Skip to main content

Biomechanical Instrumentation in Refractive Surgery

  • Chapter
  • First Online:
Corneal Biomechanics and Refractive Surgery

Abstract

The determination of the intraocular pressure by means of instruments is still a developing science. Several physical properties and mechanisms affect this measure due to the corneal shape and its rigidity. Experimental and analytical researches are tools to improve indirect technologies (tonometric devices) for this relevant quantity for ophthalmologic diagnosis. In this chapter the applanation contact tonometry is the main subject (biomechanical modeling, computational modeling, and calibration equations); nevertheless, new tonometric devices tend to avoid contact to diminish influence of probe shape in the contact procedure and also pain in the patient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Sampaolesi, Glaucoma (Editorial Médica Panamericana S.A., Buenos Aires, 1974)

    Google Scholar 

  2. J.E. Hall, Guyton and Hall Textbook of Medical Physiology (Saunders, Enhanced E-Book, 2010)

    Google Scholar 

  3. C. Kniestedt, O. Punjabi, S. Lin, R.L. Stamper, Tonometry through the ages. Surv. Ophthalmol. 53(6), 568–591 (2008)

    Article  PubMed  Google Scholar 

  4. A. Arciniegas, L.E. Amaya, Mechanical behavior of the Sclera. Ophthalmologica 193(1–2), 45–55 (1986)

    Article  CAS  PubMed  Google Scholar 

  5. P.-A. Tonnu, T. Ho, T. Newson, A. El Sheikh, K. Sharma, E. White et al., The influence of central corneal thickness and age on intraocular pressure measured by pneumotonometry, non-contact tonometry, the Tono-Pen XL, and Goldmann applanation tonometry. Br. J. Ophthalmol. 89(7), 851–854 (2005)

    Article  PubMed Central  PubMed  Google Scholar 

  6. A. Kotecha, A. Elsheikh, C.R. Roberts, H. Zhu, D.F. Garway-Heath, Corneal thickness- and age-related biomechanical properties of the cornea measured with the ocular response analyzer. Invest. Ophthalmol. Vis. Sci. 47(12), 5337–5347 (2006)

    Article  PubMed  Google Scholar 

  7. A. Elsheikh, D. Wang, M. Brown, P. Rama, M. Campanelli, D. Pye, Assessment of corneal biomechanical properties and their variation with age. Curr. Eye Res. 32(1), 11–19 (2007)

    Article  PubMed  Google Scholar 

  8. A. Elsheikh, D. Wang, P. Rama, M. Campanelli, D. Garway-Heath, Experimental assessment of human corneal hysteresis. Curr. Eye Res. 33(3), 205–213 (2008)

    Article  PubMed  Google Scholar 

  9. T. Kida, J.H.K. Liu, R.N. Weinreb, Effects of aging on corneal biomechanical properties and their impact on 24-hour measurement of intraocular pressure. Am. J. Ophthalmol. 146(4), 567–572.e1 (2008)

    Article  PubMed Central  PubMed  Google Scholar 

  10. T. Gosho, K. Yamada, N. Yamasaki, M. Higashimori, J. Takenaka, Y. Kiuchi et al., Is cornea compliant with respect to age? in World Congr. Med. Phys. Biomed. Eng. Sept. 7–12 2009 Munich Ger, ed. by O. Dössel, W. Schlegel (Springer, Berlin, 2009), pp. 223–226

    Chapter  Google Scholar 

  11. A. Elsheikh, B. Geraghty, P. Rama, M. Campanelli, K.M. Meek, Characterization of age-related variation in corneal biomechanical properties. J. R. Soc. Interface 7(51), 1475–1485 (2010)

    Article  PubMed Central  PubMed  Google Scholar 

  12. N. Ehlers, T. Bramsen, S. Sperling, Applanation tonometry and central corneal thickness. Acta Ophthalmol. (Copenh) 53(1), 34–43 (1975)

    Article  CAS  Google Scholar 

  13. G. Orssengo, D. Pye, Determination of the true intraocular pressure and modulus of elasticity of the human cornea in vivo. Bull. Math. Biol. 61(3), 551–572 (1999)

    Article  CAS  PubMed  Google Scholar 

  14. M.E. Iliev, A. Meyenberg, E. Buerki, G. Shafranov, M.B. Shields, Novel pressure-to-cornea index in glaucoma. Br. J. Ophthalmol. 91(10), 1364–1368 (2007)

    Article  PubMed Central  PubMed  Google Scholar 

  15. E. Chihara, Assessment of true intraocular pressure: the gap between theory and practical data. Surv. Ophthalmol. 53(3), 203–218 (2008)

    Article  PubMed  Google Scholar 

  16. T.H. Kwon, J. Ghaboussi, D.A. Pecknold, Y.M.A. Hashash, Effect of cornea material stiffness on measured intraocular pressure. J. Biomech. 41(8), 1707–1713 (2008)

    Article  CAS  PubMed  Google Scholar 

  17. A. Elsheikh, D. Alhasso, P. Gunvant, D. Garway-Heath, Multiparameter correction equation for Goldmann applanation tonometry. Optom. Vis. Sci. 88(1), E102–E112 (2011)

    Article  PubMed  Google Scholar 

  18. A.F. Guzmán, A. Arciniegas Castilla, F.A. Guarnieri, R.F. Ramírez, Intraocular pressure: Goldmann tonometry, computational model, and calibration equation. J. Glaucoma 22(1), 10–14 (2013)

    Article  PubMed  Google Scholar 

  19. C.C. Mow, A theoretical model of the cornea for use in studies of tonometry. Bull. Math. Biophys. 30(3), 437–453 (1968)

    Article  CAS  PubMed  Google Scholar 

  20. M. Whitacre, M. Emig, K. Hassanein, The effect of Perkins, Tono-Pen, and Schiotz tonometry on intraocular pressure. Am J. Ophthalmol. 111(1), 59–64 (1991)

    Article  CAS  PubMed  Google Scholar 

  21. M.M. Whitacre, R. Stein, Sources of error with use of Goldmann-type tonometers. Surv. Ophthalmol. 38(1), 1–30 (1993)

    Article  CAS  PubMed  Google Scholar 

  22. M. Whitacre, R. Stein, K. Hassanein, The effect of corneal thickness on applanation tonometry. Am J. Ophthalmol. 115(5), 592–596 (1993)

    Article  CAS  PubMed  Google Scholar 

  23. N. Feltgen, D. Leifert, J. Funk, Correlation between central corneal thickness, applanation tonometry, and direct intracameral IOP readings. Br. J. Ophthalmol. 85(1), 85–87 (2001)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. J. Liu, C.J. Roberts, Influence of corneal biomechanical properties on intraocular pressure measurement: quantitative analysis. J. Cataract Refract. Surg. 31(1), 146–155 (2005)

    Article  PubMed  Google Scholar 

  25. A. Kotecha, E.T. White, J.M. Shewry, D.F. Garway-Heath, The relative effects of corneal thickness and age on Goldmann applanation tonometry and dynamic contour tonometry. Br. J. Ophthalmol. 89(12), 1572–1575 (2005)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. A.T. Broman, N.G. Congdon, K. Bandeen-Roche, H.A. Quigley, Influence of corneal structure, corneal responsiveness, and other ocular parameters on tonometric measurement of intraocular pressure. J. Glaucoma 16(7), 581–588 (2007)

    Article  PubMed  Google Scholar 

  27. K.E. Hamilton, D.C. Pye, Young’s modulus in normal corneas and the effect on applanation tonometry. Optom. Vis. Sci. 85(6), 445–450 (2008). doi:10.1097/OPX.0b013e3181783a70

    Article  PubMed  Google Scholar 

  28. H.H. Mark, Armand Imbert, Adolf Fick, and their tonometry law. Eye 26(1), 13–16 (2012)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. H. Goldmann, T. Schmidt, Über Applanationstonometrie. Ophthalmologica 134(4), 221–242 (1957)

