expressing leukemic cells. Proc Natl Acad Sci U S A 28:12469–12474. doi:1005114107 [pii] 10.1073/pnas.1005114107

    Google Scholar 

  • Carroll M (2009) Taking aim at protein translation in AML. Blood 8:1458–1459. doi:10.1182/blood-2009-06-224220

    Google Scholar 

  • Castillo SS, Brognard J, Petukhov PA, Zhang C, Tsurutani J, Granville CA, Li M, Jung M, West KA, Gills JG, Kozikowski AP, Dennis PA (2004) Preferential inhibition of Akt and killing of Akt-dependent cancer cells by rationally designed phosphatidylinositol ether lipid analogues. Cancer Res 8:2782–2792

    Google Scholar 

  • Chan EY (2009) mTORC1 phosphorylates the ULK1-mAtg13-FIP200 autophagy regulatory complex. Sci Signal 2(84):pe51. doi:10.1126/scisignal.284pe51

    PubMed  Google Scholar 

  • Chandarlapaty S, Sawai A, Scaltriti M, Rodrik-Outmezguine V, Grbovic-Huezo O, Serra V, Majumder PK, Baselga J, Rosen N (2011) AKT inhibition relieves feedback suppression of receptor tyrosine kinase expression and activity. Cancer Cell 1:58–71. doi:10.1016/j.ccr.2010.10.031

    Google Scholar 

  • Chapuis N, Tamburini J, Cornillet-Lefebvre P, Gillot L, Bardet V, Willems L, Park S, Green AS, Ifrah N, Dreyfus F, Mayeux P, Lacombe C, Bouscary D (2010a) Autocrine IGF-1/IGF-1R signaling is responsible for constitutive PI3K/Akt activation in acute myeloid leukemia: therapeutic value of neutralizing anti-IGF-1R antibody. Haematologica 3:415–423. doi:10.3324/haematol.2009.010785

    Google Scholar 

  • Chapuis N, Tamburini J, Green AS, Vignon C, Bardet V, Neyret A, Pannetier M, Willems L, Park S, Macone A, Maira SM, Ifrah N, Dreyfus F, Herault O, Lacombe C, Mayeux P, Bouscary D (2010b) Dual inhibition of PI3K and mTORC1/2 signaling by NVP-BEZ235 as a new therapeutic strategy for acute myeloid leukemia. Clin Cancer Res 22:5424–5435. doi:10.1158/1078-0432.CCR-10-1102

    Google Scholar 

  • Chapuis N, Tamburini J, Green AS, Willems L, Bardet V, Park S, Lacombe C, Mayeux P, Bouscary D (2010c) Perspectives on inhibiting mTOR as a future treatment strategy for hematological malignancies. Leukemia 10:1686–1699. doi:10.1038/leu.2010.170

    Google Scholar 

  • Chen W, Drakos E, Grammatikakis I, Schlette EJ, Li J, Leventaki V, Staikou-Drakopoulou E, Patsouris E, Panayiotidis P, Medeiros LJ, Rassidakis GZ (2010) mTOR signaling is activated by FLT3 kinase and promotes survival of FLT3-mutated acute myeloid leukemia cells. Mol Cancer 9:292. doi:1476-4598-9-292 [pii] 10.1186/1476-4598-9-292

    PubMed Central  PubMed  Google Scholar 

  • Cheong JW, Eom JI, Maeng HY, Lee ST, Hahn JS, Ko YW, Min YH (2003a) Constitutive phosphorylation of FKHR transcription factor as a prognostic variable in acute myeloid leukemia. Leuk Res 2712:1159–1162

    Google Scholar 

  • Cheong JW, Eom JI, Maeng HY, Lee ST, Hahn JS, Ko YW, Min YH (2003b) Phosphatase and tensin homologue phosphorylation in the C-terminal regulatory domain is frequently observed in acute myeloid leukaemia and associated with poor clinical outcome. Br J Haematol 1223:454–456

    Google Scholar 

  • Cheong JW, Min YH, Eom JI, Kim SJ, Jeung HK, Kim JS (2010) Inhibition of CK2{alpha} and PI3K/Akt synergistically induces apoptosis of CD34 + CD38- leukaemia cells while sparing haematopoietic stem cells. Anticancer Res 11:4625–4634

    Google Scholar 

  • Cheung LW, Hennessy BT, Li J, Yu S, Myers AP, Djordjevic B, Lu Y, Stemke-Hale K, Zhang F, Ju Z, Cantley LC, Scherer SE, Liang H, Lu KH, Broaddus RR, Mills GB (2011) High frequency of PIK3R1 and PIK3R2 mutations in endometrial cancer elucidates a novel mechanism for regulation of PTEN protein stability. Cancer Discov 2:170–185. doi:10.1158/2159-8290.CD-11-0039

    Google Scholar 

  • Chiarini F, Del Sole M, Mongiorgi S, Gaboardi GC, Cappellini A, Mantovani I, Follo MY, McCubrey JA, Martelli AM (2008) The novel Akt inhibitor, perifosine, induces caspase-dependent apoptosis and downregulates P-glycoprotein expression in multidrug-resistant human T-acute leukemia cells by a JNK-dependent mechanism. Leukemia 6:1106–1116. doi:10.1038/leu.2008.79

    Google Scholar 

  • Choudhary C, Schwable J, Brandts C, Tickenbrock L, Sargin B, Kindler T, Fischer T, Berdel WE, Muller-Tidow C, Serve H (2005) AML-associated Flt3 kinase domain mutations show signal transduction differences compared with Flt3 ITD mutations. Blood 1:265–273. doi:2004-07-2942 [pii] 10.1182/blood-2004-07-2942

    Google Scholar 

  • Chow S, Minden MD, Hedley DW (2006) Constitutive phosphorylation of the S6 ribosomal protein via mTOR and ERK signaling in the peripheral blasts of acute leukemia patients. Exp Hematol 9:1183–1191. doi:10.1016/j.exphem.2006.05.002

    Google Scholar 

  • Chresta CM, Davies BR, Hickson I, Harding T, Cosulich S, Critchlow SE, Vincent JP, Ellston R, Jones D, Sini P, James D, Howard Z, Dudley P, Hughes G, Smith L, Maguire S, Hummersone M, Malagu K, Menear K, Jenkins R, Jacobsen M, Smith GC, Guichard S, Pass M (2010) AZD8055 is a potent, selective, and orally bioavailable ATP-competitive mammalian target of rapamycin kinase inhibitor with in vitro and in vivo antitumor activity. Cancer Res 1:288–298. doi:10.1158/0008-5472.CAN-09-1751

    Google Scholar 

  • Chu SH, Small D (2009) Mechanisms of resistance to FLT3 inhibitors. Drug Resist Updat 1–2:8–16. doi:S1368-7646(08)00080-0 [pii] 10.1016/j.drup.2008.12.001

    Google Scholar 

  • Coloff JL, Macintyre AN, Nichols AG, Liu T, Gallo CA, Plas DR, Rathmell JC (2011) Akt-dependent glucose metabolism promotes mcl-1 synthesis to maintain cell survival and resistance to Bcl-2 inhibition. Cancer Res 15:5204–5213. doi:10.1158/0008-5472.CAN-10-4531

    Google Scholar 

  • Cybulski N, Hall MN (2009) TOR complex 2: a signaling pathway of its own. Trends Biochem Sci 12:620–627. doi:10.1016/j.tibs.2009.09.004

    Google Scholar 

  • Dai Y, Rahmani M, Pei XY, Khanna P, Han SI, Mitchell C, Dent P, Grant S (2005) Farnesyltransferase inhibitors interact synergistically with the Chk1 inhibitor UCN-01 to induce apoptosis in human leukemia cells through interruption of both Akt and MEK/ERK pathways and activation of SEK1/JNK. Blood 4:1706–1716. doi:10.1182/blood-2004-07-2767

