Skip to main content

Electrical and Multiple Physics Simulation for Analog and Power WLCSP

  • Chapter
  • First Online:
Wafer-Level Chip-Scale Packaging
  • 2802 Accesses

Abstract

The electrical performance (such as electrical resistance, inductance, and capacitance) is a key factor for a WLCSP product. Many studies, such as the electrical performance of different devices, effect of assembly reflow process on electrical properties, and the resistance of a solder joint, have been done to improve a product’s electrical performance [1–3]. In recent years, the investigation for the electrical performance of a WLCSP has been paid more attention due to the wide applications of the WLCSP. The parasitic resistance, inductance, and capacitance (RLC) will impact the efficiency and switch speed of the WLCSP circuit. The electromigration issue of WLCSP, which is a multi-physics problem, becomes more critical due to the high current density in analog and power electronics. This chapter will introduce the electrical parasitic RLC simulation and electromigration simulation methods for WLCSP and wafer level interconnects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu, Y.: Power electronic packaging: Design, assembly process, reliability and modeling. Springer, Heidelberg (2012)

    Book  Google Scholar 

  2. Sasagawa, K., Hasegawa, M., Saka, M., Abe, H.: Prediction of electromigration failure in passivated polycrystalline line. J. Appl. Phys. 91(11), 9005–9014 (2002)

    Article  Google Scholar 

  3. Sukharev, V., Zschech, E.: A model for electromigration-induced degradation mechanisms in dual-inlaid copper interconnects: Effect of interface bonding strength. J. Appl. Phys. 96(11), 6337–6343 (2004)

    Article  Google Scholar 

  4. Tan, C.M., Hou, Y.J., Li, W.: Revisit to the finite element modeling of electromigration for narrow interconnects. J. Appl. Phys. 102(3), 1–7 (2007)

    Article  Google Scholar 

  5. Tan, C.M., Roy, A.: Investigation of the effect of temperature and stress gradients on accelerated EM test for Cu narrow interconnects. Thin Solid Films 504(1–2), 288–293 (2006)

    Article  Google Scholar 

  6. Tu, K.N.: Recent advances on electromigration in very-large-scale-integration of interconnects. J. Appl. Phys. 94(9), 5451–5473 (2003)

    Article  Google Scholar 

  7. Liu, Y., Zhang, Y.X., Liang, L.H.: Prediction of electromigration induced voids and time to failure for solder joint of a wafer level chip scale package. IEEE Trans. Component Packag. Technol. 33(3), 544–552 (2010)

    Article  Google Scholar 

  8. Dalleau, D., Weide-Zaage, K., Danto, Y.: Simulation of time depending void formation in copper, aluminum and tungsten plugged via structures. Microelectron. Reliab. 43(9–11), 1821–1826 (2003)

    Article  Google Scholar 

  9. Wilson, S.R., et al.: Handbook of multilevel metallization for integrated circuits: Materials, technology, and applications, p. 116. Noyes, Park Redge, NJ (1993)

    Google Scholar 

  10. Zhao, J.H., Ryan, T., et al.: Measurement of elastic modulus, Poisson ratio, and coefficient of thermal expansion of on-wafer submicron films. J. Appl. Phys. 85(9), 6421–6424 (1999)

    Article  Google Scholar 

  11. Sharpe, William N., Yuan, Jr. B., Vaidyanathan, R.: Measurement of Young’s modulus, Poisson’s ratio, and tensile strength of polysilicon. In: Proc 8th IEEE International Workshop on Microelectromechanical Systems, Nagoya, Japan. (1997)

    Google Scholar 

  12. JEDEC, JEP119A: A Procedure for performing SWEAT. (2003)

    Google Scholar 

  13. Ni, J., Liu, Y., Hao, J., Maniatty, A., OConnell, B.: Modeling microstructure effects on electromigration in lead-free solder joints. ECTC64, Orlando, FL (2014)

    Google Scholar 

  14. Liu, Y., Irving, S., Luk, T., et al.: 3D modeling of electromigration combined with thermal-mechanical effect for IC device and package. EuroSime 2007

    Google Scholar 

  15. Liu, Y.: Finite element modeling of electromigration in solder bumps of a package system. Professional Development Course, EPTC, Singapore (2008)

    Google Scholar 

  16. Yang, S., Tian, Y., Wang, C., Huang,T.: Modeling thermal fatigue in anisotropic Sn-Ag-Cu/Cu solder joints. International Conference on Electronic Packaging Technology and High Density Packaging (ICEPT-HDP), (2009)

    Google Scholar 

  17. Subramanian, K.N., Lee, J.G.: Effect of anisotropy of tin on thermomechanical behavior of solder joints. J. Mater. Sci. Mater. Electron. 15(4), 235–240 (2004)

    Article  Google Scholar 

  18. Gee, S., Kelkar, N., Huang,J., Tu, K.: Lead-free and PbSn Bump Electrmigration Testing. In: Proceedings of IPACK2005, IPACK2005-73417, July 17–22

    Google Scholar 

  19. Wang, Q., et al.: Experimental determination and modification of the Anand model constants for 95.5Sn4.0Ag0.5Cu. Eurosime 2007, London, UK, April, (2007)

    Google Scholar 

  20. Zhao, J., Su, P., Ding, M., Chopin, S., Ho, P.S.: Microstructure-based stress modeling of tin whisker growth. IEEE Trans. Electron. Packag. Manuf. 29(4), 265–273 (2006)

    Article  Google Scholar 

  21. Puttlitz, K. J., Stalter, K. A: Handbook of Lead-free solder technology for microelectronic assemblies. pp. 920–926. (2004)

    Google Scholar 

  22. Huntington, H.B.: Effect of driving forces on atom motion”. Thin Solid Films 25(2), 265–280 (1975)

    Article  MathSciNet  Google Scholar 

  23. Huang, F.H., Huntington, H.B.: Diffusion of Sb124, Cd109, Sn113, and Zn65 in tin. Phys. Rev. B 9(4), 1479–1488 (1974)

    Article  Google Scholar 

  24. Lu, M., Shih, D., Lauro, P., Goldsmith, C., Henderson, D.W.: Effect of Sn grain orientation on electromigration degradation in high Sn-based Ph-free solders”. Appl. Phys. Lett. 92, 211909 (2008)

    Article  Google Scholar 

  25. Xu, J.: Study on lead-free solder joint reliability based on grain orientation. Acta Metallurgica Sinica 48(9), 1042–1048 (2012)

    Google Scholar 

  26. Park, S., Dhakal, R., Gao, J.: Three-dimensional finite element analysis of multiple-grained lead-free solder interconnects. J. Electron Mater. 37(8), 1139–1147 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Qu, S., Liu, Y. (2015). Electrical and Multiple Physics Simulation for Analog and Power WLCSP. In: Wafer-Level Chip-Scale Packaging. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1556-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1556-9_8

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1555-2

  • Online ISBN: 978-1-4939-1556-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics