Skip to main content

Miscanthus

  • Chapter
  • First Online:
Industrial Crops

Part of the book series: Handbook of Plant Breeding ((HBPB,volume 9))

Abstract

Miscanthus is a perennial rhizomatous warm-season C4 grass species and is native throughout Eastern Asia and Pacific islands, ranging from tropical Polynesia to southern Siberia. Conventionally, the genus showed some attractive features for domestic uses such as livestock feed, as green manure, as well as roof materials for traditional Asian houses. In recent years, the genus has received considerable attention as a feedstock source of biorefineries such as biofuel production for sustainable renewable energy in cold and temperate environments. Miscanthus × giganteus, which is a triploid hybrid between M. sinensis and M. sacchariflorus, exhibits promise as a biomass crop because it has high biomass productivity under cold and temperate environments, low fertilizer requirements, and high ability of carbon stock in soil. However, presently only one genotype of M. × giganteus is widely cultivated. This came from a germplasm introduced to Europe from Japan in 1935, resulting to an increased risk of widespread plant mortality due to diseases or pests. Therefore, the collection of genetic resources of Miscanthus spp. and genetic improvement of Miscanthus spp. through hybridization and selection methods is essential for future increase in feedstock production. Molecular breeding will offer good opportunities, especially for value-added traits such as enhanced biomass, abiotic stress tolerance, and saccharification efficiency. This chapter describes the genetics and breeding of Miscanthus spp., their characteristics and their taxonomy, and progress in genetic improvement of Miscanthus spp. through conventional and molecular breeding including current research activities of the author’s group.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tyner WE. The US, ethanol and biofuels boom: its origins, current status, and future prospects. Bioscience. 2008;58:646–53.

    Google Scholar 

  2. Pimentel D, Patzek TW. Ethanol production using corn, switchgrass, and wood; biodiesel production using soybean and sunflower. Nat Resour Res. 2005;14:65–76.

    CAS  Google Scholar 

  3. Lewandowski I, Kicherer A, Vonier P. CO2-balance for the cultivation and combustion of Miscanthus. Biomass Bioenergy. 1995;8:81–90.

    CAS  Google Scholar 

  4. Lewandowski I, Kicherer A. Combustion quality of biomass: practical relevance and experiments to modify the biomass quality of Miscanthus × giganteus. Eur J Agron. 1997;6:163–77.

    Google Scholar 

  5. Clifton-Brown JC, Stampfl PF, Jones MB. Miscanthus biomass production for energy in Europe and its potential contribution to decreasing fossil fuel carbon emission. Glob Chang Biol. 2004;10:509–18.

    Google Scholar 

  6. Fargione J, Hill J, Tilman D, Polasky S, Hawthorne P. Land clearing and the biofuel carbon debt. Science. 2008;319:1235–8.

    CAS  PubMed  Google Scholar 

  7. Timothy S, Ralph H, Houghton RA, Fengxia D, Amani E, Jacinto F, Simla T, et al. Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change. Science. 2008;319:1238–40.

    Google Scholar 

  8. Oliver RJ, Finch JW, Taylor G. Second generation bioenergy crops and climate change: a review of the effects of elevated atmospheric CO2 and drought on water use and the applications for yield. Glob Chang Biol Bioenergy. 2009;1:97–114.

    CAS  Google Scholar 

  9. Somerville C. Biofuels. Curr Biol. 2007;17:115–9.

    Google Scholar 

  10. Yuan JS, Tiller KH, Al-Ahmad H, Stewart NR, Stewart CN. Plants to power: bioenergy to fuel the future. Trends Plant Sci. 2008;13:421–9.

    CAS  PubMed  Google Scholar 

  11. Henry RJ. Evaluation of plant biomass resources available for replacement of fossil oil. Plant Biotechnol J. 2010;8:288–93.

    PubMed Central  CAS  PubMed  Google Scholar 

  12. Tilman D, Socolow R, Foley JA, Hill J, Larson E, Lynd L, Pacala S, Reilly J, Searchinger T, Somerville C, Williams R. Beneficial biofuels-the food, energy, and environment trilemma. Science. 2009;325:270–1.

    CAS  PubMed  Google Scholar 

  13. Heaton EA, Frank G, Dohleman FG, Long SP. Meeting biofuel goals with less land: the potential of Miscanthus. Glob Chang Biol. 2008;14:2000–14.

    Google Scholar 

  14. Gomez L, Steele-King CG, McQueen-Mason SJ. Sustainable liquid biofuels from biomass: the writing's on the walls. New Phytol. 2008;178:473–85.

    CAS  PubMed  Google Scholar 

  15. Karp A, Shield I. Bioenergy from plants and the sustainable yield challenge. New Phytol. 2008;179:15–32.

    PubMed  Google Scholar 

  16. Głowacka K. A review of the genetic study of the energy crop Miscanthus. Biomass Bioenergy. 2011;35:2445–54.

    Google Scholar 

  17. Clifton-Brown J, Renvoize S, Chiang YC, Ibaragi Y, Flavell R, Greef J, Huang L, Hsu TW, Kim DS, Hastings A, Schwarz K, Stampfl P, Valentine J, Yamada T, Xi Q, Donnison I. Developing Miscanthus for Bioenergy. In: Halford NG, Karp A, editors. Energy crops. Cambridge: Royal Society of Chemistry; 2011. p. 301–21.

    Google Scholar 

  18. Anzoua KG, Yamada T. Miscanthus species. In: Singh BP, editor. Biofuel crops Production, physiology and genetics. Wallingford: CABI; 2013. p. 231–48.

    Google Scholar 

  19. Hastings A, Clifton-Brown J, Wattenbach M, Mitchell CP, Stampfl P, Smith P. Development of MISCANFOR a new Miscanthus crop growth model: towards more robust yield predictions under different soil and climatic conditions. Glob Chang Biol Bioenergy. 2009;1:154–70.

    Google Scholar 

  20. Lewandowski I, Clifton-Brown JC, Scurlock JMO, Huisman W. Miscanthus: European experience with a novel energy crop. Biomass Bioenergy. 2000;19:209–27.

    CAS  Google Scholar 

  21. Clifton-Brown JC, Breur J, Jones MB. Carbon mitigation by the energy crop, Miscanthus. Glob Chang Biol. 2007;13:2296–307.

    Google Scholar 

  22. Heaton E, Voigt T, Long SP. A quantitative review comparing the yields of two candidate C4 perennial biomass crops in relation to nitrogen, temperature and water. Biomass Bioenergy. 2004;27:21–30.

    Google Scholar 

  23. Prasifka JR, Bradshaw JD, Meagher RL, Nagoshi RN, Steffey KL, Gray ME. Development and feeding of fall armyworm on Miscanthus × giganteus and switchgrass. J Econ Entomol. 2009;102:2154–9.

    CAS  PubMed  Google Scholar 

  24. Chou CH. Miscanthus plants used as an alternative biofuel material: the basic studies on ecology and molecular evolution. Renew Energy. 2009;34:1908–12.

    CAS  Google Scholar 

  25. Clifton-Brown JC, Lewandowski I, Andersson B, Basch G, Christian DG, Kjeldsen JB, Jorgensen U, Mortensen JV, Riche AB, Schwarz KU, Tayebi K, Teixeira F. Performance of 15 Miscanthus genotypes at five sites in Europe. Agron J. 2001;93:1013–9.

    Google Scholar 

  26. Głowacka K, Jezowaski S, Kaczmarek Z. Polyploidization of Miscanthus sinensis and Miscanthus × giganteus by plant colchicine treatment. Ind Crop Prod. 2009;30:444–6.

    Google Scholar 

  27. Yu CY, Kim HS, Rayburn L, Widholm JM, Juvik JA. Chromosome doubling of the bioenergy crop, Miscanthus × giganteus. Glob Chang Biol Bioenergy. 2009;1:404–12.

    Google Scholar 

  28. Petersen KK, Hagberg P, Kristiansen K, Forkmann G. In vitro chromosome doubling of Miscanthus sinensis. Plant Breed. 2002;121:445–50.

    Google Scholar 

  29. Wang X, Yamada T, Kong F-J, Abe Y, Hoshino Y, Sato H, Takamizo T, Kanazawa A, Yamada T. Establishment of an efficient in vitro culture and particle bombardment-mediated transformation systems in Miscanthus sinensis Anderss., a potential bioenergy crop. Glob Chang Biol Bioenergy. 2011;3:2–332.

    Google Scholar 

  30. Greef JM, Deuter M, Jung C, Schondelmaier J. Genetic diversity of European Miscanthus species revealed by AFLP fingerprinting. Genet Resour Crop Evol. 1997;44:185–95.

    Google Scholar 

  31. Deuter M. Breeding approaches to improvement of yield and quality in Miscanthus grown in Europe. In: Lewandowski I, Clifton-Brown J, editors. European Miscanthus Improvement (FAIR3 CT-96-1392) Stuttgart, Germany. Final Report; 2000; 28–52.

    Google Scholar 

  32. Nishiwaki A, Mizuguti A, Kuwabara S, Toma Y, Ishigaki G, Miyashita T, Yamada T, Matuura H, Yamaguchi S, Rayburn AL, Akashi R, Stewart JR. Discovery of natural Miscanthus (Poaceae) triploid plants in sympatric populations of Miscanthus sacchariflorus and Miscanthus sinensis in southern Japan. Am J Bot. 2011;98:154–9.

    PubMed  Google Scholar 

  33. Dwiyanti MS, Rudolph A, Swaminathan K, Nishiwaki A, Shimono Y, Kuwabara S, Matuura H, Nadir M, Moose S, Stewart JR, Yamada T. Genetic analysis of putative triploid Miscanthus hybrids and tetraploid M. sacchariflorus collected from sympatric populations of Kushima, Japan. BioEnergy Res 2013;6:486–93.

    Google Scholar 

  34. Andersson NJ. Om de med Saccharum beslägtade genera. Öfvers Kungl Vet Adad Förh Stockholm. 1856;12:151–68.

    Google Scholar 

  35. Honda M. Monographia Poacearum Japonicarum. Bambusoideis exclusis. J Fac Sci Imp Univ Tokyo, Sect III, Botany 3, part 1, 1930; 376–393.

    Google Scholar 

  36. Adati S. Studies on genus Miscanthus with special reference to the Japanese species for breeding purpose as fodder crops. Bull Fac Agric Mie Univ. 1958;17:1–112 (in Japanese).

    Google Scholar 

  37. Hirayoshi I, Nishikawa K, Kato R. Cytogenetic studies on forage plants (IV) Self-incompatibility in Miscanthus. Jpn J Breed. 1955;5:167–70 (in Japanese).

    Google Scholar 

  38. Hirayoshi I, Nishikawa K, Kubono M, Murase T. Cyto-genetical studies on forage plants (VI) On the chromosome number of Ogi (Miscanthus sacchariflorus). Res Bull Fac Agric Gifu Univ. 1957;8:8–13 (in Japanese).

    Google Scholar 

  39. Hirayoshi I, Nishikawa K, Kubono M, Sakaida T. Cyto-genetical studies on forage plants (VII) Chromosome conjugation and fertility of Miscanthus hybrids including M. sinensis, M. sinensis var. condensatus and M. tinctorius. Res Bull Fac Agric Gifu Univ. 1959;11:86–91 (in Japanese).

    Google Scholar 

  40. Hirayoshi I, Nishikawa K, Hakura A. Cyto-genetical studies on forage plants (VIII) 3x- and 4x- hybrid arisen from the cross Miscanthus sinensis var. condensatus × Miscanthus sacchariflorus. Res Bull Fac Agric Gifu Univ. 1960;12:82–8 (in Japanese).

    Google Scholar 

  41. Adati S, Shiotani I. The cytotaxonomy of the genus Miscanthus and its phylogenetic status. Bull Fac Agric Mie Univ. 1962;25:1–14.

    Google Scholar 

  42. Clifton-Brown J, Chiang YC, Hodkinson TR. Miscanthus: genetic resources and breeding potential to enhance bioenergy production. In: Vermerris W, editor. Genetic improvement of bioenergy crops. New York: Springer; 2008. p. 273–94.

    Google Scholar 

  43. Clayton WD, Renvoize SA. Genera graminum, grasses of the world. Kew Bull Add Series, vol. 13. Royal Bot Gardens, Kew. 1986. p. 1–389.

    Google Scholar 

  44. Hodkinson TR, Chase MW, Takahashi C, Leitch IJ, Bennett MD, Renvoize SA. Phylogenetics of Miscanthus, Saccharum and related genera (Saccharinae, Andropogoneae, Poaceae) based on DNA sequencing from ITS nuclear ribosomal DNA and plastid trnL intron and tmL-F intergenic spacers. J Plant Res. 2002;115:381–92.

    CAS  PubMed  Google Scholar 

  45. Daniels J, Roach BT. Taxonomy and evolution. In: Heinz DJ, editor. Sugarcane improvement through breeding. New York: Elsevier; 1987. p. 7–84.

    Google Scholar 

  46. Greef JM, Deuter M. Syntaxonomy of Miscanthus × giganteus Greef et Deu. Angew Bot. 1993;67:87–90.

    Google Scholar 

  47. Stewart JR, Toma Y, Fernandez F, Nishiwaki A, Yamada T, Bollero G. The ecology and agronomy of Miscanthus sinensis, a species important to bioenergy crop development, in its native range in Japan: a review. Glob Chang Biol Bioenergy. 2009;1:126–53.

    Google Scholar 

  48. Imura O, Shi K. Conservation of biodiversity in grasslands with special reference to butterflies. Agric Hortic. 2004;79:352–7 (in Japanese).

    Google Scholar 

  49. Nishikawa O. Atlas: environmental change in modern Japan. Tokyo: Asakura publishing Co., Ltd; 1995. p. 1–187. (in Japanese).

    Google Scholar 

  50. Matumura M, Iwata E. Using practice of wild grass – mainly about Miscanthus sinensis, Study of susuki. Gifu: Gifu Univ; 1976. p. 117–121 (in Japanese).

    Google Scholar 

  51. Otaki N. Aso grassland for a thousand years. Burning stopped, grassland endangered. Environ Res Q. 1999;114:31–6.

    Google Scholar 

  52. Toma Y, Clifton-Brown J, Sugiyama S, Nakaboh M, Hatano R, Fernández FG, Stewart JR, Nishiwaki A, Yamada T. Soil carbon stocks and carbon sequestration rates in semi-natural grassland in Aso region, Kumamoto, southern Japan. Glob Chang Biol 2013;19:1676–87.

    Google Scholar 

  53. Toma Y, Armstrong K, Stewart JR, Yamada T, Nishiwaki A, Bollero G, Fernández FG. Carbon sequestration in soil in a semi-natural Miscanthus sinensis grassland and Cryptomeria japonica forest plantation in Aso, Kumamoto, Japan. Glob Chang Biol Bioenergy. 2012;4:566–75.

    CAS  Google Scholar 

  54. Schwarz H. Miscanthus sinensis ‘Giganteus’ production on several sites in Austria. Biomass Bioenergy. 1993;5:413–9.

    CAS  Google Scholar 

  55. Jones MB, Walsh M, editors. Miscanthus for energy and fibre. London: James & James; 2001. p. 1–192

    Google Scholar 

  56. Lewandowski I, Schmidt U. Nitrogen, energy and land use efficiencies of miscanthus, reed canary grass and triticale as determined by the boundary line approach. Agr Ecosyst Environ. 2006;112:335–46.

    Google Scholar 

  57. Khanna M, Dhungana B, Clifton-Brown J. Costs of producing miscanthus and switchgrass for bioenergy in Illinois. Biomass Bioenergy. 2008;32:482–93.

    Google Scholar 

  58. Villamil MB, Silvis AH, Bollero GA. Potential miscanthus’ adoption in Illinois: information needs and preferred information channels. Biomass Bioenergy. 2008;32:1338–48.

    Google Scholar 

  59. Naidu SL, Moose SP, AL-Shoaibi AK, Raines CA, Long SP. Cold tolerance of C4 photosynthesis in Miscanthus × giganteus: adaptation in amounts and sequence of C4 photosynthetic enzymes. Plant Physiol. 2003;132:1688–97.

    PubMed Central  CAS  PubMed  Google Scholar 

  60. Lewandowski I, Clifton-Brown JC, Andersson B, Basch G, Christian DG, Jørgensen U, Jones MB, Riche AB, Schwarz U, Tayebi K, Teixeira F. Environment and harvest time affects the combustion qualities of Miscanthus genotypes. Agron J. 2003;95:1274–80.

    Google Scholar 

  61. Clifton-Brown JC, Lewandowski I, Bangerth F, Jones MB. Comparative responses to water stress in stay-green, rapid and slow senescing genotypes of the biomass crop, Miscanthus. New Phytol. 2002;154:335–45.

    Google Scholar 

  62. Dohleman FG, Long SP. More productive than maize in the Midwest: how does Miscanthus do it? Plant Physiol. 2009;150:2104–15.

    PubMed Central  CAS  PubMed  Google Scholar 

  63. Anderson E, Arundale R, Maughan M, Oladeinde A, Wycislo A, Voigt T. Growth and agronomy of Miscanthus × giganteus for biomass production. Biofuels. 2011;2:167–83.

    CAS  Google Scholar 

  64. Linde-Laursen I. Cytogenetic analysis of Miscanthus ‘Giganteus’, an interspecific hybrid. Hereditas. 1993;119:297–300.

    Google Scholar 

  65. Hodkinson TR, Chase MW, Takahashi C, Leitch IJ, Bennet MD, Renvoize SA. The use of DNA sequencing (ITS and trnl-F), AFLP, and fluorescent in situ hybridization to study allopolyploid Miscanthus (Poaceae). Am J Bot. 2002;89:279–86.

    CAS  PubMed  Google Scholar 

  66. Swaminathan K, Alabady MS, Varala K, De Paoli E, Ho I, Rokhsar DS, Arumuganathan AK, Ming R, Green PJ, Meyers BC, Moose SP, Hudson ME. Genomic and small RNA sequencing of Miscanthus × giganteus shows the utility of sorghum as a reference genome sequence for Andropogoneae grasses. Genome Biol. 2010;11:R12.

    PubMed Central  PubMed  Google Scholar 

  67. Hodkinson TR, Renvoize SA. Nomenclature of Miscanthus × giganteus. Kew Bull. 2001;56:757–8.

    Google Scholar 

  68. Hodkinson TR, Chase MW, Takahashi C, Leitch IJ, Bennet MD, Renvoize SA. Characterization of a genetic resources collection for Miscanthus (Saccharinae, Andropogoneae, Poaceae) using AFLP and ISSR PCR. Ann Bot. 2002;89:627–36.

    PubMed Central  CAS  PubMed  Google Scholar 

  69. Sacks EJ, Juvik JA, Lin Q, Stewart JR, Yamada T. The gene pool of Miscanthus species and its improvement. In: Paterson AH, editor. Genomics of the Saccharinae. New York: Springer; 2012. p. 73–101.

    Google Scholar 

  70. Ohtsuka T, Sakura T, Ohsawa M. Early herbaceous succession along a topographical gradient on forest clear-felling sites in mountainous terrain, central Japan. Ecol Res. 1993;8:329–40.

    Google Scholar 

  71. Quinn LD, Allen DJ, Stewart JR. Invasiveness potential of Miscanthus sinensis: implications for bioenergy production in the U.S. Glob Chang Biol Bioenergy. 2010;2:310–20.

    Google Scholar 

  72. Quinn LD, Matlaga DP, Stewart JR, Davis AS. Empirical evidence of long-distance dispersal in Miscanthus sinensis and Miscanthus × giganteus. Invasive Plant Sci Manage. 2011;4:142–50.

    Google Scholar 

  73. Numata M. Ecological studies in Japanese grasslands with special reference to the IBP area. Productivity of terrestrial communities. Tokyo: University of Tokyo Press; 1975. p. 1–275.

    Google Scholar 

  74. Koyama T. Grasses of Japan and its neighboring regions: an identification manual. Tokyo: Kondansha Ltd; 1987. p. 1–582.

    Google Scholar 

  75. Chen SL, Renvoize SA. Miscanthus. In: Wu ZY, Raven PH, Hong DY, editors. Flora of China, vol. 22. Beijing/St Louis: Science Press/Missouri Botanical Garden Press; 2006. p. 581–3.

    Google Scholar 

  76. Matumura M, Yukimura T. Fundamental studies on artificial propagation by seeding useful wild grasses in Japan. VI. Germination behaviors of three native species of genus Miscanthus; M. sacchariflorus, M. sinensis, and M. tinctorius. Res Bull Fac Agric Gifu Univ. 1975;38:339–49 (in Japanese).

    Google Scholar 

  77. Kayama M. Comparison of the aluminum tolerance of Miscanthus sinensis Anderss. and Miscanthus sacchariflorus Bentham in hydroculture. Int J Plant Sci. 2001;162:1025–31.

    CAS  Google Scholar 

  78. An GH, Miyakawa S, Kawahara A, Osaki M, Ezawa T. Community structures of arbuscular mycorrhizal fungi associated with pioneer grass species Miscanthus sinensis in acid sulfate soils: habitat segregation along pH gradients. Soil Sci Plant Nutr. 2008;54:517–28.

    Google Scholar 

  79. Ezaki B, Nagao E, Yamamoto Y, Nakashima S, Enomoto T. Wild plants, Andropogon virginicus L. and Miscanthus sinensis Anders., are tolerant to multiple stresses including aluminum, heavy metals and oxidative stresses. Biotic and Abiotic Stress. 2008;27:951–61.

    CAS  Google Scholar 

  80. Arduini I, Ercoli L, Mariotti M, Masoni A. Response of Miscanthus to toxic cadmium applications during the period of maximum growth. Environ Exp Bot. 2006;55:29–40.

    CAS  Google Scholar 

  81. Hodgson EM, Lister SJ, Bridgwater AV, Clifton-Brown J, Donnison IS. Genotypic and environmentally derived variation in the cell wall composition of Miscanthus in relation to its use as a biomass feedstock. Biomass Bioenergy. 2010;34:652–60.

    CAS  Google Scholar 

  82. Hodgson EM, Nowakowski DJ, Shield I, Riche A, Bridgwater AV, Clifton-Brown JC. Variation in Miscanthus chemical composition and implications for conversion by pyrolysis and thermo-chemical bio-refining for fuels and chemicals. Bioresour Technol. 2011;102:3411–8.

    CAS  PubMed  Google Scholar 

  83. Atienza SG, Satovic Z, Petersen KK, Dolstra O, Martin A. Identification of QTLs influencing combustion quality in Miscanthus sinensis Aderss. II. Chlorine and potassium content. Theor Appl Genet. 2003;107:857–63.

    CAS  PubMed  Google Scholar 

  84. Atienza SG, Satovic Z, Petersen KK, Dolstra O, Martin A. Influencing combustion quality in Miscanthus sinensis Anderss.: Identification of QTLs for calcium, phosphorus and sulphur content. Plant Breed. 2003;122:141–5.

    CAS  Google Scholar 

  85. Adati S, Mitsuishi S. Wild growing forage plants of the Far East, especially Japan, suitable for breeding purposes Part III. Cultivation of Hatizyo-Susuki (Miscanthus sinensis var. condensatus Makino) in Hatizyo-Island. Bull Fac Agric Mie Univ. 1956;12:7–12 (in Japanese).

    Google Scholar 

  86. Chiang YC, Schaal BA, Chou CH, Huang S, Chiang TY. Contrasting selection modes at Adh1 locus in outcrossing Miscanthus sinensis vs. inbreeding Miscanthus condensatus (Poaceae). Am J Bot. 2003;90:561–70.

    CAS  PubMed  Google Scholar 

  87. Chou CH, Hwang SY, Chang FC. Population study of Miscanthus floridulus (Labill.) Warb. I. Variation of peroxidase and esterase in 27 populations in Taiwan. Bot Bull Acad Sin. 1987;28:247–81.

    Google Scholar 

  88. Chou CH, Chiang TY, Chiang YC. Towards an integrative biology research: a case study on adaptive and evolutionary trends of Miscanthus populations in Taiwan. Weed Biol Manage. 2001;1:81–8.

    Google Scholar 

  89. Lafferty J, Lelley T. Cytogenetic studies of different Miscanthus species with potential for agricultural use. Plant Breed. 1994;113:246–9.

    Google Scholar 

  90. Farrell AD, Clifton-Brown JC, Lewandowski I, Jones MB. Genotypic variation in cold tolerance influences the yield of Miscanthus. Ann Appl Biol. 2006;149:337–45.

    Google Scholar 

  91. Jensen E, Farrar K, Thomas-Jones S, Hastings A, Donnison I, Clifton-Brown J. Characterization of flowering time diversity in Miscanthus species. Glob Chang Biol Bioenergy. 2011;3:387–400.

    Google Scholar 

  92. Jensen E, Robson P, Norris J, Cookson A, Farrar K, Donnison I, Clifton-Brown J. Flowering induction in the bioenergy grass Miscanthus sacchariflorus is a quantitative short-day response, whilst delayed flowering under long days increases biomass accumulation. J Exp Bot. 2013;64:541–52.

    Google Scholar 

  93. Kaack K, Schwarz K-U. Morphological and mechanical properties of Miscanthus in relation to harvesting, lodging, and growth conditions. Ind Crop Prod. 2001;14:145–54.

    Google Scholar 

  94. Clayton WD, Harman KT, Williamson H. GrassBase – the online world grass flora. KEW: Royal Botanic Gardens. http://www.kew.org/data/grasses-db.html (2010). Last accessed 7 Mar 2013.

  95. Hirayoshi I, Nishikawa K, Kubono M. Cyto-genetical studies on forage plants (V) Polyploidy and distribution in Miscanthus sect. Kariyasua Ohwi. Res Bull Fac Agric Gifu Univ. 1956;7:9–14 (in Japanese).

    Google Scholar 

  96. Christian DG, Yates NE, Riche AB. Establishing Miscanthus sinensis from seed using conventional sowing methods. Ind Crop Prod. 2005;21:109–11.

    Google Scholar 

  97. Jakob K, Zhou F, Paterson AH. Genetic improvement of C4 grasses as cellulosic biofuel feedstocks. In Vitro Cell Dev Biol. 2009;45:291–305.

    CAS  Google Scholar 

  98. Hisano H, Nandakumar R, Wang ZY. Genetic modification of lignin biosynthesis for improved biofuel production. In Vitro Cell Dev Biol. 2009;45:306–13.

    CAS  Google Scholar 

  99. Li X, Weng J-K, Chapple C. Improvement of biomass through lignin modification. Plant J. 2008;54:569–81.

    CAS  PubMed  Google Scholar 

  100. Iwata H, Kamijo T, Tsumura Y. Genetic structure of Miscanthus sinensis ssp. condensatus (Poaceae) on Miyake Island: implications for revegetation of volcanically devastated sites. Ecol Res. 2005;20:233–8.

    Google Scholar 

  101. Xi Q, Jeżowski S. Plant resources of Triarrhena and Miscanthus species in China and its meaning for Europe. Plant Breed Seed Sci. 2004;49:63–77.

    Google Scholar 

  102. Yan J, Chen W, Luo F, Ma H, Meng A, Li X, Zhu M, Li S, Zhou H, Zhu W, Han B, Ge S, Li J, Sang T. Variability and adaptability of Miscanthus species evaluated for energy crop domestication. Glob Chang Biol Bioenergy. 2012;4:49–60.

    Google Scholar 

  103. Chou CH, Huang S, Chen SH, Kuoh CS, Chiang TY, Chiang YC. Ecology and evolution of Miscanthus of Taiwan. Natl Sci Coun Mon. 1999;27:1158–69 (in Chinese).

    Google Scholar 

  104. Anzoua KG, Kajihara Y, Toma Y, Iizuka N, Yamada T. Potentiality of four cool season grasses and Miscanthus sinensis for feedstock in the cool regions of Japan. J Jpn Inst Energy. 2011;90:59–65.

    CAS  Google Scholar 

  105. Clifton-Brown JC, Lewandowski I. Overwintering problems of newly established Miscanthus plantations can be overcome by identifying genotypes with improved rhizome cold tolerance. New Phytol. 2000;148:287–94.

    Google Scholar 

  106. Demirbas A. Relationships between lignin contents and heating values of biomass. Energ Convers Manage. 2001;42:183–8.

    CAS  Google Scholar 

  107. Woli KP, David MB, Tsai J, Voigt TB, Darmody RG, Mitchell CA. Evaluation silicon concentrations in biofuel feedstock crops Miscanthus and switchgrass. Biomass Bioenergy. 2011;35:2807–13.

    CAS  Google Scholar 

  108. Nielsen PN. Elefantengrassanbau in Danemark – Praktikerbericht. Pflug und Spaten. 1990;3:1–4 (in German).

    CAS  Google Scholar 

  109. Honda M. New report of plants in Japan XXXVIII. Bot Mag. 1939;53:144 (in Japanese).

    Google Scholar 

  110. Matumura M, Hakumura Y, Saijoh Y. Ecological aspects of Miscanthus sinensis var. condensatus × M. sacchariflorus and their 3x- 4x-hybrids (2) Growth behaviour of the current year’s rhizomes. Res Bull Fac Agric Gifu Univ. 1986;51:347–62 (in Japanese).

    Google Scholar 

  111. Atienza SG, Satovic Z, Petersen KK, Dolstra O, Martin A. Preliminary genetic linkage map of Miscanthus sinensis with RAPD markers. Theor Appl Genet. 2002;105:946–52.

    CAS  PubMed  Google Scholar 

  112. Atienza SG, Satovic Z, Petersen KK, Dolstra O, Martin A. Identification of QTLs associated with yield and its components in Miscanthus sinensis Anderss. Euphytica. 2003;132:353–61.

    CAS  Google Scholar 

  113. Atienza SG, Satovic Z, Petersen KK, Dolstra O, Martin A. Identification of QTLs influencing agronomic traits in Miscanthus sinensis Anderss. I. Total height, flag-leaf height and stem diameter. Theor Appl Genet. 2003;107:123–9.

    CAS  PubMed  Google Scholar 

  114. Kim C, Zhang D, Auckland SA, Rainville LK, Jakob K, Kronmiller B, Sacks EJ, Deuter M, Paterson AH. SSR-based genetic maps of Miscanthus sinensis and M. sacchariflorus, and their comparison to sorghum. Theor Appl Genet. 2012;124:1325–38.

    CAS  PubMed  Google Scholar 

  115. Swaminathan K, Chae WB, Mitros T, Varala K, Xie L, Barling A, Glowackal K, Hall M, Jezowski S, Ming R, Matthew Hudson M, Juvik JA, Rokhsar DS, Moose SP. A framework genetic map for Miscanthus sinensis from RNAseq-based markers shows recent tetraploidy. BMC Genomics. 2012;13:142.

    PubMed Central  CAS  PubMed  Google Scholar 

  116. Ma X-F, Jensen E, Alexandrov N, Troukhan M, Zhang L, Thomas-Jones S, Farrar K, Clifton-Brown J, Donnison I, Swaller T, Flavell R. High resolution genetic mapping by genome sequencing reveals genome duplication and tetraploid genetic structure of the diploid Miscanthus sinensis. PLoS One. 2012;7:e33821.

    PubMed Central  CAS  PubMed  Google Scholar 

  117. Gubišová M, Gubiš J, Žofajová A, Mihálik D, Kraic J. Enhanced in vitro propagation of Miscanthus × giganteus. Ind Crop Prod. 2012;41:279–82.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshihiko Yamada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Yamada, T. (2015). Miscanthus . In: Cruz, V.M.V., Dierig, D.A. (eds) Industrial Crops. Handbook of Plant Breeding, vol 9. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1447-0_3

Download citation

Publish with us

Policies and ethics