    Google Scholar 

  • Dazert E, Hall MN (2011) mTOR signaling in disease. Curr Opin Cell Biol 23(6):744–755. doi:10.1016/j.ceb.2011.09.003

    CAS  PubMed  Google Scholar 

  • DeFeo-Jones D, Barnett SF, Fu S, Hancock PJ, Haskell KM, Leander KR, McAvoy E, Robinson RG, Duggan ME, Lindsley CW, Zhao Z, Huber HE, Jones RE (2005) Tumor cell sensitization to apoptotic stimuli by selective inhibition of specific Akt/PKB family members. Mol Cancer Ther 2:271–9

    Google Scholar 

  • Doepfner KT, Spertini O, Arcaro A (2007) Autocrine insulin-like growth factor-I signaling promotes growth and survival of human acute myeloid leukemia cells via the phosphoinositide 3-kinase/Akt pathway. Leukemia 9:1921–1930. doi:10.1038/sj.leu.2404813

    Google Scholar 

  • Dos Santos C, Demur C, Bardet V, Prade-Houdellier N, Payrastre B, Recher C (2008) A critical role for Lyn in acute myeloid leukemia. Blood 4:2269–2279. doi:10.1182/blood-2007-04-082099

    Google Scholar 

  • Engelman JA (2009) Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat Rev Cancer 8:550–562. doi:10.1038/nrc2664

    Google Scholar 

  • Engelman JA, Luo J, Cantley LC (2006) The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet 8:606–619. doi:10.1038/nrg1879

    Google Scholar 

  • Fayard E, Xue G, Parcellier A, Bozulic L, Hemmings BA (2010) Protein kinase B (PKB/Akt), a key mediator of the PI3K signaling pathway. Curr Top Microbiol Immunol 346:31–56. doi:10.1007/82_2010_58

    CAS  PubMed  Google Scholar 

  • Feldman ME, Shokat KM (2010) New inhibitors of the PI3K-Akt-mTOR pathway: insights into mTOR signaling from a new generation of Tor Kinase Domain Inhibitors (TORKinibs). Curr Top Microbiol Immunol 347:241–262. doi:10.1007/82_2010_64

    CAS  PubMed  Google Scholar 

  • Feldman ME, Apsel B, Uotila A, Loewith R, Knight ZA, Ruggero D, Shokat KM (2009) Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2. PLoS Biol 2:e38. doi:10.1371/journal.pbio.1000038

    Google Scholar 

  • Fiegl M, Samudio I, Clise-Dwyer K, Burks JK, Mnjoyan Z, Andreeff M (2009) CXCR4 expression and biologic activity in acute myeloid leukemia are dependent on oxygen partial pressure. Blood 7:1504–1512. doi:10.1182/blood-2008-06-161539

    Google Scholar 

  • Fierro FA, Brenner S, Oelschlaegel U, Jacobi A, Knoth H, Ehninger G, Illmer T, Bornhauser M (2009) Combining SDF-1/CXCR4 antagonism and chemotherapy in relapsed acute myeloid leukemia. Leukemia 2:393–6. doi:10.1038/leu.2008.182

    Google Scholar 

  • Frelin C, Imbert V, Griessinger E, Peyron AC, Rochet N, Philip P, Dageville C, Sirvent A, Hummelsberger M, Berard E, Dreano M, Sirvent N, Peyron JF (2005) Targeting NF-kappaB activation via pharmacologic inhibition of IKK2-induced apoptosis of human acute myeloid leukemia cells. Blood 2:804–811. doi:10.1182/blood-2004-04-14632004-04-1463 [pii]

    Google Scholar 

  • Frohling S, Scholl C, Gilliland DG, Levine RL (2005) Genetics of myeloid malignancies: pathogenetic and clinical implications. J Clin Oncol 26:6285–6295. doi:23/26/6285 [pii] 10.1200/JCO.2005.05.010

    Google Scholar 

  • Fruman DA, Rommel C (2011) PI3Kδ inhibitors in cancer: rationale and serendipity merge in the clinic. Cancer Discov 1: 562–572

    CAS  PubMed  Google Scholar 

  • Fu Z, Tindall DJ (2008) FOXOs, cancer and regulation of apoptosis. Oncogene 16:2312–9. doi:10.1038/onc.2008.24

    Google Scholar 

  • Fu L, Kim YA, Wang X, Wu X, Yue P, Lonial S, Khuri FR, Sun SY (2009) Perifosine inhibits mammalian target of rapamycin signaling through facilitating degradation of major components in the mTOR axis and induces autophagy. Cancer Res 23:8967–8976. doi:10.1158/0008-5472.CAN-09-2190

    Google Scholar 

  • Gallay N, Dos Santos C, Cuzin L, Bousquet M, Simmonet Gouy V, Chaussade C, Attal M, Payrastre B, Demur C, Recher C (2009) The level of AKT phosphorylation on threonine 308 but not on serine 473 is associated with high-risk cytogenetics and predicts poor overall survival in acute myeloid leukaemia. Leukemia 6:1029–1038. doi:10.1038/leu.2008.395

    Google Scholar 

  • Gao N, Budhraja A, Cheng S, Liu EH, Chen J, Yang Z, Chen D, Zhang Z, Shi X (2011) Phenethyl isothiocyanate exhibits antileukemic activity in vitro and in vivo by inactivation of Akt and activation of JNK pathways. Cell Death Dis 2:e140. doi:10.1038/cddis.2011.22

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gao N, Cheng S, Budhraja A, Gao Z, Chen J, Liu EH, Huang C, Chen D, Yang Z, Liu Q, Li P, Shi X, Zhang Z (2012a) Ursolic acid induces apoptosis in human leukaemia cells and exhibits anti-leukaemic activity in nude mice through the PKB pathway. Br J Pharmacol 6:1813–1826. doi:10.1111/j.1476-5381.2011.01684.x

    Google Scholar 

  • Gao N, Cheng S, Budhraja A, Liu EH, Chen J, Chen D, Yang Z, Luo J, Shi X, Zhang Z (2012b) 3,3′-Diindolylmethane exhibits antileukemic activity in vitro and in vivo through a Akt-dependent process. PloS One 2:e31783. doi:10.1371/journal.pone.0031783

    Google Scholar 

  • Garcia-Echeverria C, Sellers WR (2008) Drug discovery approaches targeting the PI3K/Akt pathway in cancer. Oncogene 27 (41):5511–5526. doi:10.1038/onc.2008.246

    CAS  PubMed  Google Scholar 

  • Gharbi SI, Zvelebil MJ, Shuttleworth SJ, Hancox T, Saghir N, Timms JF, Waterfield MD (2007) Exploring the specificity of the PI3K family inhibitor LY294002. Biochem J 1:15–21. doi:10.1042/BJ20061489

    Google Scholar 

  • Glaser SP, Lee EF, Trounson E, Bouillet P, Wei A, Fairlie WD, Izon DJ, Zuber J, Rappaport AR, Herold MJ, Alexander WS, Lowe SW, Robb L, Strasser A (2012) Anti-apoptotic Mcl-1 is essential for the development and sustained growth of acute myeloid leukemia. Genes Dev 2:120–5. doi:26/2/120 [pii] 10.1101/gad.182980.111

    Google Scholar 

  • Grandage VL, Gale RE, Linch DC, Khwaja A (2005) PI3-kinase/Akt is constitutively active in primary acute myeloid leukaemia cells and regulates survival and chemoresistance via NF-kappaB, Mapkinase and p53 pathways. Leukemia 4:586–594. doi:10.1038/sj.leu.2403653

    Google Scholar 

  • Grimberg A (2003) Mechanisms by which IGF-I may promote cancer. Cancer Biol Ther 6:630–5. doi:678 [pii]

    Google Scholar 

  • Guertin DA, Sabatini DM (2009) The pharmacology of mTOR inhibition. Sci Signal 67:pe24. doi:10.1126/scisignal.267pe24

    Google Scholar 

  • Guertin DA, Stevens DM, Saitoh M, Kinkel S, Crosby K, Sheen JH, Mullholland DJ, Magnuson MA, Wu H, Sabatini DM (2009) mTOR complex 2 is required for the development of prostate cancer induced by Pten loss in mice. Cancer Cell 2:148–159

    Google Scholar 

  • Gutierrez NC, Lopez-Perez R, Hernandez JM, Isidro I, Gonzalez B, Delgado M, Ferminan E, Garcia JL, Vazquez L, Gonzalez M, San Miguel JF (2005) Gene expression profile reveals deregulation of genes with relevant functions in the different subclasses of acute myeloid leukemia. Leukemia 3:402–9. doi:2403625 [pii] 10.1038/sj.leu.2403625

    Google Scholar 

  • Gutierrez A, Sanda T, Grebliunaite R, Carracedo A, Salmena L, Ahn Y, Dahlberg S, Neuberg D, Moreau LA, Winter SS, Larson R, Zhang J, Protopopov A, Chin L, Pandolfi PP, Silverman LB, Hunger SP, Sallan SE, Look AT (2009) High frequency of PTEN, PI3K, and AKT abnormalities in T-cell acute lymphoblastic leukemia. Blood 3:647–650. doi:10.1182/blood-2009-02-206722

    Google Scholar 

  • Hagner PR, Schneider A, Gartenhaus RB (2010) Targeting the translational machinery as a novel treatment strategy for hematologic malignancies. Blood 115(11):2127–2135. doi:10.1182/blood-2009-09-220020

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hahn M, Li W, Yu C, Rahmani M, Dent P, Grant S (2005) Rapamycin and UCN-01 synergistically induce apoptosis in human leukemia cells through a process that is regulated by the Raf-1/MEK/ERK, Akt, and JNK signal transduction pathways. Mol Cancer Ther 3:457–470. doi:10.1158/1535-7163.MCT-04-0137

    Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 5:646–674. doi:10.1016/j.cell.2011.02.013

    Google Scholar 

  • Hazen AL, Smith MJ, Desponts C, Winter O, Moser K, Kerr WG (2009) SHIP is required for a functional hematopoietic stem cell niche. Blood 13:2924–2933. doi:blood-2008-02-138008 [pii] 10.1182/blood-2008-02-138008

    Google Scholar 

  • Hollander MC, Blumenthal GM, Dennis PA (2011) PTEN loss in the continuum of common cancers, rare syndromes and mouse models. Nat Rev Cancer 4:289–301. doi:10.1038/nrc3037

    Google Scholar 

  • Ihle NT, Powis G (2009) Take your PIK: phosphatidylinositol 3-kinase inhibitors race through the clinic and toward cancer therapy. Mol Cancer Ther 1:1–9. doi:10.1158/1535-7163.MCT-08-0801

    Google Scholar 

  • Jaiswal BS, Janakiraman V, Kljavin NM, Chaudhuri S, Stern HM, Wang W, Kan Z, Dbouk HA, Peters BA, Waring P, Dela Vega T, Kenski DM, Bowman KK, Lorenzo M, Li H, Wu J, Modrusan Z, Stinson J, Eby M, Yue P, Kaminker JS, de Sauvage FJ, Backer JM, Seshagiri S (2009) Somatic mutations in p85alpha promote tumorigenesis through class IA PI3K activation. Cancer Cell 6:463–474. doi:S1535-6108(09)00385-7 [pii] 10.1016/j.ccr.2009.10.016

    Google Scholar 

  • Janes MR, Fruman DA (2009) Immune regulation by rapamycin: moving beyond T cells. Sci Signal 67:pe25. doi:10.1126/scisignal.267pe25

    Google Scholar 

  • Janes MR, Fruman DA (2010) Targeting TOR dependence in cancer. Oncotarget 1:69–76

    PubMed Central  PubMed  Google Scholar 

  • Janes MR, Limon JJ, So L, Chen J, Lim RJ, Chavez MA, Vu C, Lilly MB, Mallya S, Ong ST, Konopleva M, Martin MB, Ren P, Liu Y, Rommel C, Fruman DA (2010) Effective and selective targeting of leukemia cells using a TORC1/2 kinase inhibitor. Nat Med 2:205–213. doi:10.1038/nm.2091

    Google Scholar 

  • Kindler T, Lipka DB, Fischer T (2010) FLT3 as a therapeutic target in AML: still challenging after all these years. Blood 24:5089–5102. doi:10.1182/blood-2010-04-261867

    Google Scholar 

  • Kohl TM, Schnittger S, Ellwart JW, Hiddemann W, Spiekermann K (2005) KIT exon 8 mutations associated with core-binding factor (CBF)-acute myeloid leukemia (AML) cause hyperactivation of the receptor in response to stem cell factor. Blood 8:3319–3321. doi:2004-06-2068 [pii] 10.1182/blood-2004-06-2068

    Google Scholar 

  • Kojima K, Shimanuki M, Shikami M, Samudio IJ, Ruvolo V, Corn P, Hanaoka N, Konopleva M, Andreeff M, Nakakuma H (2008) The dual PI3 kinase/mTOR inhibitor PI-103 prevents p53 induction by Mdm2 inhibition but enhances p53-mediated mitochondrial apoptosis in p53 wild-type AML. Leukemia 9:1728–1736. doi:10.1038/leu.2008.158

    Google Scholar 

  • Komander D, Kular GS, Bain J, Elliott M, Alessi DR, Van Aalten DM (2003) Structural basis for UCN-01 (7-hydroxystaurosporine) specificity and PDK1 (3-phosphoinositide-dependent protein kinase-1) inhibition. Biochem J Pt 2:255–262. doi:10.1042/BJ20031119

    Google Scholar 

  • Kondapaka SB, Singh SS, Dasmahapatra GP, Sausville EA, Roy KK (2003) Perifosine, a novel alkylphospholipid, inhibits protein kinase B activation. Mol Cancer Ther 11:1093–1103

    Google Scholar 

  • Kornblau SM, Womble M, Cade JS, Lemker E, Qiu YH (2005) Comparative analysis of the effects of sample source and test methodology on the assessment of protein expression in acute myelogenous leukemia. Leukemia 9:1550–1557. doi:10.1038/sj.leu.2403845

    Google Scholar 

  • Kornblau SM, Womble M, Qiu YH, Jackson CE, Chen W, Konopleva M, Estey EH, Andreeff M (2006) Simultaneous activation of multiple signal transduction pathways confers poor prognosis in acute myelogenous leukemia. Blood 7:2358–2365. doi:10.1182/blood-2006-02-003475

    Google Scholar 

  • Kornblau SM, Tibes R, Qiu YH, Chen W, Kantarjian HM, Andreeff M, Coombes KR, Mills GB (2009) Functional proteomic profiling of AML predicts response and survival. Blood 1:154–164. doi: blood-2007-10-119438 [pii] 10.1182/blood-2007-10-119438

    Google Scholar 

  • Kornblau SM, Minden MD, Rosen DB, Putta S, Cohen A, Covey T, Spellmeyer DC, Fantl WJ, Gayko U, Cesano A (2010) Dynamic single-cell network profiles in acute myelogenous leukemia are associated with patient response to standard induction therapy. Clin Cancer Res 14:3721–3733. doi:1078-0432.CCR-10-0093 [pii] 10.1158/1078-0432.CCR-10-0093

    Google Scholar 

  • Laplante M, Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 1492:274–293. doi:10.1016/j.cell.2012.03.017

    Google Scholar 

  • Larizza L, Magnani I, Beghini A (2005) The Kasumi -1 cell line: a t(8;21)-kit mutant model for acute myeloid leukemia. Leuk Lymphoma 2:247–255. doi:UNFPV047Y73GH23Q[pii]10.1080/10428190400007565

    Google Scholar 

  • Lennartsson J, Ronnstrand L (2006) The stem cell factor receptor/c-Kit as a drug target in cancer. Curr Cancer Drug Targets 1:65–75

    Google Scholar 

  • List AF, Glinsmann-Gibson B, Stadheim C, Meuillet EJ, Bellamy W, Powis G (2004) Vascular endothelial growth factor receptor-1 and receptor-2 initiate a phosphatidylinositide 3-kinase-dependent clonogenic response in acute myeloid leukemia cells. Exp Hematol 6:526–535. doi:10.1016/j.exphem.2004.03.005

    Google Scholar 

  • Lopez-Fauqued M, Gil R, Grueso J, Hernandez-Losa J, Pujol A, Moline T, Recio JA (2010) The dual PI3K/mTOR inhibitor PI-103 promotes immunosuppression, in vivo tumor growth and increases survival of sorafenib-treated melanoma cells. Int J Cancer 7:1549–1561. doi:10.1002/ijc.24926

    Google Scholar 

  • Luo JM, Yoshida H, Komura S, Ohishi N, Pan L, Shigeno K, Hanamura I, Miura K, Iida S, Ueda R, Naoe T, Akao Y, Ohno R, Ohnishi K (2003) Possible dominant-negative mutation of the SHIP gene in acute myeloid leukemia. Leukemia 1:1–8. doi:10.1038/sj.leu.2402725

    Google Scholar 

  • Ma P, Mali RS, Martin H, Ramdas B, Sims E, Kapur R (2012) Role of intracellular tyrosines in activating KIT-induced myeloproliferative disease. Leukemia Epub 26(7):1499–1506. Feb 2. doi:10.1038/leu.2012.22

    CAS  Google Scholar 

  • Maira SM, Stauffer F, Brueggen J, Furet P, Schnell C, Fritsch C, Brachmann S, Chene P, De Pover A, Schoemaker K, Fabbro D, Gabriel D, Simonen M, Murphy L, Finan P, Sellers W, Garcia-Echeverria C (2008) Identification and characterization of NVP-BEZ235, a new orally available dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor with potent in vivo antitumor activity. Mol Cancer Ther 7:1851–1863. doi:10.1158/1535-7163.MCT-08-0017

    CAS  PubMed  Google Scholar 

  • Manning BD, Cantley LC (2007) AKT/PKB signaling: navigating downstream. Cell 1297:1261–1274. doi:10.1016/j.cell.2007.06.009

    Google Scholar 

  • Martelli AM, Tazzari PL, Tabellini G, Bortul R, Billi AM, Manzoli L, Ruggeri A, Conte R, Cocco L (2003) A new selective AKT pharmacological inhibitor reduces resistance to chemotherapeutic drugs, TRAIL, all-trans-retinoic acid, and ionizing radiation of human leukemia cells. Leukemia 9:1794–1805. doi:10.1038/sj.leu.2403044

    Google Scholar 

  • Martelli AM, Evangelisti C, Chiarini F, McCubrey JA (2010) The phosphatidylinositol 3-kinase/Akt/mTOR signaling network as a therapeutic target in AML patients. Oncotarget 2:89–103

    Google Scholar 

  • Matsunaga T, Takemoto N, Sato T, Takimoto R, Tanaka I, Fujimi A, Akiyama T, Kuroda H, Kawano Y, Kobune M, Kato J, Hirayama Y, Sakamaki S, Kohda K, Miyake K, Niitsu Y (2003) Interaction between leukemic-cell VLA-4 and stromal fibronectin is a decisive factor for minimal residual disease of acute myelogenous leukemia. Nat Med 9:1158–1165. doi:10.1038/nm909

    CAS  PubMed  Google Scholar 

  • Matsunaga T, Fukai F, Miura S, Nakane Y, Owaki T, Kodama H, Tanaka M, Nagaya T, Takimoto R, Takayama T, Niitsu Y (2008) Combination therapy of an anticancer drug with the FNIII14 peptide of fibronectin effectively overcomes cell adhesion-mediated drug resistance of acute myelogenous leukemia. Leukemia 2:353–360. doi:10.1038/sj.leu.2405017

    Google Scholar 

  • Mayo LD, Donner DB (2002) The PTEN, Mdm2, p53 tumor suppressor-oncoprotein network. Trends Biochem Sci 27 (9):462–467. doi:S0968000402021667 [pii]

    CAS  PubMed  Google Scholar 

  • McDonald PC, Oloumi A, Mills J, Dobreva I, Maidan M, Gray V, Wederell ED, Bally MB, Foster LJ, Dedhar S (2008) Rictor and integrin-linked kinase interact and regulate Akt phosphorylation and cancer cell survival. Cancer Res 6:1618–1624. doi:10.1158/0008-5472.CAN-07-5869

    Google Scholar 

  • McMillin DW, Ooi M, Delmore J, Negri J, Hayden P, Mitsiades N, Jakubikova J, Maira SM, Garcia-Echeverria C, Schlossman R, Munshi NC, Richardson PG, Anderson KC, Mitsiades CS (2009) Antimyeloma activity of the orally bioavailable dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor NVP-BEZ235. Cancer Res 14:5835–5842. doi:10.1158/0008-5472.CAN-08-4285

    Google Scholar 

  • Medema RH, Kops GJ, Bos JL, Burgering BM (2000) AFX-like Forkhead transcription factors mediate cell-cycle regulation by Ras and PKB through p27kip1. Nature 6779:782–787. doi:10.1038/35008115

    Google Scholar 

  • Mendoza MC, Er EE, Blenis J (2011) The Ras-ERK and PI3K-mTOR pathways: cross-talk and compensation. Trends Biochem Sci 6:320–328. doi:10.1016/j.tibs.2011.03.006

    Google Scholar 

  • Min YH, Eom JI, Cheong JW, Maeng HO, Kim JY, Jeung HK, Lee ST, Lee MH, Hahn JS, Ko YW (2003) Constitutive phosphorylation of Akt/PKB protein in acute myeloid leukemia: its significance as a prognostic variable. Leukemia 5:995–997. doi:10.1038/sj.leu.2402874

    Google Scholar 

  • Min YH, Cheong JW, Kim JY, Eom JI, Lee ST, Hahn JS, Ko YW, Lee MH (2004) Cytoplasmic mislocalization of p27Kip1 protein is associated with constitutive phosphorylation of Akt or protein kinase B and poor prognosis in acute myelogenous leukemia. Cancer Res 15:5225–5231. doi:10.1158/0008-5472.CAN-04-0174

    Google Scholar 

  • Minami Y, Yamamoto K, Kiyoi H, Ueda R, Saito H, Naoe T (2003) Different antiapoptotic pathways between wild-type and mutated FLT3: insights into therapeutic targets in leukemia. Blood 8:2969–2975. doi:10.1182/blood-2002-12-38132002-12-3813 [pii]

    Google Scholar 

  • Mitsiades CS, Mitsiades NS, McMullan CJ, Poulaki V, Shringarpure R, Akiyama M, Hideshima T, Chauhan D, Joseph M, Libermann TA, Garcia-Echeverria C, Pearson MA, Hofmann F, Anderson KC, Kung AL (2004) Inhibition of the insulin-like growth factor receptor-1 tyrosine kinase activity as a therapeutic strategy for multiple myeloma, other hematologic malignancies, and solid tumors. Cancer Cell 3:221–230

    Google Scholar 

  • Munugalavadla V, Sims EC, Borneo J, Chan RJ, Kapur R (2007) Genetic and pharmacologic evidence implicating the p85 alpha, but not p85 beta, regulatory subunit of PI3K and Rac2 GTPase in regulating oncogenic KIT-induced transformation in acute myeloid leukemia and systemic mastocytosis. Blood 5:1612–1620. doi: blood-2006-10-053058[pii]10.1182/blood-2006-10-053058

    Google Scholar 

  • Muranyi AL, Dedhar S, Hogge DE (2009) Combined inhibition of integrin linked kinase and FMS-like tyrosine kinase 3 is cytotoxic to acute myeloid leukemia progenitor cells. Exp Hematol 4:450–460. doi: 10.1016/j.exphem.2009.01.002

    Google Scholar 

  • Nardella C, Carracedo A, Alimonti A, Hobbs RM, Clohessy JG, Chen Z, Egia A, Fornari A, Fiorentino M, Loda M, Kozma SC, Thomas G, Cordon-Cardo C, Pandolfi PP (2009) Differential requirement of mTOR in postmitotic tissues and tumorigenesis. Sci Signal 55:ra2. doi: 10.1126/scisignal.2000189

    Google Scholar 

  • Neri LM, Borgatti P, Tazzari PL, Bortul R, Cappellini A, Tabellini G, Bellacosa A, Capitani S, Martelli AM (2003) The phosphoinositide 3-kinase/AKT1 pathway involvement in drug and all-trans-retinoic acid resistance of leukemia cells. Mol Cancer Res 3:234–246

    Google Scholar 

  • Ning ZQ, Li J, McGuinness M, Arceci RJ (2001) STAT3 activation is required for Asp(816) mutant c-Kit induced tumorigenicity. Oncogene 33:4528–4536. doi: 10.1038/sj.onc.1204590

    Google Scholar 

  • Nishioka C, Ikezoe T, Yang J, Koeffler HP, Yokoyama A (2008) Blockade of mTOR signaling potentiates the ability of histone deacetylase inhibitor to induce growth arrest and differentiation of acute myelogenous leukemia cells. Leukemia 12:2159–2168. doi: 10.1038/leu.2008.243

    Google Scholar 

  • Nishioka C, Ikezoe T, Yang J, Gery S, Koeffler HP, Yokoyama A (2009) Inhibition of mammalian target of rapamycin signaling potentiates the effects of all-trans retinoic acid to induce growth arrest and differentiation of human acute myelogenous leukemia cells. Int J Cancer 7:1710–1720. doi: 10.1002/ijc.24472

    Google Scholar 

  • Olesen LH, Aggerholm A, Andersen BL, Nyvold CG, Guldberg P, Norgaard JM, Hokland P (2005) Molecular typing of adult acute myeloid leukaemia: significance of translocations, tandem duplications, methylation, and selective gene expression profiling. Br J Haematol 4:457–467. doi: BJH5791 [pii] 10.1111/j.1365-2141.2005.05791.x

    Google Scholar 

  • Ong CJ, Ming-Lum A, Nodwell M, Ghanipour A, Yang L, Williams DE, Kim J, Demirjian L, Qasimi P, Ruschmann J, Cao LP, Ma K, Chung SW, Duronio V, Andersen RJ, Krystal G, Mui AL (2007) Small-molecule agonists of SHIP1 inhibit the phosphoinositide 3-kinase pathway in hematopoietic cells. Blood 6:1942–9. doi:blood-2007-03-079699 [pii] 10.1182/blood-2007-03-079699

    Google Scholar 

  • Papa V, Tazzari PL, Chiarini F, Cappellini A, Ricci F, Billi AM, Evangelisti C, Ottaviani E, Martinelli G, Testoni N, McCubrey JA, Martelli AM (2008) Proapoptotic activity and chemosensitizing effect of the novel Akt inhibitor perifosine in acute myelogenous leukemia cells. Leukemia 1:147–160. doi:10.1038/sj.leu.2404980

    Google Scholar 

  • Park S, Chapuis N, Bardet V, Tamburini J, Gallay N, Willems L, Knight ZA, Shokat KM, Azar N, Viguie F, Ifrah N, Dreyfus F, Mayeux P, Lacombe C, Bouscary D (2008) PI-103, a dual inhibitor of Class IA phosphatidylinositide 3-kinase and mTOR, has antileukemic activity in AML. Leukemia 9:1698–1706. doi:10.1038/leu.2008.144

    Google Scholar 

  • Park S, Chapuis N, Tamburini J, Bardet V, Cornillet-Lefebvre P, Willems L, Green A, Mayeux P, Lacombe C, Bouscary D (2010) Role of the PI3K/AKT and mTOR signaling pathways in acute myeloid leukemia. Haematologica 5:819–828. doi:10.3324/haematol.2009.013797

    Google Scholar 

  • Pei XY, Dai Y, Rahmani M, Li W, Dent P, Grant S (2005) The farnesyltransferase inhibitor L744832 potentiates UCN-01-induced apoptosis in human multiple myeloma cells. Clin Cancer Res 12:4589–4600. doi: 10.1158/1078-0432.CCR-04-2346

    Google Scholar 

  • Piloto O, Wright M, Brown P, Kim KT, Levis M, Small D (2007) Prolonged exposure to FLT3 inhibitors leads to resistance via activation of parallel signaling pathways. Blood 4:1643–1652. doi: blood-2006-05-023804 [pii]10.1182/blood-2006-05-023804

    Google Scholar 

  • Pollak M (2012) The insulin and insulin-like growth factor receptor family in neoplasia: an update. Nat Rev Cancer 12(3):159–169. doi: 10.1038/nrc3215

    CAS  PubMed  Google Scholar 

  • Rahmani M, Reese E, Dai Y, Bauer C, Payne SG, Dent P, Spiegel S, Grant S (2005) Coadministration of histone deacetylase inhibitors and perifosine synergistically induces apoptosis in human leukemia cells through Akt and ERK1/2 inactivation and the generation of ceramide and reactive oxygen species. Cancer Res 6:2422–2432. doi: 10.1158/0008-5472.CAN-04-2440

    Google Scholar 

  • Rahmani M, Anderson A, Habibi JR, Crabtree TR, Mayo M, Harada H, Ferreira-Gonzalez A, Dent P, Grant S (2009) The BH3-only protein Bim plays a critical role in leukemia cell death triggered by concomitant inhibition of the PI3K/Akt and MEK/ERK1/2 pathways. Blood 20:4507–4516. doi: 10.1182/blood-2008-09-177881

    Google Scholar 

  • Ramaswamy S, Nakamura N, Sansal I, Bergeron L, Sellers WR (2002) A novel mechanism of gene regulation and tumor suppression by the transcription factor FKHR. Cancer Cell 1:81–91. doi: S1535610802000867 [pii]

    Google Scholar 

  • Raynaud FI, Eccles S, Clarke PA, Hayes A, Nutley B, Alix S, Henley A, Di-Stefano F, Ahmad Z, Guillard S, Bjerke LM, Kelland L, Valenti M, Patterson L, Gowan S, de Haven Brandon A, Hayakawa M, Kaizawa H, Koizumi T, Ohishi T, Patel S, Saghir N, Parker P, Waterfield M, Workman P (2007) Pharmacologic characterization of a potent inhibitor of class I phosphatidylinositide 3-kinases. Cancer Res 12:5840–5850. doi: 10.1158/0008-5472.CAN-06-4615

    Google Scholar 

  • Recher C, Beyne-Rauzy O, Demur C, Chicanne G, Dos Santos C, Mas VM, Benzaquen D, Laurent G, Huguet F, Payrastre B (2005) Antileukemic activity of rapamycin in acute myeloid leukemia. Blood 6:2527–2534. doi: 10.1182/blood-2004-06-2494

    Google Scholar 

  • Ribatti D, Scavelli C, Roccaro AM, Crivellato E, Nico B, Vacca A (2004) Hematopoietic cancer and angiogenesis. Stem Cells Dev 5:484–495. doi: 10.1089/1547328042417354

    Google Scholar 

  • Rizzo MG, Giombini E, Diverio D, Vignetti M, Sacchi A, Testa U, Lo-Coco F, Blandino G (2004) Analysis of p73 expression pattern in acute myeloid leukemias: lack of DeltaN-p73 expression is a frequent feature of acute promyelocytic leukemia. Leukemia 11:1804–9. doi: 10.1038/sj.leu.24034832403483 [pii]

    Google Scholar 

  • Rodrik-Outmezguine VS, Cao N, Chandarlapaty S, She QB, Ye Q, Smith P, Guichard S, Rosen N (2011) AZD8055 is an effective inhibitor of mTOR kinase signaling and breast cancer growth while relieving feedback inhibition of HER-kinase signaling. Cancer Disc 1:248–259

    CAS  Google Scholar 

  • Rosen DB, Minden MD, Kornblau SM, Cohen A, Gayko U, Putta S, Woronicz J, Evensen E, Fantl WJ, Cesano A (2010) Functional characterization of FLT3 receptor signaling deregulation in acute myeloid leukemia by single cell network profiling (SCNP). PloS One 5(10):e13543. doi:10.1371/journal.pone.0013543

    PubMed Central  PubMed  Google Scholar 

  • Sadhu C, Masinovsky B, Dick K, Sowell CG, Staunton DE (2003) Essential role of phosphoinositide 3-kinase delta in neutrophil directional movement. J Immunol 5:2647–2654

    Google Scholar 

  • Sampath D, Cortes J, Estrov Z, Du M, Shi Z, Andreeff M, Gandhi V, Plunkett W (2006) Pharmacodynamics of cytarabine alone and in combination with 7-hydroxystaurosporine (UCN-01) in AML blasts in vitro and during a clinical trial. Blood 6:2517–2524. doi: 10.1182/blood-2005-08-3351

    Google Scholar 

  • Samuels Y, Wang Z, Bardelli A, Silliman N, Ptak J, Szabo S, Yan H, Gazdar A, Powell SM, Riggins GJ, Willson JK, Markowitz S, Kinzler KW, Vogelstein B, Velculescu VE (2004) High frequency of mutations of the PIK3CA gene in human cancers. Science 5670:554. doi:10.1126/science.10965021096502 [pii]

    Google Scholar 

  • Santarpia L, Lippman SM, El-Naggar AK (2012) Targeting the MAPK-RAS-RAF signaling pathway in cancer therapy. Expert Opin Ther Targets 1:103–119. doi: 10.1517/14728222.2011.645805

    Google Scholar 

  • Sato S, Fujita N, Tsuruo T (2002) Interference with PDK1-Akt survival signaling pathway by UCN-01 (7-hydroxystaurosporine). Oncogene 11:1727–1738. doi: 10.1038/sj.onc.1205225

    Google Scholar 

  • Scavelli C, Vacca A, Di Pietro G, Dammacco F, Ribatti D (2004) Crosstalk between angiogenesis and lymphangiogenesis in tumor progression. Leukemia 6:1054–8. doi: 10.1038/sj.leu.24033552403355 [pii]

    Google Scholar 

  • Schmidt M, Fernandez de Mattos S, van der Horst A, Klompmaker R, Kops GJ, Lam EW, Burgering BM, Medema RH (2002) Cell cycle inhibition by FoxO forkhead transcription factors involves downregulation of cyclin D. Mol Cell Biol 22:7842–7852

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shishodia S, Aggarwal BB (2002) Nuclear factor-kappaB activation: a question of life or death. J Biochem Mol Biol 1:28–40

    Google Scholar 

  • Silvera D, Formenti SC, Schneider RJ (2010) Translational control in cancer. Nat Rev Cancer 4:254–266. doi: 10.1038/nrc2824

    Google Scholar 

  • Skladanowski A, Bozko P, Sabisz M, Larsen AK (2007) Dual inhibition of PI3K/Akt signaling and the DNA damage checkpoint in p53-deficient cells with strong survival signaling: implications for cancer therapy. Cell Cycle 18:2268–2275

    Google Scholar 

  • So L, Fruman DA (2012) PI3K signalling in B- and T-lymphocytes: new developments and therapeutic advances. Biochem J 4423:465–481. doi: 10.1042/BJ20112092

    Google Scholar 

  • Song MS, Salmena L, Pandolfi PP (2012) The functions and regulation of the PTEN tumour suppressor. Nat Rev Mol Cell Biol 5:283–296. doi: 10.1038/nrm3330

    Google Scholar 

  • Sparks CA, Guertin DA (2010) Targeting mTOR: prospects for mTOR complex 2 inhibitors in cancer therapy. Oncogene 26:3733–3744. doi:10.1038/onc.2010.139

    Google Scholar 

  • Stahl M, Dijkers PF, Kops GJ, Lens SM, Coffer PJ, Burgering BM, Medema RH (2002) The forkhead transcription factor FoxO regulates transcription of p27Kip1 and Bim in response to IL-2. J Immunol 10:5024–5031

    Google Scholar 

  • Steelman LS, Stadelman KM, Chappell WH, Horn S, Basecke J, Cervello M, Nicoletti F, Libra M, Stivala F, Martelli AM, McCubrey JA (2008) Akt as a therapeutic target in cancer. Expert Opin Ther Targets 9:1139–1165. doi:10.1517/14728222.12.9.1139

    Google Scholar 

  • van Stijn A, van der Pol MA, Kok A, Bontje PM, Roemen GM, Beelen RH, Ossenkoppele GJ, Schuurhuis GJ (2003) Differences between the CD34+ and CD34− blast compartments in apoptosis resistance in acute myeloid leukemia. Haematologica 88(5):497–508

    PubMed  Google Scholar 

  • Sujobert P, Bardet V, Cornillet-Lefebvre P, Hayflick JS, Prie N, Verdier F, Vanhaesebroeck B, Muller O, Pesce F, Ifrah N, Hunault-Berger M, Berthou C, Villemagne B, Jourdan E, Audhuy B, Solary E, Witz B, Harousseau JL, Himberlin C, Lamy T, Lioure B, Cahn JY, Dreyfus F, Mayeux P, Lacombe C, Bouscary D (2005) Essential role for the p110delta isoform in phosphoinositide 3-kinase activation and cell proliferation in acute myeloid leukemia. Blood 3:1063–6. doi:10.1182/blood-2004-08-3225

    Google Scholar 

  • Tabe Y, Jin L, Tsutsumi-Ishii Y, Xu Y, McQueen T, Priebe W, Mills GB, Ohsaka A, Nagaoka I, Andreeff M, Konopleva M (2007) Activation of integrin-linked kinase is a critical prosurvival pathway induced in leukemic cells by bone marrow-derived stromal cells. Cancer Res 2:684–694. doi: 10.1158/0008-5472.CAN-06-3166

    Google Scholar 

  • Tabellini G, Tazzari PL, Bortul R, Billi AM, Conte R, Manzoli L, Cocco L, Martelli AM (2004) Novel 2′-substituted, 3′-deoxy-phosphatidyl-myo-inositol analogues reduce drug resistance in human leukaemia cell lines with an activated phosphoinositide 3-kinase/Akt pathway. Br J Haematol 4:574–582. doi: 10.1111/j.1365-2141.2004.05073.x

    Google Scholar 

  • Tabellini G, Cappellini A, Tazzari PL, Fala F, Billi AM, Manzoli L, Cocco L, Martelli AM (2005) Phosphoinositide 3-kinase/Akt involvement in arsenic trioxide resistance of human leukemia cells. J Cell Physiol 2:623–634. doi:10.1002/jcp.20153

    Google Scholar 

  • Takahashi S (2010) Combination therapy with arsenic trioxide for hematological malignancies. Anticancer Agents Med Chem 6:504–510

    Google Scholar 

  • Tamburini J, Chapuis N, Bardet V, Park S, Sujobert P, Willems L, Ifrah N, Dreyfus F, Mayeux P, Lacombe C, Bouscary D (2008) Mammalian target of rapamycin (mTOR) inhibition activates phosphatidylinositol 3-kinase/Akt by up-regulating insulin-like growth factor-1 receptor signaling in acute myeloid leukemia: rationale for therapeutic inhibition of both pathways. Blood 1:379–382. doi:10.1182/blood-2007-03-080796

    Google Scholar 

  • Tamburini J, Green AS, Chapuis N, Bardet V, Lacombe C, Mayeux P, Bouscary D (2009) Targeting translation in acute myeloid leukemia: a new paradigm for therapy? Cell Cycle 23:3893–3899

    Google Scholar 

  • Tamm I, Wagner M, Schmelz K (2005) Decitabine activates specific caspases downstream of p73 in myeloid leukemia. Ann Hematol Suppl 1:47–53. doi: 10.1007/s00277-005-0013-0

    Google Scholar 

  • Tazzari PL, Cappellini A, Grafone T, Mantovani I, Ricci F, Billi AM, Ottaviani E, Conte R, Martinelli G, Martelli AM (2004) Detection of serine 473 phosphorylated Akt in acute myeloid leukaemia blasts by flow cytometry. Br J Haematol 5:675–681. doi: 10.1111/j.1365-2141.2004.05121.x

    Google Scholar 

  • Tazzari PL, Cappellini A, Ricci F, Evangelisti C, Papa V, Grafone T, Martinelli G, Conte R, Cocco L, McCubrey JA, Martelli AM (2007a) Multidrug resistance-associated protein 1 expression is under the control of the phosphoinositide 3 kinase/Akt signal transduction network in human acute myelogenous leukemia blasts. Leukemia 3:427–438. doi: 10.1038/sj.leu.2404523

    Google Scholar 

  • Tazzari PL, Tabellini G, Bortul R, Papa V, Evangelisti C, Grafone T, Martinelli G, McCubrey JA, Martelli AM (2007b) The insulin-like growth factor-I receptor kinase inhibitor NVP-AEW541 induces apoptosis in acute myeloid leukemia cells exhibiting autocrine insulin-like growth factor-I secretion. Leukemia 5:886–896. doi: 10.1038/sj.leu.2404643

    Google Scholar 

  • Tazzari PL, Tabellini G, Ricci F, Papa V, Bortul R, Chiarini F, Evangelisti C, Martinelli G, Bontadini A, Cocco L, McCubrey JA, Martelli AM (2008) Synergistic proapoptotic activity of recombinant TRAIL plus the Akt inhibitor Perifosine in acute myelogenous leukemia cells. Cancer Res 22:9394–9403. doi:10.1158/0008-5472.CAN-08-2815

    Google Scholar 

  • Thomson AW, Turnquist HR, Raimondi G (2009) Immunoregulatory functions of mTOR inhibition. Nat Rev Immunol 5:324–337. doi: 10.1038/nri2546

    Google Scholar 

  • Thoreen CC, Sabatini DM (2009) Rapamycin inhibits mTORC1, but not completely. Autophagy 5:725–6

    CAS  PubMed  Google Scholar 

  • Thoreen CC, Kang SA, Chang JW, Liu Q, Zhang J, Gao Y, Reichling LJ, Sim T, Sabatini DM, Gray NS (2009) An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J Biol Chem 12:8023–8032. doi:10.1074/jbc.M900301200

    Google Scholar 

  • Tibes R, Kornblau SM, Qiu Y, Mousses SM, Robbins C, Moses T, Carpten JD (2008) PI3K/AKT pathway activation in acute myeloid leukaemias is not associated with AKT1 pleckstrin homology domain mutation. Br J Haematol 3:344–347. doi: BJH6920[pii]10.1111/j.1365-2141.2007.06920.x

    Google Scholar 

  • Tothova Z, Gilliland DG (2007) FoxO transcription factors and stem cell homeostasis: insights from the hematopoietic system. Cell Stem Cell 2:140–152. doi:10.1016/j.stem.2007.07.017

    Google Scholar 

  • Vanhaesebroeck B, Guillermet-Guibert J, Graupera M, Bilanges B (2010) The emerging mechanisms of isoform-specific PI3K signalling. Nat Rev Mol Cell Biol 5:329–341. doi:nrm2882 [pii]10.1038/nrm2882

    Google Scholar 

  • Vazquez F, Ramaswamy S, Nakamura N, Sellers WR (2000) Phosphorylation of the PTEN tail regulates protein stability and function. Mol Cell Biol 20(14):5010–5018

    PubMed Central  CAS  PubMed  Google Scholar 

  • Vu C, Fruman DA (2010) Target of rapamycin signaling in leukemia and lymphoma. Clin Cancer Res 22:5374–5380. doi:10.1158/1078-0432.CCR-10-0480

    Google Scholar 

  • Wahner Hendrickson AE, Haluska P, Schneider PA, Loegering DA, Peterson KL, Attar R, Smith BD, Erlichman C, Gottardis M, Karp JE, Carboni JM, Kaufmann SH (2009) Expression of insulin receptor isoform A and insulin-like growth factor-1 receptor in human acute myelogenous leukemia: effect of the dual-receptor inhibitor BMS-536924 in vitro. Cancer Res 19:7635–7643. doi:10.1158/0008-5472.CAN-09-0511

    Google Scholar 

  • Wakabayashi M, Miwa H, Shikami M, Hiramatsu A, Ikai T, Tajima E, Yamamoto H, Miura K, Satoh A, Itoh M, Imamura A, Mihara H, Katoh Y, Nitta M (2004) Autocrine pathway of angiopoietins-Tie2 system in AML cells: association with phosphatidyl-inositol 3 kinase. Hematol J 4:353–360. doi:10.1038/sj.thj.62004106200410[pii]

    Google Scholar 

  • Waldner MJ, Neurath MF (2012) Targeting the VEGF signaling pathway in cancer therapy. Expert Opin Ther Targets 1:5–13. doi:10.1517/14728222.2011.641951

    Google Scholar 

  • Wander SA, Hennessy BT, Slingerland JM (2011) Next-generation mTOR inhibitors in clinical oncology: how pathway complexity informs therapeutic strategy. J Clin Invest 4:1231–1241. doi:10.1172/JCI44145

    Google Scholar 

  • Weisberg E, Banerji L, Wright RD, Barrett R, Ray A, Moreno D, Catley L, Jiang J, Hall-Meyers E, Sauveur-Michel M, Stone R, Galinsky I, Fox E, Kung AL, Griffin JD (2008) Potentiation of antileukemic therapies by the dual PI3K/PDK-1 inhibitor, BAG956: effects on BCR-ABL- and mutant FLT3-expressing cells. Blood 7:3723–3734. doi:10.1182/blood-2007-09-114454

    Google Scholar 

  • Weisberg E, Sattler M, Ray A, Griffin JD (2010) Drug resistance in mutant FLT3-positive AML. Oncogene 37:5120–5134. doi:10.1038/onc.2010.273

    Google Scholar 

  • Willems L, Chapuis N, Puissant A, Maciel TT, Green AS, Jacque N, Vignon C, Park S, Guichard S, Herault O, Fricot A, Hermine O, Moura IC, Auberger P, Ifrah N, Dreyfus F, Bonnet D, Lacombe C, Mayeux P, Bouscary D, Tamburini J (2011) The dual mTORC1 and mTORC2 inhibitor AZD8055 has anti-tumor activity in acute myeloid leukemia. Leukemia 26(6):1195–1202 doi:10.1038/leu.2011.339

    PubMed  Google Scholar 

  • Workman P, Clarke PA, Raynaud FI, van Montfort RL (2010) Drugging the PI3 kinome: from chemical tools to drugs in the clinic. Cancer Res 6:2146–2157. doi:10.1158/0008-5472.CAN-09-4355

    Google Scholar 

  • Wymann MP, Bulgarelli-Leva G, Zvelebil MJ, Pirola L, Vanhaesebroeck B, Waterfield MD, Panayotou G (1996) Wortmannin inactivates phosphoinositide 3-kinase by covalent modification of Lys-802, a residue involved in the phosphate transfer reaction. Mol Cell Biol 4:1722–1733

    Google Scholar 

  • Xu Q, Simpson SE, Scialla TJ, Bagg A, Carroll M (2003) Survival of acute myeloid leukemia cells requires PI3 kinase activation. Blood 3:972–980. doi:10.1182/blood-2002-11-3429

    Google Scholar 

  • Xu Q, Thompson JE, Carroll M (2005a) mTOR regulates cell survival after etoposide treatment in primary AML cells. Blood 13:4261–4268. doi:10.1182/blood-2004-11-4468

    Google Scholar 

  • Xu RH, Pelicano H, Zhang H, Giles FJ, Keating MJ, Huang P (2005b) Synergistic effect of targeting mTOR by rapamycin and depleting ATP by inhibition of glycolysis in lymphoma and leukemia cells. Leukemia 12:2153–8. doi:10.1038/sj.leu.2403968

    Google Scholar 

  • Yap TA, Garrett MD, Walton MI, Raynaud F, de Bono JS, Workman P (2008) Targeting the PI3K-AKT-mTOR pathway: progress, pitfalls, and promises. Curr Opin Pharmacol 4:393–412. doi:10.1016/j.coph.2008.08.004

    Google Scholar 

  • Yea SS, Fruman DA (2011) Cell signaling. New mTOR targets Grb attention. Science 6035:1270–1271. doi:10.1126/science.1208071

    Google Scholar 

  • Yecies JL, Manning BD (2011) Transcriptional control of cellular metabolism by mTOR signaling. Cancer Res 71 (8):2815–2820. doi:10.1158/0008-5472.CAN-10-4158

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yecies D, Carlson NE, Deng J, Letai A (2010) Acquired resistance to ABT-737 in lymphoma cells that up-regulate MCL-1 and BFL-1. Blood 16:3304–3313. doi:blood-2009-07-233304[pii]10.1182/blood-2009-07-233304

    Google Scholar 

  • Yilmaz OH, Valdez R, Theisen BK, Guo W, Ferguson DO, Wu H, Morrison SJ (2006) Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature 7092:475–482. doi:nature04703 [pii] 10.1038/nature04703

    Google Scholar 

  • Youle RJ, Strasser A (2008) The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 1:47–59. doi:10.1038/nrm2308

    Google Scholar 

  • Young A, Lyons J, Miller AL, Phan VT, Alarcon IR, McCormick F (2009) Ras signaling and therapies. Adv Cancer Res 102:1–17. doi:10.1016/S0065-230X(09)02001-6

    CAS  PubMed  Google Scholar 

  • Yu C, Rahmani M, Dai Y, Conrad D, Krystal G, Dent P, Grant S (2003) The lethal effects of pharmacological cyclin-dependent kinase inhibitors in human leukemia cells proceed through a phosphatidylinositol 3-kinase/Akt-dependent process. Cancer Res 8:1822–1833

    Google Scholar 

  • Yu K, Toral-Barza L, Shi C, Zhang WG, Lucas J, Shor B, Kim J, Verheijen J, Curran K, Malwitz DJ, Cole DC, Ellingboe J, Ayral-Kaloustian S, Mansour TS, Gibbons JJ, Abraham RT, Nowak P, Zask A (2009) Biochemical, cellular, and in vivo activity of novel ATP-competitive and selective inhibitors of the mammalian target of rapamycin. Cancer Res 15:6232–6240. doi:10.1158/0008-5472.CAN-09-0299

    Google Scholar 

  • Yu K, Shi C, Toral-Barza L, Lucas J, Shor B, Kim JE, Zhang WG, Mahoney R, Gaydos C, Tardio L, Kim SK, Conant R, Curran K, Kaplan J, Verheijen J, Ayral-Kaloustian S, Mansour TS, Abraham RT, Zask A, Gibbons JJ (2010) Beyond rapalog therapy: preclinical pharmacology and antitumor activity of WYE – 125132, an ATP-competitive and specific inhibitor of mTORC1 and mTORC2. Cancer Res 2:621–631. doi:10.1158/0008-5472.CAN-09-2340

    Google Scholar 

  • Zaytseva YY, Valentino JD, Gulhati P, Mark Evers B (2012) mTOR inhibitors in cancer therapy. Cancer Lett 319:1–7.doi:10.1016/j.canlet.2012.01.005

    CAS  PubMed  Google Scholar 

  • Zeng Z, Samudio IJ, Zhang W, Estrov Z, Pelicano H, Harris D, Frolova O, Hail N, Jr., Chen W, Kornblau SM, Huang P, Lu Y, Mills GB, Andreeff M, Konopleva M (2006) Simultaneous inhibition of PDK1/AKT and Fms-like tyrosine kinase 3 signaling by a small-molecule KP372-1 induces mitochondrial dysfunction and apoptosis in acute myelogenous leukemia. Cancer Res 7:3737–3746. doi:10.1158/0008-5472.CAN-05-1278

    Google Scholar 

  • Zeng Z, Sarbassov dos D, Samudio IJ, Yee KW, Munsell MF, Ellen Jackson C, Giles FJ, Sabatini DM, Andreeff M, Konopleva M (2007) Rapamycin derivatives reduce mTORC2 signaling and inhibit AKT activation in AML. Blood 8:3509–3512. doi:10.1182/blood-2006-06-030833

    Google Scholar 

  • Zeng Z, Shi YX, Samudio IJ, Wang RY, Ling X, Frolova O, Levis M, Rubin JB, Negrin RR, Estey EH, Konoplev S, Andreeff M, Konopleva M (2009) Targeting the leukemia microenvironment by CXCR4 inhibition overcomes resistance to kinase inhibitors and chemotherapy in AML. Blood 24:6215–6224. doi:blood-2008-05-158311 [pii]10.1182/blood-2008-05-158311

    Google Scholar 

  • Zhang J, Grindley JC, Yin T, Jayasinghe S, He XC, Ross JT, Haug JS, Rupp D, Porter-Westpfahl KS, Wiedemann LM, Wu H, Li L (2006) PTEN maintains haematopoietic stem cells and acts in lineage choice and leukaemia prevention. Nature 441(7092):518–522. doi:nature04747 [pii] 10.1038/nature04747

    CAS  PubMed  Google Scholar 

  • Zhang X, Tang N, Hadden TJ, Rishi AK (2011) Akt, FoxO and regulation of apoptosis. Biochim Biophys Acta 11:1978–1986. doi:10.1016/j.bbamcr.2011.03.010

    Google Scholar 

  • Zhao S, Konopleva M, Cabreira-Hansen M, Xie Z, Hu W, Milella M, Estrov Z, Mills GB, Andreeff M (2004) Inhibition of phosphatidylinositol 3-kinase dephosphorylates BAD and promotes apoptosis in myeloid leukemias. Leukemia 2:267–275. doi:10.1038/sj.leu.24032202403220 [pii]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Fruman .

Editor information

Editors and Affiliations

Conclusion

Conclusion

Activation of the PI3K/AKT/mTOR network is now considered a hallmark of cancer cells that promotes survival and proliferation through multiple mechanisms (Hanahan and Weinberg 2011). Consistent evidence from AML cell lines and patient AML blasts clearly shows that the PI3K/AKT/mTOR network is an oncogenic driver in AML and that pharmacological targeting of the network has demonstrable antileukemic effects. Nevertheless, AML is a heterogeneous disease with multiple oncogenic mechanisms that vary among patients. As in other hematological malignancies , inhibition of a single network is not likely to provide a uniformly strong cytotoxic effect. Further studies are required to determine the most effective combinations to eradicate AML blasts and leukemia initiating cells while minimizing toxicity to normal tissue. Biomarker analysis can aid in determining which patients will benefit from a particular inhibitor combination. Genomic and proteomic strategies will help to identify patients most likely to benefit from PI3K/AKT/mTOR network suppression and which companion therapies will unleash the greatest antileukemic response.

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag New York

About this chapter

Cite this chapter

Beagle, B., Fruman, D. (2015). The PI3K-AKT-mTOR Signaling Network in AML. In: Andreeff, M. (eds) Targeted Therapy of Acute Myeloid Leukemia. Current Cancer Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1393-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1393-0_17

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1392-3

  • Online ISBN: 978-1-4939-1393-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics