Skip to main content

Hydrophilic Matrix Dosage Forms: Definitions, General Attributes, and the Evolution of Clinical Utilization

  • Chapter
  • First Online:
Hydrophilic Matrix Tablets for Oral Controlled Release

Abstract

An introductory overview to the history of hydrophilic matrix tablets over five decades of research and clinical use is provided, including origins of the concept, evolution of mechanistic understanding of drug release from such systems, and the development of analytical tools that have allowed the creation of that understanding. Definitions of terms such as modified release, controlled release, prolonged release, sustained release, and extended release are laid out. The potential, though rare, hazards associated with the clinical use of hydrating, swelling, non-disintegrating dosage forms are described. The progress, associated with the development of knowledge of the factors that influence the performance of hydrophilic matrix tablets, from a technology used late in the life cycle of a commercialized product to one that is now able to be applied very early in the research of an innovative medicine and so better enable its clinical use, is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. United States Pharmacopoeia. Pharmaceutical Dosage Forms, General Chapters, 1151, 1010–1033. Rockville, MD: United States Pharmacopoeia Convention; 2014.

    Google Scholar 

  2. Sriamornsak P. Applications of pectin in oral drug delivery. Expert Opin Drug Deliv. 2011;8:1009–23.

    Article  PubMed  CAS  Google Scholar 

  3. Challa T, Vynda V, Allam KV. Colon specific drug delivery systems. A review on primary and novel approaches. Int J Pharm Sci Rev Res. 2011;7:171–87.

    CAS  Google Scholar 

  4. Vandamme TF, Lenourry A, Charrueau C, Chaumeil J-C. The use of polysaccharides to target drugs to the colon. Carbohydr Polym. 2002;48:219–31.

    Article  CAS  Google Scholar 

  5. European Pharmacopoeia. [Accessed 2014 May 12]. http://www.edqm.eu/en/edqm-homepage-628.html

  6. WHO. Monographs: Dosage forms: General monographs: Tablets. International Pharmacopoeia. 4th ed., 2013. [Accessed 2014 May 12]. aaps.who.int/phint/en/p/docf/

    Google Scholar 

  7. International Conference on Harmonization. Specifications: Test procedures and acceptance criteria for new drug substances and new drug products: chemical substances Q6A, 1999. [Accessed 2014 May 12]. http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q6A/Step4/Q6Astep4.pdf

  8. Christensen GL, Dale LB. Sustained release Tablet US patent. US3065143. 1962.

    Google Scholar 

  9. Huber HE, Dale LB, Christensen GL. Utilization of hydrophilic gums for the control of drug release from tablet formulations. I. Disintegration and dissolution behavior. J Pharm Sci. 1966;55:974–6.

    Article  PubMed  CAS  Google Scholar 

  10. Lapidus H, Lordi NG. Some factors affecting the release of a water-soluble drug from a compressed hydrophilic matrix. J Pharm Sci. 1966;55:840–3.

    Article  PubMed  CAS  Google Scholar 

  11. Higuchi T. Rate of release of medicaments from ointment bases containing drugs in suspension. J Pharm Sci. 1961;50:874–5.

    Article  PubMed  CAS  Google Scholar 

  12. Higuchi T. Mechanism of sustained action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices. J Pharm Sci. 1963;52:1145–9.

    Article  PubMed  CAS  Google Scholar 

  13. Desai SJ, Simonelli AP, Higuchi WI. Investigation of factors influencing release of solid drug dispersed in inert matrices. J Pharm Sci. 1965;55:1458–64.

    Google Scholar 

  14. Choulis NH, Papadopoulos H. Timed-release tablets containing quinine sulfate. J Pharm Sci. 1975;64:1033–5.

    Article  PubMed  CAS  Google Scholar 

  15. Siepmann J, Peppas NA. Higuchi equation: derivation, applications, use and misuse. Int J Pharm. 2011;418:6–12.

    Article  PubMed  CAS  Google Scholar 

  16. Korsmeyer RW, Peppas NA. Effect of the morphology of hydrophilic matrices on the diffusion and release of water soluble drugs. J Membr Sci. 1981;9:211–27.

    Article  CAS  Google Scholar 

  17. Ritger PL, Peppas NA. A simple equation for the description of solute release I Fickian and non-Fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J Control Release. 1987;5:23–36.

    Article  CAS  Google Scholar 

  18. Siepmann J, Peppas NA. Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose. Adv Drug Deliv Rev. 2012;64:163–74.

    Article  Google Scholar 

  19. Ford J, Mitchell K, Rowe P, Armstrong DJ, Elliott PNC, Rostron C, Hogan JE. Mathematical modelling of drug release from hydroxypropyl methylcellulose matrices; effect of temperature. Int J Pharm. 1991;71(95):104.

    Google Scholar 

  20. Peppas NA, Sahlin JJ. A simple equation for the description of solute release III. Coupling of diffusion and relaxation. Int J Pharm. 1989;57:169–72.

    Article  CAS  Google Scholar 

  21. Siepmann J, Streubel A, Peppas NA. Understanding and predicting drug delivery from hydrophilic matrix tablets using the “Sequential layer” model. Pharm Res. 2002;19:306–14.

    Article  PubMed  CAS  Google Scholar 

  22. Ford JL, Rubinstein MH, Hogan JE. Formulation of sustained release promethazine hydrochloride tablets using hydroxypropylmethylcellulose matrices. Int J Pharm. 1985;24:327–38.

    Article  CAS  Google Scholar 

  23. Ford JL, Rubinstein MH, Hogan JE. Propranolol hydrochloride and aminophylline release from tablets containing hydroxypropylmethylcellulose. Int J Pharm. 1985;24:339–50.

    Article  CAS  Google Scholar 

  24. Ford JL, Rubinstein MH, McCaul F, Hogan JE, Edgar PJ. Importance of drug type, tablet shape, and added diluents on drug release kinetics from hydroxypropylmethylcellulose matrix tablets. Int J Pharm. 1987;40:223–34.

    Article  CAS  Google Scholar 

  25. Mitchell K, Ford JL, Armstrong DJ, Elliott PNC, Rostron C, Hogan JE. The influence of additives on the cloud point, disintegration and dissolution of hydroxypropylmethylcellulose gels and matrix tablets. Int J Pharm. 1990;66:233–42.

    Article  CAS  Google Scholar 

  26. Ford JL, Mitchell K, Rowe P, Armstrong DJ, Elliott PNC, Rostron C, Hogan JE. Mathematical modeling of drug release from hydroxypropylmethylcellulose matrices: effect of temperature. Int J Pharm. 1991;71:95–104.

    Article  CAS  Google Scholar 

  27. Mitchell K, Ford JL, Rostron C, Armstrong DJ, Elliott PNC, Hogan JE. Swelling behaviour of cellulose ether matrix tablets. J Pharm Pharmacol. 1991;43(Suppl):76P.

    Google Scholar 

  28. Ford JL, Mitchell K, Sawh D, Ramdour S, Armstrong DJ, Elliott PNC, Rostron C, Hogan JE. Hydroxypropylmethylcellulose matrix tablets containing propranolol hydrochloride and sodium dodecyl sulphate. Int J Pharm. 1991;71:213–21.

    Article  CAS  Google Scholar 

  29. Mitchell K, Ford JL, Armstrong DJ, Elliott PNC, Rostron C, Hogan JE. The influence of substitution type on the performance of methylcellulose and hydroxypropylmethylcellulose in gels and matrices. Int J Pharm. 1993;100:143–54.

    Article  CAS  Google Scholar 

  30. Mitchell K, Ford JL, Armstrong DJ, Elliott PNC, Rostron C, Hogan JE. The influence of concentration on the release of drugs form gels and matrices containing Methocel. Int J Pharm. 1993;100:155–63.

    Article  CAS  Google Scholar 

  31. Mitchell K, Ford JL, Armstrong DJ, Elliott PNC, Rostron C, Hogan JE. The influence of drugs on the properties of gels and swelling characteristics of matrices methylcellulose or hydroxypropylmethylcellulose. Int J Pharm. 1993;100:165–73.

    Article  CAS  Google Scholar 

  32. Mitchell K, Ford JL, Armstrong DJ, Elliott PNC, Rostron C, Hogan JE. The influence of the particle size of hydroxypropylmethylcellulose K15M on its hydration and performance in matrix tablets. Int J Pharm. 1993;100:175–9.

    Article  CAS  Google Scholar 

  33. Velasco MV, Ford JL, Rowe P, Rajabi-Siahboomi AR. Influence of drug: hydroxypropylmethylcellulose ratio, drug and polymer particle size and compression force on the release of diclofenac sodium from HPMC tablets. J Control Release. 1999;57:75–85.

    Article  PubMed  CAS  Google Scholar 

  34. Korsmeyer RW, Gurny R, Doelker E, Buri P, Peppas NA. Mechanisms of solute release from porous hydrophilic polymers. Int J Pharm. 1983;15:25–35.

    Article  CAS  Google Scholar 

  35. Rao KVR, Devi KP, Buri P. Influence of molecular size and water solubility of the solute on its release from swelling and erosion controlled polymeric matrices. J Control Release. 1990;12:133–41.

    Article  CAS  Google Scholar 

  36. Melia CD, Binns JS, Davies MC. Polymer hydration and drug distribution within the gel layer of hydrophilic matrix devices during drug release. J Pharm Pharmacol. 1990;42(Suppl):125P.

    Article  Google Scholar 

  37. Mannion RO, Melia CD, Mitchell JR, Harding SE, Green AP. Effect of xanthan/locust bean gum synergy on ibuprofen release from hydrophilic matrix tablets. J Pharm Pharmacol. 1991;43(Suppl):78P.

    Google Scholar 

  38. Melia CD, Rajabi-Siahboomi AR, Hodsdon AC, Adler J, Mitchell JR. Structure and behaviour of hydrophilic matrix sustained release dosage forms: 1 the origin and mechanism of formation of gas bubbles in the hydrated surface layer. Int J Pharm. 1993;100:263–9.

    Article  CAS  Google Scholar 

  39. Hodsdon AC, Mitchell JR, Davies MC, Melia CD. Structure and behaviour in hydrophilic matrix sustained release dosage forms: 3. The influence of pH on the sustained release performance and internal gel structure of sodium alginate matrices. J Control Release. 1995;33:143–52.

    Article  CAS  Google Scholar 

  40. Melia CD, Hodsdon AC, Davies MC, Mitchell JR. Polymer concentration profiles across the surface gel layer of xanthan, alginate and HPMC Matrix systems. Proc Int Symp Control Release Bioact Mater. 1994;21:724–5.

    Google Scholar 

  41. Melia CD, Cutts LS, Adler J, Davies MC, Hibberd S, Rajabi-Siahboomi AR, Bowtell. Visualizing and measuring dynamic events inside controlled release matrix system. Proc Int Symp Control Release Bioact Mater. 1995;22:32–3.

    Google Scholar 

  42. Cutts LS, Bowtell R, Paterson-Stephens I, Davies MC, Melia CD. Solute and water transport within the gel layer of hydrating HPMC tablets. Proc Int Symp Control Release Bioact Mater. 1995;22:236–7.

    Google Scholar 

  43. Colombo P, Conte U, Gazzaniga A, Maggi L, Sangalli ME, Peppas NA, La Manna A. Drug release modulation by physical restrictions of matrix swelling. Int J Pharm. 1990;63:43–8.

    Article  CAS  Google Scholar 

  44. Colombo P, Catellani PL, Peppas NA, Maggi L, Conte U. Swelling characteristics of hydrophilic matrices for controlled release: new dimensionless number to describe the swelling and release behaviour. Int J Pharm. 1992;88:99–109.

    Article  CAS  Google Scholar 

  45. Colombo P. Swelling-controlled release in hydrogel matrices for oral route. Adv Drug Deliv Rev. 1993;11:37–57.

    Article  CAS  Google Scholar 

  46. Bettini R, Colombo P, Massimo G, Catellani PL, Vitali T. Swelling and drug release in hydrogel matrices: polymer viscosity and matrix porosity effects. Eur J Pharm Sci. 1994;2:213–9.

    Article  CAS  Google Scholar 

  47. Colombo P, Bettini R, Santi PD, Ascentis A, Peppas NA. Analysis of the swelling and release mechanisms from drug delivery systems with emphasis on drug solubility and water transport. J Control Release. 1996;39:231–7.

    Article  CAS  Google Scholar 

  48. Peppas NA, Colombo P. Analysis of drug release behaviour from swellable polymer carriers using the dimensionality index. J Control Release. 1997;45:35–40.

    Article  CAS  Google Scholar 

  49. Colombo P, Bettini R, Catellani PL, Santi P, Peppas NA. Drug volume fraction profile in the gel phase and drug release kinetics in hydroxypropyl methyl cellulose matrices containing a soluble drug. Eur J Pharm Sci. 1999;9:33–40.

    Article  PubMed  CAS  Google Scholar 

  50. Colombo P, Bettini R, Peppas NA. Observation of swelling process and diffusion front position during swelling in hydroxypropyl methylcellulose (HPMC) matrices containing a soluble drug. J Control Release. 1999;61:83–91.

    Article  PubMed  CAS  Google Scholar 

  51. Colombo P, Bettini R, Santi P, Peppas NA. Swellable matrices for controlled drug delivery: gel-layer behavior, mechanisms and optimal performance. Pharm Sci Technol Today. 2000;3:198–204.

    Article  PubMed  CAS  Google Scholar 

  52. Bettini R, Catellani PL, Santi P, Massimo G, Peppas NA, Colombo P. Translocation of drug particles in HPMC matrix gel layer: effect of drug solubility and influence on release rate. J Control Release. 2001;70:383–91.

    Article  PubMed  CAS  Google Scholar 

  53. Kiil S, Dam-Johansen K. Controlled delivery from swellable hydroxypropylmethylcellulose matrices: model-based analysis of observed radial front movements. J Control Release. 2003;90:1–21.

    Article  PubMed  CAS  Google Scholar 

  54. Rajabi-Siahboomi AR, Bowtell, Mansfield P, Henderson A, Davies MC, Melia CD. Structure and behavior in hydrophilic matrix sustained release dosage forms: 2. NMR-imaging studies of dimensional changes in the gel layer and core of HPMC tablets undergoing hydration. J Control Release. 1994;31:121–8.

    Article  CAS  Google Scholar 

  55. Narasimhan B, Snaar JEM, Bowtell RW, Morgan S, Melia CD, Peppas NA. Magnetic resonance imaging analysis of molecular mobility during dissolution of poly(vinyl alcohol) in water. Macromolecules. 1999;32:704–10.

    Article  CAS  Google Scholar 

  56. Fyfe CA, Blazek-Welsh AI. Quantitative NMR imaging study of the mechanism of drug release from swelling hydroxypropylmethylcellulose tablets. J Control Release. 2000;68:313–33.

    Article  PubMed  CAS  Google Scholar 

  57. Fyfe CA, Grondey H, Blazek-Welsh AI, Chopra SK, Fahie BJ. NMR imaging investigations of drug delivery devices using a flow-through USP dissolution apparatus. J Control Release. 2000;68:73–83.

    Article  PubMed  CAS  Google Scholar 

  58. Tritt-Goc J, Piślewski N. Magnetic resonance imaging study of the swelling kinetics of hydroxpropylmethylcellulose (HPMC) in water. J Control Release. 2002;80:79–86.

    Article  PubMed  CAS  Google Scholar 

  59. Abrahmsén-Alami S, Körner A, Nilsson I, Larsson A. New release cell for NMR-microimaging of tablets. Swelling and erosion of poly(ethylene oxide). Int J Pharm. 2007;342:15–114.

    Google Scholar 

  60. Kulinowski P, Doroźyński P, Jachowicz R, Węglarz WP. An integrated system for dissolution studies as magnetic resonance imaging of controlled release, polymer-based dosage forms - a tool for quantitative assessment of hydrogel formation processes. J Pharm Biomed Anal. 2008;48:685–93.

    Article  PubMed  CAS  Google Scholar 

  61. Tajarobi F, Abrahmsén-Alami S, Carlsson AS, Larsson A. Simultaneous probing of swelling, erosion and dissolution by NMR-microimaging - effect of solubility of additives on HPMC matrix tablets. Eur J Pharm Sci. 2009;37:89–97.

    Article  PubMed  CAS  Google Scholar 

  62. Chen YY, Hughes LP, Gladden LF, Mantle MD. Quantitative ultra-fast MRI of HPMC swelling and dissolution. J Pharm Sci. 2010;99:3462–72.

    Article  PubMed  CAS  Google Scholar 

  63. Doroźyński PP, Kulinowski P, Mendyk A, Mlynarczk A, Jachowicz R. Novel application of MRI technique combined with flow-through cell dissolution apparatus as supportive discriminatory test for evaluation of controlled release formulations. AAPS PharmSciTech. 2010;11:588–97.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Metz H, Mäder K. Benchtop-NMR and MRI - a new analytical tool in drug delivery research. Int J Pharm. 2008;364:170–5.

    Article  PubMed  CAS  Google Scholar 

  65. Nott KP. Magnetic resonance imaging of tablet dissolution. Eur J Pharm Biopharm. 2010;74:78–83.

    Article  PubMed  CAS  Google Scholar 

  66. Timmins P, Hanley S, Brown J. Mechanistic insights of the effects of process and formulation variables on the performance of hydrophilic matrix tablets using magnetic resonance imaging. Presented at 40th annual meeting and exposition of the Controlled Release Society, 2013.

    Google Scholar 

  67. Williams HD, Nott KP, Barrett DA, Ward R, Hardy IJ, Melia CD. Drug release from HPMC matrices in milk and fat-rich emulsions. J Pharm Sci. 2011;100:4823–35.

    Article  PubMed  CAS  Google Scholar 

  68. Kulinowski P, Dorozynski P, Mlynarczyk A, Weglarz WP. Magnetic resonance imaging and image analysis for assessment of hpmc matrix tablets structural evolution in USP apparatus 4. Pharm Res. 2011;28:1065–73.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  69. Zhang QL, Gladden L, Avalle P, Mantle M. In vitro quantitative H-1 and F-19 nuclear magnetic resonance spectroscopy and imaging studies of fluvastatin (TM) in Lescol (R) XL tablets in a USP-IV dissolution cell. J Control Release. 2011;156(3):345–54.

    Article  PubMed  CAS  Google Scholar 

  70. van der Weerd J, Kazarian SG. Combined approach of FTIR imaging and conventional dissolution test applied to drug release. J Control Release. 2004;98:295–305.

    Article  PubMed  Google Scholar 

  71. Coutts-Lendon CA, Wright NA, Mieso EV, Koenig JL. The use of FTIR imaging as an analytical tool for the characterization of drug delivery systems. J Control Release. 2003;93:223–48.

    Article  PubMed  CAS  Google Scholar 

  72. Kazarian SG, Chan KLA. “Chemical photography” of drug release. Macromolecules. 2003;36:9866–72.

    Article  CAS  Google Scholar 

  73. Kimber JA, Kazarian SG, Stepanek F. Formulation design space analysis for drug release from swelling polymer tablets. Powder Technol. 2011;236:179–87.

    Article  Google Scholar 

  74. Timmins P, Donahue SR, Meeker JB, Marathe PH. Steady state pharmacokinetics of a novel extended release metformin formulation. Clin Pharmacokinet. 2005;44:721–9.

    Article  PubMed  CAS  Google Scholar 

  75. Feher MD, Al-Mrayat M, Brake J, Leong KS. Tolerability of prolonged-release metformin (Glucophage® SR) in individuals intolerant to standard metformin - results from four UK centres. Br J Diabet Vasc Dis. 2007;5:225–8.

    Article  Google Scholar 

  76. Blonde L, Dailey GE, Jabbour SA, Reasner CA, Mils DJ. Gastrointestinal tolerability of extended-release metformin tablets compared with immediate-release tablets; results of a retrospective cohort study. Curr Med Res Opin. 2004;4:565–72.

    Article  Google Scholar 

  77. Pak R, Petrou S, Staskin D. Trospium chloride: a quaternary amine with unique pharmacologic properties. Curr Urol Rep. 2003;4(6):436–40.

    Article  PubMed  Google Scholar 

  78. Silver N, Sandage B, Sabounjian L, Schwiderski U, Shipley J, Harnett M. Pharmacokinetics of once-daily trospium chloride 60 mg extended release and twice-daily trospium chloride 20 mg in healthy adults. J Clin Pharmacol. 2010;50(2):143–50.

    Article  PubMed  CAS  Google Scholar 

  79. Gupta EK, Ito MK. Lovastatin and extended release niacin combination product: the first drug combination for the management of hyperlipidemia. Heart Dis. 2002;4:124–37.

    Article  PubMed  CAS  Google Scholar 

  80. Nakano M, Ogata A. Examination of natural gums as matrices for sustained release of theophylline. Chem Pharm Bull. 1984;32:782–5.

    Article  PubMed  CAS  Google Scholar 

  81. Alvarez-Manceñido F, Landin M, Lacik I, Martínez-Panceco R. Konjac glucomannan and konjac glucomannan/xanthan gum mixtures as excipients for controlled drug delivery systems. Diffusion of small drugs. Int J Pharm. 2008;349:11–8.

    Article  PubMed  Google Scholar 

  82. Prajapati VD, Jani GK, Moradiya NG, Randeria NP. Pharmaceutical applications of various natural gums, mucilages and their modified forms. Carbohydr Polym. 2013;92:1685–99.

    Article  PubMed  CAS  Google Scholar 

  83. Morse JMD, Malloy WX. Esophageal obstruction caused by Cal-Ban. Gastroenterology. 1990;98:805–7.

    PubMed  CAS  Google Scholar 

  84. Food Standards Agency. Import ban on jelly sweets. 2014. [Accessed 2014 May 12]. http://www.food.gov.uk/business-industry/imports/banned_restricted/konjac

  85. Henry DA, Mitchell AS, Aylward J, Fung MT, McEwen J, Rohan A. Glucomannan risk of oesophageal obstruction. Br Med J. 1986;292:591–2.

    Article  CAS  Google Scholar 

  86. Vanderbeek PB, Fasano C, O’Malley G, Hornstein J. Esophageal obstruction from a hygroscopic pharmacobezoar containing glucomannan. Clin Toxicol. 2007;45:80–2.

    Article  Google Scholar 

  87. Rauber-Lüthy C, Hofer KE, Bodmer M, Kullak-Ublick GA, Kupferschmidt H, Ceschi A. Gastric pharmacobezoars in quetiapine extended-release overdose: a case series. Clin Toxicol. 2013;51:937–40.

    Article  Google Scholar 

  88. Simpson SE. Pharmacobezoars described and demsytified. Clin Toxicol. 2011;49:72–89.

    Article  CAS  Google Scholar 

  89. Lung D, Cuevas C, Zaid U, Ancock B. Venlafaxine pharmacobezoar causing intestinal ischemia requiring emergent hemicolectomy. J Med Toxicol. 2011;7:232–5.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Nicholson SJ, Timmins P, Dockens R, Ferrie P, Dennis AB, Connor A, Wilding I. Development of oral extended release formulations of 6-hydroxybuspirone. Biopharm Drug Dispos. 2012;33:522–35.

    Article  PubMed  CAS  Google Scholar 

  91. Brown J, Chen C, Zhu L, Timmins P, Dennis AB, Nettles R, Grasela D. Compartmental absorption modeling and site of absorption studies to determine feasibility of an extended release formulation of an HIV attachment inhibitor phosphate ester prodrug. J Pharm Sci. 2013;102:1742–51.

    Article  PubMed  CAS  Google Scholar 

  92. Timmins P, Brown J, Meanwell N, Hanna G, Zhu L, Kadow J. Enabled clinical utility of an HIV-1 attachment inhibitor through drug delivery. Drug Discov Today. 2014. doi:10.1016/j.drudis.2014.03.025.

    PubMed  Google Scholar 

  93. Thombre AG. Assessment of the feasibility of oral controlled release in an exploratory development setting. Drug Discov Today. 2005;10:1159–66.

    Article  PubMed  CAS  Google Scholar 

  94. Thombre AG. Extemporaneously prepared controlled release formulations for accelerating the early phase development of drug candidates. Drug Discov Today. 2014. doi:10.1016/j.drudis.2014.02.001.

    PubMed  Google Scholar 

  95. Brown J, Crison, J, Timmins P. Predicting feasibility and characterizing performance of extended-release dosage forms using physiologically based pharmacokinetic modeling. Therapeutic Delivery. 2012;3:1047–1059.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Timmins Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Timmins, P., Pygall, S.R., Melia, C.D. (2014). Hydrophilic Matrix Dosage Forms: Definitions, General Attributes, and the Evolution of Clinical Utilization. In: Timmins, P., Pygall, S., Melia, C. (eds) Hydrophilic Matrix Tablets for Oral Controlled Release. AAPS Advances in the Pharmaceutical Sciences Series, vol 16. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1519-4_1

Download citation

Publish with us

Policies and ethics