Skip to main content

Hyperbilirubinemia and Antioxidant Defenses in the Neonate

  • Chapter
  • First Online:
Perinatal and Prenatal Disorders
  • 788 Accesses

Abstract

Bilirubin contributes to the antioxidant activity in human plasma, and the elevated concentrations of bilirubin associated with neonatal hyperbilirubinemia likely provide “additional” antioxidant defense. This chapter summarizes the different forms of bilirubin in the context of hyperbilirubinemia and how they may protect extracellular and cellular lipids and proteins from oxidative damage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tenhunen R, Marver HS, Schmid R. The enzymatic conversion of heme to bilirubin by microsomal heme oxygenase. Proc Natl Acad Sci U S A. 1968;61:748–55.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Unno M, Matsui T, Ikeda-Saito M. Crystallographic studies of heme oxygenase complexed with an unstable reaction intermediate, verdoheme. J Inorg Biochem. 2012;113:102–9.

    Article  CAS  PubMed  Google Scholar 

  3. Gåfvels M, Holmström P, Somell A, Sjövall F, Svensson JO, Ståhle L, Broomé U, Stål P.A novel mutation in the biliverdin reductase-A gene combined with liver cirrhosis results in hyperbiliverdinaemia (green jaundice). Liver Int. 2009;29:1116–24.

    Article  PubMed  Google Scholar 

  4. Zunszain PA, Ghuman J, McDonagh AF, Curry S. Crystallographic analysis of human serum albumin complexed with 4Z,15E-bilirubin-IXα. J Mol Biol. 2008;381:394–406.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Minomo A, Ishima Y, Kragh-Hansen U, Chuang VT, Uchida M, Taguchi K, Watanabe H, Maruyama T, Morioka H, Otagiri M. Biological characteristics of two lysines on human serum albumin in the high-affinity binding of 4Z,15Z-bilirubin-IXα revealed by phage display. FEBS J. 2011;278:4100–11.

    Article  CAS  PubMed  Google Scholar 

  6. Goncharova I, Orlov S, Urbanová M. The location of the high- and low-affinity bilirubin-binding sites on serum albumin: ligand-competition analysis investigated by circular dichroism. Biophys Chem. 2013;180–181:55–65.

    Article  PubMed  Google Scholar 

  7. Daood MJ, McDonagh AF, Watchko JF. Calculated free bilirubin levels and neurotoxicity. J Perinatol. 2009;29:S14–9.

    Article  CAS  PubMed  Google Scholar 

  8. Wennberg RP, Ahlfors CE, Bhutani VK, Johnson LH, Shapiro SM. Toward understanding kernicterus: a challenge to improve the management of jaundiced newborns. Pediatrics. 2006;117:474–85.

    Article  PubMed  Google Scholar 

  9. Nies AT, Keppler D. The apical conjugate efflux pump ABCC2 (MRP2). Pflugers Arch Eur J Physiol. 2007;453:643–59.

    Article  CAS  Google Scholar 

  10. McDonagh AF, Palma LA, Lauff JJ, Wu TW. Origin of mammalian biliprotein and rearrangement of bilirubin glucuronides in vivo in the rat. J Clin Invest. 1984;74:763–70.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. McDonagh AF, Lightner DA. ‘Like a shrivelled blood orange’ – bilirubin, jaundice, and phototherapy. Pediatrics. 1985;75:443–55.

    CAS  PubMed  Google Scholar 

  12. Ruud Hansen TW. Phototherapy for neonatal jaundice – therapeutic effects on more than one level? Semin Perinatol. 2010;34:231–4.

    Article  PubMed  Google Scholar 

  13. Gopinathan V, Miller NJ, Milner AD, Rice-Evans CA. Bilirubin and ascorbate antioxidant activity in neonatal plasma. FEBS Lett. 1994;349:197–200.

    Article  CAS  PubMed  Google Scholar 

  14. Dennery PA, Seidman DS, Stevenson DK. Neonatal hyperbilirubinemia. N Engl J Med. 2001;344:581–90.

    Article  CAS  PubMed  Google Scholar 

  15. Pearson HA. Life-span of the fetal red blood cell. J Pediatr. 1967;70:166–71.

    Article  CAS  PubMed  Google Scholar 

  16. Kawade N, Onishi S. The prenatal and postnatal development of UDP-glucuronyltransferase activity towards bilirubin and the effect of premature birth on this activity in the human liver. Biochem J. 1981;196:257–60.

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Myara A, Sender A, Valette V, Rostoker C, Paumier D, Capoulade C, Loridon F, Bouillie J, Milliez J, Brossard Y, Trivin F. Early changes in cutaneous bilirubin and serum bilirubin isomers during intensive phototherapy of jaundiced neonates with blue and green light. Biol Neonate. 1997;71:75–82.

    Article  CAS  PubMed  Google Scholar 

  18. Stocker R, Yamamoto Y, McDonagh AF, Glazer AN, Ames BN. Bilirubin is an antioxidant of possible physiological importance. Science. 1987;235:1043–6.

    Article  CAS  PubMed  Google Scholar 

  19. Burton GW, Joyce A, Ingold KU. Is vitamin E the only lipid-soluble, chain-breaking antioxidant in human blood plasma and erythrocyte membranes? Arch Biochem Biophys. 1983;221:281–90.

    Article  CAS  PubMed  Google Scholar 

  20. Stocker R. Antioxidant activities of bile pigments. Antioxid Redox Signal. 2004;6:841–9.

    Article  CAS  PubMed  Google Scholar 

  21. Stocker R, Glazer AN, Ames BN. Antioxidant activity of albumin bound bilirubin. Proc Natl Acad Sci U S A. 1987;84:5918–22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Hatfield GL, Barclay LR. Bilirubin as an antioxidant: kinetic studies of the reaction of bilirubin with peroxyl radicals in solution, micelles, and lipid bilayers. Org Lett. 2004;6:1539–42.

    Article  CAS  PubMed  Google Scholar 

  23. Chepelev LL, Beshara CS, MacLean PD, Hatfield GL, Rand AA, Thompson A, Wright JS, Barclay LR. Polypyrroles as antioxidants: kinetic studies on reactions of bilirubin and biliverdin dimethyl esters and synthetic model compounds with peroxyl radicals in solution. Chemical calculations on selected typical structures. J Org Chem. 2006;71:22–30.

    Article  CAS  PubMed  Google Scholar 

  24. MacLean PD, Drake EC, Ross L, Barclay C. Bilirubin as an antioxidant in micelles and lipid bilayers: its contribution to the total antioxidant capacity of human blood plasma. Free Radic Biol Med. 2007;43:600–9.

    Article  CAS  PubMed  Google Scholar 

  25. Stocker R, Lai A, Peterhans E, Ames BN. Medical, biochemical and chemical aspects of free radicals. In: Hayaishi O, Niki E, Kondo M, Yoshikawa Y, editors. Antioxidant properties of bilirubin and biliverdin. Amsterdam: Elsevier; 1988. p. 465–8.

    Google Scholar 

  26. Stocker R, Peterhans E. Synergistic interaction between vitamin E and the bile pigments bilirubin and biliverdin. Biochim Biophys Acta. 1989;1002:238–44.

    Article  CAS  PubMed  Google Scholar 

  27. Neuzil J, Stocker R. Free and albumin-bound bilirubin is an efficient co-antioxidant for α-tocopherol, inhibiting plasma and low density lipoprotein lipid peroxidation. J Biol Chem. 1994;269:16712–9.

    CAS  PubMed  Google Scholar 

  28. Thomas SR, Davies MJ, Stocker R. Oxidation and antioxidation of human low-density lipoprotein and plasma exposed to 3-morpholinosydnonimine and reagent peroxynitrite. Chem Res Toxicol. 1998;11:484–94.

    Article  CAS  PubMed  Google Scholar 

  29. Wu TW, Fung KP, Wu J, Yang CC, Weisel RD. Antioxidation of human low density lipoprotein by unconjugated and conjugated bilirubins. Biochem Pharmacol. 1996;51:859–62.

    Article  CAS  PubMed  Google Scholar 

  30. Wu TW, Fung KP, Yang CC. Unconjugated bilirubin inhibits the oxidation of human low density lipoprotein better than Trolox. Life Sci. 1994;54:PL477–81.

    Google Scholar 

  31. Hulea SA, Wasowicz E, Kummerow FA. Inhibition of metal-catalyzed oxidation of low-density lipoprotein by free and albumin-bound bilirubin. Biochim Biophys Acta. 1995;1259:29–38.

    Article  PubMed  Google Scholar 

  32. Thomas SR, Witting PK, Stocker R. 3-Hydroxyanthranilic acid is an efficient, cell-derived co-antioxidant for α-tocopherol, inhibiting human low density lipoprotein and plasma lipid peroxidation. J Biol Chem. 1996;271:32714–21.

    Article  CAS  PubMed  Google Scholar 

  33. Neuzil J, Thomas SR, Stocker R. Requirement for, promotion, or inhibition by α-tocopherol of radical-induced initiation of plasma lipoprotein lipid peroxidation. Free Radic Biol Med. 1997;22:57–71.

    Article  CAS  PubMed  Google Scholar 

  34. Minetti M, Mallozzi C, Di Stasi AM, Pietraforte D. Bilirubin is an effective antioxidant of peroxynitrite-mediated protein oxidation in human blood plasma. Arch Biochem Biophys. 1998;352:165–74.

    Article  CAS  PubMed  Google Scholar 

  35. Neuzil J, Stocker R. Bilirubin attenuates radical-mediated damage to serum albumin. FEBS Lett. 1993;331:281–4.

    Article  CAS  PubMed  Google Scholar 

  36. Adhikari S, Gopinathan C. Oxidation reactions of a bovine serum albumin-bilirubin complex. A pulse radiolysis study. Int J Radiat Biol. 1996;69:89–98.

    Article  CAS  PubMed  Google Scholar 

  37. Kwak JY, Takeshige K, Cheung BS, Minakami S. Bilirubin inhibits the activation of superoxide-producing NADPH oxidase in a neutrophil cell-free system. Biochim Biophys Acta. 1991;1076:369–73.

    Article  CAS  PubMed  Google Scholar 

  38. Lanone S, Bloc S, Foresti R, Almolki A, Taillé C, Callebert J, Conti M, Goven D, Aubier M, Dureuil B, El-Benna J, Motterlini R, Boczkowski J. Bilirubin decreases nos2 expression via inhibition of NAD(P)H oxidase: implications for protection against endotoxic shock in rats. FASEB J. 2005;19:1890–2.

    CAS  PubMed  Google Scholar 

  39. Weinberger B, Archer FE, Kathiravan S, Hirsch DS, Kleinfeld AM, Vetrano AM, Hegyi T. Effects of bilirubin on neutrophil responses in newborn infants. Neonatology. 2013;103:105–11.

    Article  CAS  PubMed  Google Scholar 

  40. Doré S, Takahashi M, Ferris CD, Hester LD, Guastella D, Snyder SH. Bilirubin, formed by activation of heme oxygenase-2, protects neurons against oxidative stress injury. Proc Natl Acad Sci U S A. 1999;96:2445–50.

    Article  PubMed Central  PubMed  Google Scholar 

  41. Wu TW, Wu J, Li RK, Mickle D, Carey D. Albumin-bound bilirubins protect human ventricular myocytes against oxyradical damage. Biochem Cell Biol. 1991;69:683–8.

    Article  CAS  PubMed  Google Scholar 

  42. Clark JE, Foresti R, Green CJ, Motterlini R. Dynamics of haem oxygenase-1 expression and bilirubin production in cellular protection against oxidative stress. Biochem J. 2000;348:615–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Keshavan P, Deem TL, Schwemberger SJ, Babcock GF, Cook-Mills JM, Zucker SD. Unconjugated bilirubin inhibits VCAM-1-mediated transendothelial leukocyte migration. J Immunol. 2005;174:3709–18.

    Article  CAS  PubMed  Google Scholar 

  44. Rocuts F, Zhang X, Yan J, Yue Y, Thomas M, Bach FH, Czismadia E, Wang H. Bilirubin promotes de novo generation of T regulatory cells. Cell Transplant. 2010;19:443–51.

    Article  PubMed  Google Scholar 

  45. Wang WW, Smith DL, Zucker SD. Bilirubin inhibits iNOS expression and NO production in response to endotoxin in rats. Hepatology. 2004;40:424–33.

    Article  CAS  PubMed  Google Scholar 

  46. Clark JE, Foresti R, Sarathchandra P, Kaur H, Green CJ, Motterlini R. Heme oxygenase-1-derived bilirubin ameliorates postischemic myocardial dysfunction. Am J Physiol Heart Circ Physiol. 2000;278:H643–51.

    CAS  PubMed  Google Scholar 

  47. Adin CA, Croker BP, Agarwal A. Protective effects of exogenous bilirubin on ischemia-reperfusion injury in the isolated, perfused rat kidney. Am J Physiol Renal Physiol. 2005;288:F778–84.

    Article  CAS  PubMed  Google Scholar 

  48. Arriaga SM, Mottino AD, Almara AM. Inhibitory effect of bilirubin on complement-mediated hemolysis. Biochim Biophys Acta. 1999;1473:329–36.

    Article  CAS  PubMed  Google Scholar 

  49. Wang HD, Yamaya M, Okinaga S, Jia YX, Kamanaka M, Takahashi H, Guo LY, Ohrui T, Sasaki H. Bilirubin ameliorates bleomycin-induced pulmonary fibrosis in rats. Am J Respir Crit Care Med. 2002;165:406–11.

    Article  PubMed  Google Scholar 

  50. Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature. 2000;408:239–47.

    Article  CAS  PubMed  Google Scholar 

  51. Halliwell B, Gutteridge JMC. Free radicals in biology and medicine. 4th ed. Oxford: Oxford University Press; 2007. p. 1–851.

    Google Scholar 

  52. Lönn ME, Dennis JM, Stocker R. Actions of “antioxidants” in the protection against atherosclerosis. Free Radic Biol Med. 2012;53:863–84.

    Article  PubMed  Google Scholar 

  53. Woo HA, Yim SH, Shin DH, Kang D, Yu DY, Rhee SG. Inactivation of peroxiredoxin I by phosphorylation allows localized H2O2 accumulation for cell signaling. Cell. 2010;140:517–28.

    Article  CAS  PubMed  Google Scholar 

  54. Washko PW, Wang Y, Levine M. Ascorbic acid recycling in human neutrophils. J Biol Chem. 1993;268:15531–5.

    CAS  PubMed  Google Scholar 

  55. Agar NS, Sadrzadeh SMC, Hallaway PE, Eaton JW. Erythrocyte catalase. A somatic oxidant defense? J Clin Invest. 1986;77:319–21.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Low FM, Hampton MB, Peskin AV, Winterbourn CC. Peroxiredoxin 2 functions as a noncatalytic scavenger of low-level hydrogen peroxide in the erythrocyte. Blood. 2007;109:2611–7.

    Article  CAS  PubMed  Google Scholar 

  57. Bayer SB, Maghzal G, Stocker R, Hampton MB, Winterbourn CC. Neutrophil-mediated oxidation of erythrocyte peroxiredoxin 2 as a potential marker of oxidative stress in inflammation. FASEB J. 2013;27:3315–22.

    Article  CAS  PubMed  Google Scholar 

  58. Rong Z, Wilson MT, Cooper CE. A model for the nitric oxide producing nitrite reductase activity of hemoglobin as a function of oxygen saturation. Nitric Oxide. 2013;33C:74–80.

    Article  Google Scholar 

  59. Gershman R, Gilbert DL, Nye SW, Dwyer P, Fenn WO. Oxygen poisoning and X-irradiation: a mechanism in common. Science. 1954;119:623–6.

    Article  Google Scholar 

  60. Evans PJ, Evans R, Kovar IZ, Holton AF, Halliwell B. Bleomycin-detectable iron in the plasma of premature and full-term neonates. FEBS Lett. 1992;303:210–2.

    Article  CAS  PubMed  Google Scholar 

  61. Lindeman JH, van Zoeren-Grobben D, Schrijver J, Speek AJ, Poorthuis BJHM, Berger HM. The total free radical trapping ability of cord blood plasma in preterm and term babies. Pediatr Res. 1989;26:20–4.

    Article  CAS  PubMed  Google Scholar 

  62. Finckh B, Kontush A, Commentz J, Hübner C, Burdelski M, Kohlschütter A. Monitoring of ubiquinol-10, ubiquinone-10, carotenoids, and tocopherols in neonatal plasma microsamples using high-performance liquid chromatography with coulometric electrochemical detection. Anal Biochem. 1995;232:210–6.

    Article  CAS  PubMed  Google Scholar 

  63. Frei B, Stocker R, Ames BN. Antioxidant defenses and lipid peroxidation in human blood plasma. Proc Natl Acad Sci U S A. 1988;85:9748–52.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Bohn H, Schönafinger K. Oxygen and oxidation promote the release of nitric oxide from sydnonimines. J Cardiovasc Pharmacol. 1989;14 Suppl 11:S6–12.

    Article  CAS  PubMed  Google Scholar 

  65. Blough NV, Zafiriou OC. Reaction of superoxide with nitric oxide to form peroxynitrite in alkaline aqueous solution. Inorg Chem. 1985;24:3502–4.

    Article  CAS  Google Scholar 

  66. Nauser T, Koppenol WH. The rate constant of the reaction of superoxide with nitrogen monoxide: approaching the diffusion limit. J Phys Chem A. 2002;106:4084–6.

    Article  CAS  Google Scholar 

  67. Hampton MB, Kettle AJ, Winterbourn CC. Inside the neutrophil phagosome: oxidants, myeloperoxidase, and bacterial killing. Blood. 1998;92:3007–17.

    CAS  PubMed  Google Scholar 

  68. Pedersen AO, Schønheyder F, Brodersen R. Photooxidation of human serum albumin and its complex with bilirubin. Eur J Biochem. 1977;72:213–21.

    Article  CAS  PubMed  Google Scholar 

  69. Neuzil J, Gebicki JM, Stocker R. Radical-induced chain oxidation of proteins and its inhibition by chain-breaking antioxidants. Biochem J. 1993;293:601–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  70. McDonagh AF. The biliverdin-bilirubin antioxidant cycle of cellular protection: missing a wheel? Free Radic Biol Med. 2010;49:814–20.

    Article  CAS  PubMed  Google Scholar 

  71. Waldeck AR, Stocker R. Radical-initiated lipid peroxidation in low density lipoproteins: insights obtained from kinetic modeling. Chem Res Toxicol. 1996;9:954–64.

    Article  CAS  PubMed  Google Scholar 

  72. Bowry VW, Stocker R. Tocopherol-mediated peroxidation. The pro-oxidant effect of vitamin E on the radical-initiated oxidation of human low-density lipoprotein. J Am Chem Soc. 1993;115:6029–44.

    Article  CAS  Google Scholar 

  73. Bowry VW, Mohr D, Cleary J, Stocker R. Prevention of tocopherol-mediated peroxidation of ubiquinol-10-free human low density lipoprotein. J Biol Chem. 1995;270:5756–63.

    Article  CAS  PubMed  Google Scholar 

  74. Witting PK, Westerlund C, Stocker R. A rapid and simple screening test for potential inhibitors of tocopherol-mediated peroxidation of LDL lipids. J Lipid Res. 1996;37:853–67.

    CAS  PubMed  Google Scholar 

  75. Barañano DE, Rao M, Ferris CD, Snyder SH. Biliverdin reductase: a major physiologic cytoprotectant. Proc Natl Acad Sci U S A. 2002;99:16093–8.

    Article  PubMed Central  PubMed  Google Scholar 

  76. Maghzal GJ, Leck MC, Collinson E, Li C, Stocker R. Limited role for the bilirubin-biliverdin redox amplification cycle in the cellular antioxidant protection by biliverdin reductase. J Biol Chem. 2009;284:29251–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Jansen T, Hortmann M, Oelze M, Opitz B, Steven S, Schell R, Knorr M, Karbach S, Schuhmacher S, Wenzel P, Münzel T, Daiber A. Conversion of biliverdin to bilirubin by biliverdin reductase contributes to endothelial cell protection by heme oxygenase-1-evidence for direct and indirect antioxidant actions of bilirubin. J Mol Cell Cardiol. 2010;49:186–95.

    Article  CAS  PubMed  Google Scholar 

  78. Poss KD, Tonegawa S. Reduced stress defense in heme oxygenase 1-deficient cells. Proc Natl Acad Sci U S A. 1997;94:10925–30.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Ryter SW, Alam J, Choi AM. Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications. Physiol Rev. 2006;86:583–650.

    Article  CAS  PubMed  Google Scholar 

  80. Li C, Lönn M, Xu X, Maghzal GJ, Frazer DM, Thomas SR, Halliwell B, Richardson DR, Anderson GJ, Stocker R. Sustained expression of heme oxygenase-1 alters iron homeostasis in nonerythroid cells. Free Radic Biol Med. 2012;53:366–74.

    Article  CAS  PubMed  Google Scholar 

  81. Dennery PA, McDonagh AF, Spitz DR, Rodgers PA, Stevenson DK. Hyperbilirubinemia results in reduced oxidative injury in neonatal Gunn rats exposed to hyperoxia. Free Radic Biol Med. 1995;19:395–404.

    Article  CAS  PubMed  Google Scholar 

  82. McDonagh AF. The role of singlet oxygen in bilirubin photo-oxidation. Biochem Biophys Res Commun. 1971;44:1306–11.

    Article  CAS  PubMed  Google Scholar 

  83. Deziel MR, Girotti AW. Photodynamic action of bilirubin on liposomes and erythrocyte membranes. J Biol Chem. 1980;255:8192–8.

    CAS  PubMed  Google Scholar 

  84. Girotti AW. Bilirubin-photosensitized cross-linking of polypeptides in the isolated membrane of the human erythrocyte. J Biol Chem. 1978;253:7186–93.

    CAS  PubMed  Google Scholar 

  85. Mireles LC, Lum MA, Dennery PA. Antioxidant and cytotoxic effects of bilirubin on neonatal erythrocytes. Pediatr Res. 1999;45:355–62.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

R.S. is supported by a Senior Principal Research Fellowship from the Australian National Health and Medical Research Council (NHMRC) and the Victor Chang Cardiac Research Institute. His current research is supported by NHMRC Project Grants 1020400, 1020776, 1049381, and 1050776 and by the Australian Research Council Discovery Project 120103170.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Stocker Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Stocker, R. (2014). Hyperbilirubinemia and Antioxidant Defenses in the Neonate. In: Dennery, P., Buonocore, G., Saugstad, O. (eds) Perinatal and Prenatal Disorders. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1405-0_15

Download citation

Publish with us

Policies and ethics