    Article  CAS  PubMed  Google Scholar 

  30. H. Goldmann, T. Schmidt, Weiterer Beitrag zur Applanationstonometrie. Ophthalmologica 141(6), 441–456 (1961)

    Article  CAS  PubMed  Google Scholar 

  31. H. Goldmann, Un nouveau tonometre d’applanation. Bull. Soc. Ophtalmol. Fr 67, 474–478 (1955)

    Google Scholar 

  32. G.C. Stuckey, Application of physical principles in the development of tonometry. Clin. Exp. Ophthalmol. 32(6), 633–636 (2004)

    Article  Google Scholar 

  33. J.I. Barraquer, Cirugía refractiva de la córnea. LXV Ponen Soc Española Oftalmol (Instituto Barraquer de América, Bogotá, 1989), pp. 812–814

    Google Scholar 

  34. A. Arciniegas, L.E. Amaya, Relación entre la tonometría de Goldmann y la presion intravitrea en conejos; Relation between the Goldmann tonometry and the intravitreous pressure in rabbits. Arch. Soc. Am. Oftalmol. Optom. 18(4), 261–275 (1984)

    Google Scholar 

  35. C.R. Ethier, M. Johnson, J. Ruberti, Ocular biomechanics and biotransport. Annu. Rev. Biomed. Eng. 6(1), 249–273 (2004)

    Article  CAS  PubMed  Google Scholar 

  36. M.K. ElMallah, S.G. Asrani, New ways to measure intraocular pressure. Curr. Opin. Ophthalmol. 19(2), 122–126 (2008)

    Article  PubMed  Google Scholar 

  37. R.L. Stamper, M.F. Lieberman, M.V. Drake, Ch 4 – Intraocular pressure, in: Becker-Shaffers Diagn. Ther. Glaucomas, 8th edn. (Mosby, Edinburgh, 2009), pp. 47–67

    Google Scholar 

  38. S.L.-Y. Woo, A.S. Kobayashi, C. Lawrence, W.A. Schlegel, Mathematical model of the corneo-scleral shell as applied to intraocular pressure–volume relations and applanation tonometry. Ann. Biomed. Eng. 1(1), 87–98 (1972)

    Article  CAS  PubMed  Google Scholar 

  39. Ö.E. Abbasoḡlu, R.W. Bowman, H.D. Cavanagh, J.P. McCulley, Reliability of intraocular pressure measurements after myopic excimer photorefractive keratectomy. Ophthalmology 105(12), 2193–2196 (1998)

    Article  PubMed  Google Scholar 

  40. C.L.S. Kniestedt, Clinical comparison of contour and applanation tonometry and their relationship to pachymetry. Arch. Ophthalmol. 123(11), 1532–1537 (2005)

    Article  PubMed  Google Scholar 

  41. M. Lanza, M. Borrelli, M. De Bernardo, M.L. Filosa, N. Rosa, Corneal parameters and difference between Goldmann applanation tonometry and dynamic contour tonometry in normal eyes. J. Glaucoma 17(6), 460–464 (2008)

    Article  PubMed  Google Scholar 

  42. A. Kotecha, What biomechanical properties of the cornea are relevant for the clinician? Surv. Ophthalmol. 52(6, Supplement), S109–S114 (2007)

    Article  PubMed  Google Scholar 

  43. Y. Zeng, J. Yang, K. Huang, Z. Lee, X. Lee, A comparison of biomechanical properties between human and porcine cornea. J. Biomech. 34(4), 533–537 (2001)

    Article  CAS  PubMed  Google Scholar 

  44. M.R. DiSilvestro, J.-K.F. Suh, A cross-validation of the biphasic poroviscoelastic model of articular cartilage in unconfined compression, indentation, and confined compression. J. Biomech. 34(4), 519–525 (2001)

    Article  CAS  PubMed  Google Scholar 

  45. M.L. Sears, Miosis and intraocular pressure changes during manometry: mechanically irritated rabbit eyes studied with improved manometric technique. AMA Arch. Ophthalmol. 63(4), 707–714 (1960)

    Article  CAS  Google Scholar 

  46. I. Iinuma, K. Uenoyama, T. Sakaguchi, Intraocular pressure changes during tonography. Studies of other pressure tests in rabbit and enucleated human eyes by closed electric manometry. Am. J. Ophthalmol. 61(5 Pt 1), 853–859 (1966)

    Article  CAS  PubMed  Google Scholar 

  47. P. Vareilles, P. Conquet, J.-C. Le Douarec, A method for the routine intraocular pressure (IOP) measurement in the rabbit: range of IOP variations in this species. Exp. Eye Res. 24(4), 369–375 (1977)

    Article  CAS  PubMed  Google Scholar 

  48. J.S. Friedenwald, Contribution to the theory and practice of tonometry. Am J. Ophthalmol. 20(9), 985–1024 (1937)

    Article  Google Scholar 

  49. J.S. Friedenwald, H.F. Pierce, Circulation of the aqueous: VI. Intra-ocular gas exchange. Arch. Ophthalmol. 17(3), 477–485 (1937)

    Article  Google Scholar 

  50. N.J. Schwartz, R.S. Mackay, J.L. Sackman, A theoretical and experimental study of the mechanical behavior of the cornea with application to the measurement of intraocular pressure. Bull. Math. Biophys. 28(4), 585–643 (1966)

    Article  Google Scholar 

  51. M.F. Armaly, The heritable nature of dexamethasone-induced ocular hypertension. Arch. Ophthalmol. 75(1), 32–35 (1966)

    Article  CAS  PubMed  Google Scholar 

  52. W.K. McEwen, Difficulties in measuring intraocular pressure and ocular rigidity, in Glaucoma – Tultzing Symp Tultzing Castle, ed by W. Leydhecker (1966), pp. 97–125

    Google Scholar 

  53. P. Kronfeld, Gross anatomy and embryology of the eye. The Eye 1, 1–66 (1962)

    Google Scholar 

  54. P.R. Greene, Mechanical aspects of myopia, Ph.D. Thesis (Harvard University, Cambridge, 1978)

    Google Scholar 

  55. J.L. Battaglioli, R.D. Kamm, Measurements of the compressive properties of scleral tissue. Invest. Ophthalmol. Vis. Sci. 25(1), 59–65 (1984)

    CAS  PubMed  Google Scholar 

  56. N. Ehlers, J. Hjortdal, The cornea: epithelium and stroma, in Adv. Organ Biol. ed. by J. Fischbarg (Elsevier, Philadelphia, 2005), pp. 83–111

    Google Scholar 

  57. I. Asensio Romero, Valoración del efecto de la oxibuprocaína HCL 0.4 % y del compuesto de tetracaína y oxibuprocaína HCL 0.4 % sobre los valores anatómicos del espesor corneal humano. Ph.D. Thesis (Universitat de València, España, 2007)

    Google Scholar 

  58. M.R. Bryant, P.J. McDonnell, Constitutive laws for biomechanical modeling of refractive surgery. J. Biomech. Eng. 118(4), 473–481 (1996)

    Article  CAS  PubMed  Google Scholar 

  59. E. Sjøntoft, C. Edmund, In vivo determination of young’s modulus for the human cornea. Bull. Math. Biol. 49(2), 217–232 (1987)

    PubMed  Google Scholar 

  60. J.O. Hjortdal, P. Koch-Jensen, In situ mechanical behavior of the human cornea as evaluated by simultaneous measurement of corneal strain, corneal surface contour, and corneal thickness. Invest. Ophthalmol. Vis. Sci. 33, 895 (1992)

    Google Scholar 

  61. H. Wang, P.L. Prendiville, P.J. McDonnell, W.V. Chang, An ultrasonic technique for the measurement of the elastic moduli of human cornea. J. Biomech. 29(12), 1633–1636 (1996)

    Article  CAS  PubMed  Google Scholar 

  62. L.E. Amaya, A. Arcienegas, Mecánica de la cavidad ocular (Universidad de los Andes, Facultad de Ingeniería, Centro de Estudios e Investigación, Bogotá, 1982)

    Google Scholar 

  63. P.M. Pinsky, D.V. Datye, A microstructurally-based finite element model of the incised human cornea. J. Biomech. 24(10), 907–922 (1991)

    Article  CAS  PubMed  Google Scholar 

  64. K. Buzard, Introduction to biomechanics of the cornea. Refract. Corneal. Surg. 8(2), 127–138 (1992)

    CAS  PubMed  Google Scholar 

  65. K. Anderson, A. El-Sheikh, T. Newson, Application of structural analysis to the mechanical behaviour of the cornea. J. R. Soc. Interface 1(1), 3–15 (2004)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. W.J. Dupps Jr., S.E. Wilson, Biomechanics and wound healing in the cornea. Exp. Eye Res. 83(4), 709–720 (2006)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. J.Ø. Hjortdal, Extensibility of the normo-hydrated human cornea. Acta Ophthalmol. Scand. 73(1), 12–17 (1995)

    Article  CAS  PubMed  Google Scholar 

  68. C.T. McKee, J.A. Last, P. Russell, C.J. Murphy, Indentation versus tensile measurements of Young’s modulus for soft biological tissues. Tissue Eng. Part B Rev. 17(3), 155–164 (2011)

    Article  PubMed Central  PubMed  Google Scholar 

  69. A.S. Kobayashi, S.L.-Y. Woo, C. Lawrence, W.A. Schlegel, Analysis of the corneo-scleral shell by the method of direct stiffness. J. Biomech. 4(5), 323–330 (1971)

    Article  CAS  PubMed  Google Scholar 

  70. G.W. Nyquist, Rheology of the cornea: experimental techniques and results. Exp. Eye Res. 7(2), 183–188 (1968)

    Article  CAS  PubMed  Google Scholar 

  71. H. Goldmann, Applanation tonometry, in Glaucoma Trans Second Conf., ed by F.W. Newell (Josia Macy Jr Foundation, New York, 1957), pp. 167–220

    Google Scholar 

  72. S.-Y. Woo, A.S. Kobayashi, W.A. Schlegel, C. Lawrence, Nonlinear material properties of intact cornea and sclera. Exp. Eye Res. 14(1), 29–39 (1972)

    Article  CAS  PubMed  Google Scholar 

  73. D.M. Maurice, The cornea and sclera, in The Eye, ed. by H. Davson (Academic Press Inc. (London) Ltd., London, 1984), p. 522

    Google Scholar 

  74. R.P. Vito, P.H. Carnell, Finite element based mechanical models of the cornea for pressure and indenter loading. Refract. Corneal Surg. 8(2), 146–151 (1992)

    CAS  PubMed  Google Scholar 

  75. M.E. Levenston, E.H. Frank, A.J. Grodzinsky, Variationally derived 3-field finite element formulations for quasistatic poroelastic analysis of hydrated biological tissues. Comput. Methods Appl. Mech. Eng. 156(1–4), 231–246 (1998)

    Article  Google Scholar 

  76. M.R. Prausnitz, J.S. Noonan, Permeability of cornea, sclera, and conjunctiva: a literature analysis for drug delivery to the eye. J. Pharm. Sci. 87(12), 1479–1488 (1998)

    Article  CAS  PubMed  Google Scholar 

  77. Y. Ota, S. Mishima, D.M. Maurice, Endothelial permeability of the living cornea to fluorescein. Invest. Ophthalmol. Vis. Sci. 13(12), 945–949 (1974)

    CAS  Google Scholar 

  78. L.S. Liebovitch, S. Weinbaum, A model of epithelial water transport. The corneal endothelium. Biophys. J. 35(2), 315–338 (1981)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. S. Hodson, C. Wigham, The permeability of rabbit and human corneal endothelium. J. Physiol. 342(1), 409–419 (1983)

    CAS  PubMed Central  PubMed  Google Scholar 

  80. A. Edwards, M. Prausnitz, Predicted permeability of the cornea to topical drugs. Pharm. Res. 18(11), 1497–1508 (2001)

    Article  CAS  Google Scholar 

  81. M. Borene, V. Barocas, A. Hubel, Mechanical and cellular changes during compaction of a collagen-sponge-based corneal stromal equivalent. Ann. Biomed. Eng. 32(2), 274–283 (2004)

    Article  PubMed  Google Scholar 

  82. N. Katsube, R. Wang, E. Okuma, C. Roberts, Biomechanical response of the cornea to phototherapeutic keratectomy when treated as a fluid-filled porous material. J. Refract. Surg. Thorofare NJ 1995 18(5), S593–S597 (2002)

    Google Scholar 

  83. D. Prokofiev, J. Dunec, Multiphysics model of soil phenomena near a well, in Proc. Comsol Multiphysics User’s Conf. 2005 (Boston, 2005)

    Google Scholar 

  84. A. Rémond, S. Naïli, T. Lemaire, Interstitial fluid flow in the osteon with spatial gradients of mechanical properties: a finite element study. Biomech. Model. Mechanobiol. 7(6), 487–495 (2008)

    Article  PubMed  Google Scholar 

  85. S.D. Klyce, C.H. Dohlman, D.W. Tolpin, In vivo determination of corneal swelling pressure. Exp. Eye Res. 11(2), 220–229 (1971)

    Article  CAS  PubMed  Google Scholar 

  86. B.O. Hedbys, C.H. Dohlman, A new method for the determination of the swelling pressure of the corneal stroma in vitro. Exp. Eye Res. 2(2), 122–129 (1963)

    Article  CAS  PubMed  Google Scholar 

  87. S. Mishima, B.O. Hedbys, Physiology of the cornea. Int. Ophthalmol. Clin. 8(3), 527–560 (1968)

    CAS  PubMed  Google Scholar 

  88. T. Seiler, M. Matallana, S. Sendler, T. Bende, Does Bowman’s layer determine the biomechanical properties of the cornea? Refract. Corneal Surg. 8(2), 139–142 (1992)

    CAS  PubMed  Google Scholar 

  89. A. Arciniegas, L.E. Amaya, Bio-structural model of the human eye. Ophthalmologica 180(4), 207–211 (1980)

    Article  CAS  PubMed  Google Scholar 

  90. C.F. Burgoyne, J. Crawford Downs, A.J. Bellezza, J.-K. Francis Suh, R.T. Hart, The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage. Prog. Retin. Eye Res. 24(1), 39–73 (2005)

    Article  PubMed  Google Scholar 

  91. Y.C. Fung, Biomechanics: Mechanical Properties of Living Tissues (Springer, New York, 1993)

    Book  Google Scholar 

  92. Y.C. Fung, S.C. Cowin, Biomechanics: mechanical properties of living tissues. J. Appl. Mech. 61(4), 1007–1007 (1994)

    Article  Google Scholar 

  93. P.B. Wilhelm, K.M. Van De Graaff, R.W. Rhees, Schaum’s Easy Outline of Human Anatomy and Physiology (McGraw-Hill, New York, 2001)

    Google Scholar 

  94. J.O. Hjortdal, On the biomechanical properties of the cornea with particular reference to refractive surgery. Acta Ophthalmol. Scand. Suppl. 225, 1–23 (1998)

    PubMed  Google Scholar 

  95. R.F. Jones, D.M. Maurice, New methods of measuring the rate of aqueous flow in man with fluorescein. Exp. Eye Res. 5(3), 208–220 (1966)

    Article  CAS  PubMed  Google Scholar 

  96. H. Wiig, Cornea fluid dynamics I: measurement of hydrostatic and colloid osmotic pressure in rabbits. Exp. Eye Res. 49(6), 1015–1030 (1989)

    Article  CAS  PubMed  Google Scholar 

  97. S.D. Klyce, S.R. Russell, Numerical solution of coupled transport equations applied to corneal hydration dynamics. J. Physiol. 292(1), 107–134 (1979)

    CAS  PubMed Central  PubMed  Google Scholar 

  98. S. Cronemberger, C.S. Guimarães, N. Calixto, J.M.F. Calixto, Intraocular pressure and ocular rigidity after LASIK. Arq. Bras. Oftalmol. 72(4), 439–443 (2009)

    Article  PubMed  Google Scholar 

  99. W.J. Dupps Jr., M.Q. Salomão, R. Ambrósio Jr., Clinical biomechanics and the ocular response analyzer in ectatic disease, in: Keratoconus Keratoectasia Prev. Diagn. Treat., ed. by M.X. Wang, T. Schroeder Swartz (SLACK Incorporated, 2010), pp. 13–28

    Google Scholar 

  100. I.G. Pallikaris, A.I. Dastiridou, M.K. Tsilimbaris, N.G. Karyotakis, H.S. Ginis, Ocular rigidity. Exp. Rev. Ophthalmol. 5(3), 343–351 (2010)

    Article  Google Scholar 

  101. E.T. Detorakis, I.G. Pallikaris, Ocular rigidity: biomechanical role, in vivo measurements and clinical significance. Clin. Exp. Ophthalmol. 41(1), 73–81 (2013)

    Article  Google Scholar 

  102. R. Stodtmeister, Applanation tonometry and correction according to corneal thickness. Acta Ophthalmol. Scand. 76(3), 319–324 (1998)

    Article  CAS  PubMed  Google Scholar 

  103. P.J. Foster, J.-S. Wong, E. Wong, F.-G. Chen, D. Machin, P.T. Chew, Accuracy of clinical estimates of intraocular pressure in Chinese eyes. Ophthalmology 107(10), 1816–1821 (2000)

    Article  CAS  PubMed  Google Scholar 

  104. M. Shimmyo, A.J. Ross, A. Moy, R. Mostafavi, Intraocular pressure, Goldmann applanation tension, corneal thickness, and corneal curvature in Caucasians, Asians, Hispanics, and African Americans. Am J. Ophthalmol. 136(4), 603–613 (2003)

    Article  PubMed  Google Scholar 

  105. M. Kohlhaas, E. Spoerl, A.G. Boehm, K. Pollack, A correction formula for the real intraocular pressure after LASIK for the correction of myopic astigmatism. J. Refract. Surg. 22(3), 263–267 (2006)

    PubMed  Google Scholar 

  106. M.B.A. Kohlhaas, Effect of central corneal thickness, corneal curvature, and axial length on applanation tonometry. Arch. Ophthalmol. 124(4), 471–476 (2006)

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio A. Guarnieri Ph.D. .

Editor information

Editors and Affiliations

Glossary

CCT

Central corneal thickness

CH

Corneal hysteresis, a measure of viscoelasticity of the cornea (elasticity)

CRF

Corneal resistance factor

DCT

Dynamic contour tonometer

E

Linear elastic modulus (Young’s modulus)

ECR

External corneal radius

GAT

Goldmann applanation tonometer

ICR

Internal corneal radius

IOP

Intraocular pressure

IOPcc

IOP compensated for corneal effects

IOPg

Goldmann equivalent IOP

IOPt

Intraocular pressure measured by means of a tonometer

LCT

Limbal corneal thickness

PR

Poisson’s ratio

PT

Pneumotonometer

WS

Waveform score

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Guarnieri, F.A., Guzmán, A. (2015). Biomechanical Instrumentation in Refractive Surgery. In: Guarnieri, F. (eds) Corneal Biomechanics and Refractive Surgery. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1767-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1767-9_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1766-2

  • Online ISBN: 978-1-4939-1767-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics