Skip to main content

The Role of the miR-451-AMPK Signaling Pathway in Regulation of Cell Migration and Proliferation in Glioblastoma

  • Conference paper
  • First Online:
Mathematical Models of Tumor-Immune System Dynamics

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 107))

Abstract

Glioblastoma is the most aggressive type of brain cancer with a median survival time of 1 year. A particular microRNA, miR-451, and its counterpart, AMPK complex are known to play a key role in controlling the balance between rapid proliferation and aggressive invasion in response to metabolic stress in the microenvironment. The present paper develops a hybrid model of glioblastoma that identifies a key mechanism behind the molecular switches between proliferative phase and migratory phase in response to metabolic stress and biophysical interaction between cells. We first focus on the core miR-451-AMPK control system and show how up- or down-regulation of components of these pathways affects cell proliferation and migration. We then examine a hybrid model for the biomechanical interaction between invasive and proliferative cells, in which all cells are modeled individually, and show how biophysical properties of cells and the core miR-451-AMPK control system affect the growth/invasion patterns of glioma spheroids in response to various glucose levels in the microenvironment. The model predicts that cell migration depends not only on glucose availability but also on mechanical constraints between cells. The model predicts various invasion patterns and cell speeds under normal and low glucose conditions. The hybrid model also predicts that introduction of chemoattractants at the resection site may lead to the localization of infiltrating tumor cells back to the periphery of the resected area, which may lead to possible follow-up treatment options such as the subsequent surgeries and optimized elimination of the infiltrating glioma cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aguda, B.D., Kim, Y., Hunter, M.G., Friedman, A., Marsh, C.B.: MicroRNA regulation of a cancer network: consequences of the feedback loops involving miR-17-92, E2F, and Myc. PNAS 105(50), 19678–19683 (2008)

    Article  Google Scholar 

  2. Anderson, A.R.A., Chaplain, M.A.J.: Continuous and discrete mathematical models of tumor-induced angiogenesis. Bull. Math. Biol. 60, 857–900 (1998)

    Article  MATH  Google Scholar 

  3. Aronen, H.J., Pardo, F.S., Kennedy, D.N., Belliveau, J.W., Packard, S.D., Hsu, D.W., Hochberg, F.H., Fischman, A.J., Rosen, B.R.: High microvascular blood volume is associated with high glucose uptake and tumor angiogenesis in human gliomas. Clin. Cancer Res. 6(6), 2189–200 (2000)

    Google Scholar 

  4. Bartel, D.P.: Micrornas: target recognition and regulatory functions. Cell 136(2), 215–33 (2009)

    Article  Google Scholar 

  5. Beadle, C., Assanah, M.C., Monzo, P., Vallee, R., Rosenfield, S.S., Canoll, P.: The role of myosin II in glioma invasion of the brain. Mol. Biol. Cell 19, 3357–3368 (2008)

    Article  Google Scholar 

  6. Bray, D.: Cell Movements: From Molecules to Motility. Garland, New York (2000)

    Google Scholar 

  7. Burgess, P.K., Kulesa, P.M., Murray, J.D., Alvord, Jr., E.C.: The interaction of growth rates and diffusion coefficients in a three-dimensional mathematical model of gliomas. J. Neuropathol. Exp. Neurol. 56(6), 704–713 (1997)

    Article  Google Scholar 

  8. Chen, M.B, Wei, M.X., Han, J.Y., Wu, X.Y., Li, C., Wang, J., Shen, W., Lu, P.H.: MicroRNA-451 regulates AMPK/mTORC1 signaling and fascin1 expression in HT-29 colorectal cancer. Cell. Signal. 26(1), 102–109 (2014)

    Article  Google Scholar 

  9. Chicoine, M.R., Madsen, C.L., Silbergeld, D.L.: Modification of human glioma locomotion in vitro by cytokines EGF, bFGF, PDGFbb, NGF, and TNF alpha. Neurosurgery 36(6), 165–70 (disbrain cancer) (1995)

    Google Scholar 

  10. Chintala, S.K., Tonn, J.C., Rao, J.S.: Matrix metalloproteinases and their biological function in human gliomas. Int. J. Dev. Neurosci. 17(5–6), 495–502 (1999)

    Article  Google Scholar 

  11. Chiro, D.G., DeLaPaz, R.L., Brooks, R.A., Sokoloff, L., Kornblith, P.L., Smith, B.H., Patronas, N.J., Kufta, C.V., Kessler, R.M., Johnston, G.S., Manning, R.G., Wolf, A.P.: Glucose utilization of cerebral gliomas measured by [18f] fluorodeoxyglucose and positron emission tomography. Neurology 32(12), 1323–1329 (1982)

    Article  Google Scholar 

  12. Choe, G., Park, J.K., Jouben-Steele, L., Kremen, T.J., Liau, L.M., Vinters, H.V., Cloughesy, T.F., Mischel, P.S.: Active matrix metalloproteinase 9 expression is associated with primary glioblastoma subtype. Clin. Cancer Res. 8(9), 2894–2901 (2002)

    Google Scholar 

  13. Claes, A., Idema, A.J., Wesseling, P.: Diffuse glioma growth: a guerilla war. Acta Neuropathol. 114(5), 443–458 (2007)

    Article  Google Scholar 

  14. Crute, B.E., Seefeld, K., Gamble, J., Kemp, B.E., Witters, L.A.: Functional domains of the alpha1 catalytic subunit of the amp-activated protein kinase. J. Biol. Chem. 273(52), 35347–35354 (1998)

    Article  Google Scholar 

  15. Dallon, J.C., Othmer, H.G.: How cellular movement determines the collective force generated by the dictyostelium discoideum slug. J. Theor. Biol. 231, 203–222 (2004)

    Article  MathSciNet  Google Scholar 

  16. Davis, F.G., McCarthy, B.J.: Current epidemiological trends and surveillance issues in brain tumors. Exp. Rev. Anticancer Ther. 1(3), 395–401 (2001)

    Article  Google Scholar 

  17. Deisboeck, T.S., Berens, M.E., Kansal, A.R., Torquato, S., Stemmer-Rachamimov, A.O., Chiocca, E.A.: Pattern of self-organization in tumour systems: complex growth dynamics in a novel brain tumour spheroid model. Cell Prolif. 34, 115–134 (2001)

    Article  Google Scholar 

  18. Demuth, T., Berens, M.E.: Molecular mechanisms of glioma cell migration and invasion. J. Neurooncol. 70(2), 217–228 (2004)

    Article  Google Scholar 

  19. Demuth, T., Hopf, N.J., Kempski, O., Sauner, D., Herr, M., Giese, A., Perneczky, A.: Migratory activity of human glioma cell lines in vitro assessed by continuous single cell observation. Clin. Exp. Metastasis 18(7), 589–597 (2000)

    Article  Google Scholar 

  20. Esquela-Kerscher, A., Slack, F.J.: Oncomirs - micrornas with a role in cancer. Nat. Rev. Cancer 6(4), 259–269 (2006)

    Article  Google Scholar 

  21. Gabriely, G., Wurdinger, T., Kesari, S., Esau, C.C., Burchard, J., Linsley, P.S., Krichevsky, A.M.: Microrna 21 promotes glioma invasion by targeting matrix metalloproteinase regulators. Mol. Cell Biol. 28(17), 5369–5380 (2008)

    Article  Google Scholar 

  22. Gal, H., Pandi, G., Kanner, A.A., Ram, Z., Lithwick-Yanai, G., Amariglio, N., Rechavi, G., Givol, D.: Mir-451 and imatinib mesylate inhibit tumor growth of glioblastoma stem cells. Biochem. Biophys. Res. Commun. 376, 86–90 (2008)

    Article  Google Scholar 

  23. Gantier, M.P., McCoy, C.E., Rusinova, I., Saulep, D., Wang, D., Xu, D., Irving, A.T., Behlke, M.A., Hertzog, P.J., Mackay, F., Williams, B.R.: Analysis of microrna turnover in mammalian cells following dicer1 ablation. Nucleic Acids Res. 39(13), 5692–5703 (2011)

    Article  Google Scholar 

  24. Gatenby, R.A., Gillies, R.J.: Why do cancers have high aerobic glycolysis? Nat. Rev. Cancer 4(11), 891–899 (2004)

    Article  Google Scholar 

  25. Godlewski, J., Bronisz, A., Nowicki, M.O., Chiocca, E.A., Lawler, S.: microRNA-451: a conditional switch controlling glioma cell proliferation and migration. Cell Cycle 9(14), 2742–2748 (2010)

    Google Scholar 

  26. Godlewski, J., Newton, H.B., Chiocca, E.A., Lawler, S.E.: MicroRNAs and glioblastoma; the stem cell connection. Cell Death Differ. 17(2), 221–228 (2010)

    Article  Google Scholar 

  27. Godlewski, J., Nowicki, M.O., Bronisz, A., Palatini, G.N.J., Lay, M.D., Brocklyn, J.V., Ostrowski, M.C., Chiocca, E.A., Lawler, S.E.: MircroRNA-451 regulates LKB1/AMPK signaling and allows adaptation to metabolic stress in glioma cells. Mol. Cell 37, 620–632 (2010)

    Article  Google Scholar 

  28. Godlewski, J., Nowicki, M.O., Bronisz, A., Williams, S., Otsuki, A., Nuovo, G., Raychaudhury, A., Newton, H.B., Chiocca, E.A., Lawler, S.: Targeting of the Bmi-1 oncogene/stem cell renewal factor by microRNA-128 inhibits glioma proliferation and self-renewal. Cancer Res. 68(22), 9125–9130 (2008)

    Article  Google Scholar 

  29. Goldman, S., Levivier, M., Pirotte, B., Brucher, J.M., Wikler, D., Damhaut, P., Stanus, E., Brotchi, J., Hildebrand, J.: Regional glucose metabolism and histopathology of gliomas. a study based on positron emission tomography-guided stereotactic biopsy. Cancer 78(5), 1098–1106 (1996)

    Google Scholar 

  30. Hardie, D.G.: AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat. Rev. Mol. Cell Biol. 8(10), 774–785 (2007)

    Article  MathSciNet  Google Scholar 

  31. Hardie, D.G., Salt, I.P., Hawley, S.A., Davies, S.P.: AMP-activated protein kinase: an ultrasensitive system for monitoring cellular energy charge. Biochem. J. 338, 717–722 (1999)

    Article  Google Scholar 

  32. Harpold, H.L., Alvord, Jr., E.C., Swanson, K.R.: The evolution of mathematical modeling of glioma proliferation and invasion. J. Neuropathol. Exp. Neurol. 66(1), 1–9 (2007)

    Article  Google Scholar 

  33. Hegedus, B., Zach, J., Czirok, A., Lovey, J., Vicsek, T.: Irradiation and taxol treatment result in non-monotonous, dose-dependent changes in the motility of glioblastoma cells. J. Neurooncol. 67(1–2), 147–157 (2004)

    Article  Google Scholar 

  34. Hong, B., Wiese, B., Bremer, M., Heissler, H.E., Heidenreich, F., Krauss, J.K., Nakamura, M.: Multiple microsurgical resections for repeated recurrence of glioblastoma multiforme. Am. J. Clin. Oncol. 36(3), 261–268. doi:10.1097/COC.0b013e3182467bb1 (2013)

    Article  Google Scholar 

  35. Jaalinoja, J., Herva, R., Korpela, M., Hoyhtya, M., Turpeenniemi-Hujanen, T.: Matrix metalloproteinase 2 (MMP-2) immunoreactive protein is associated with poor grade and survival in brain neoplasms. J. Neurooncol. 46(1), 81–90 (2000)

    Article  Google Scholar 

  36. Jacobs, V.L., Valdes, P.A., Hickey, W.F., De Leo, J.A.: Current review of in vivo GBM rodent models: emphasis on the CNS-1 tumour model. ASN NEURO 3(3), e00063 (2011)

    Article  Google Scholar 

  37. Jain, R.K.: Transport of molecules in the tumor interstitium: a review. Cancer Res. 47(12), 3039–3051 (1987)

    Google Scholar 

  38. Jones, R.G., Thompson, C.B.: Tumor suppressors and cell metabolism: a recipe for cancer growth. Genes Dev. 23(5), 537–548 (2009)

    Article  Google Scholar 

  39. Kaufman, L.J., Brangwynne, C.P., Kasza, K.E., Filippidi, E., Gordon, V.D., Deisboeck, T.S., Weitz, D.A.: Glioma expansion in collagen I matrices: analyzing collagen concentration-dependent growth and motility patterns. Biophys. J. BioFAST 89, 635–650 (2005)

    Article  Google Scholar 

  40. Khanin, R., Vinciotti, V.: Computational modeling of post-transcriptional gene regulation by micrornas. J. Comput. Biol. 15(3), 305–316 (2008)

    Article  MathSciNet  Google Scholar 

  41. Kim, H.D., Guo, T.W., Wu, A.P., Wells, A., Gertler, F.B., Lauffenburger, D.A.: Epidermal growth factor-induced enhancement of glioblastoma cell migration in 3D arises from an intrinsic increase in speed but an extrinsic matrix and proteolysis-dependent increase in persistence. Mol. Biol. Cell 19, 4249–4259 (2008)

    Article  Google Scholar 

  42. Kim, J.W., Dang, C.V.: Cancer’s molecular sweet tooth and the Warburg effect. Cancer Res. 66(18), 8927–8930 (2006)

    Article  Google Scholar 

  43. Kim, Y.: Regulation of cell proliferation and migration in glioblastoma: new therapeutic approach. Front. Mol. Cell. Oncol. 3, 53 (2013)

    Google Scholar 

  44. Kim, Y., Lawler, S., Nowicki, M.O., Chiocca, E.A., Friedman, A.: A mathematical model of brain tumor: pattern formation of glioma cells outside the tumor spheroid core. J. Theor. Biol. 260, 359–371 (2009)

    Article  MathSciNet  Google Scholar 

  45. Kim, Y., Roh, S.: A hybrid model for cell proliferation and migration in glioblastoma. Discr. Contin. Dyn. Syst. B 18(4), 969–1015 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  46. Kim, Y., Roh, S., Lawler, S., Friedman, A.: miR451 and AMPK/MARK mutual antagonism in glioma cells migration and proliferation. PLoS One 6(12), e28293 (2011)

    Google Scholar 

  47. Kim, Y., Stolarska, M., Othmer, H.G.: A hybrid model for tumor spheroid growth in vitro I: theoretical development and early results. Math. Models Methods Appl. Sci. 17, 1773–1798 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  48. Kim, Y., Stolarska, M., Othmer, H.G.: The role of the microenvironment in tumor growth and invasion. Prog. Biophys. Mol. Biol. 106, 353–379 (2011)

    Article  Google Scholar 

  49. Kudlow, J.E., Cheung, C.Y., Bjorge, J.D.: Epidermal growth factor stimulates the synthesis of its own receptor in a human breast cancer cell line. J. Biol. Chem. 261(9), 4134–4138 (1986)

    Google Scholar 

  50. Lamszus, K., Schmidt, N.O., Jin, L., Laterra, J., Zagzag, D., Way, D., Witte, M., Weinand, M., Goldberg, I.D., Westphal, M., Rosen, E.M.: Scatter factor promotes motility of human glioma and neuromicrovascular endothelial cells. Int. J. Cancer 75(1), 19–28 (1998)

    Article  Google Scholar 

  51. Lawler, S., Chiocca, E.A.: Emerging functions of micrornas in glioblastoma. J. Neurooncol. 92(3), 297–306 (2009)

    Article  MathSciNet  Google Scholar 

  52. LeBrun, D.G., Li, M.: Micrornas in glioblastoma multiforme: profiling studies and therapeutic impacts. Mol. Cell. Pharmacol. 3(3), 93–105 (2011)

    Google Scholar 

  53. Li, C.K.: The glucose distribution in 9L rat brain multicell tumor spheroids and its effect on cell necrosis. Cancer 50(10), 2066–2073 (1982)

    Article  Google Scholar 

  54. Li, H.Y., Zhang, Y., Cai, J.H., Bian, H.L.: MicroRNA-451 inhibits growth of human colorectal carcinoma cells via downregulation of PI3K/AKT pathway. Asian Pac. J. Cancer Prev. 14(6), 3631–3634 (2013)

    Article  Google Scholar 

  55. Luca, A.D., Arena, N., Sena, L.M., Medico, E.: Met overexpression confers HGF-dependent invasive phenotype to human thyroid carcinoma cells in vitro. J. Cell. Physiol. 180(3), 365–371 (1999)

    Article  Google Scholar 

  56. Lund-Johansen, M., Bjerkvig, R., Humphrey, P.A., Bigner, S.H., Bigner, D.D., Laerum, O.D.: Effect of epidermal growth factor on glioma cell growth, migration, and invasion in vitro. Cancer Res. 50(18), 6039–6044 (1990)

    Google Scholar 

  57. Marino, S., Hogue, I.B., Ray, C.J., Kirschner, D.E.: A methodology for performing global uncertainty and sensitivity analysis in systems biology. J. Theor. Biol. 254(1), 178–196 (2008)

    Article  MathSciNet  Google Scholar 

  58. Mercapide, .J., Cicco, R., Castresana, J.S., Klein-Szanto, A.J.: Stromelysin-1/matrix metalloproteinase-3 (MMP-3) expression accounts for invasive properties of human astrocytoma cell lines. Int. J. Cancer 106(5), 676–682 (2003)

    Article  Google Scholar 

  59. Moller, H.G., Rasmussen, A.P., Andersen, H.H., Johnsen, K.B., Henriksen, M., Duroux, M.: A systematic review of microrna in glioblastoma multiforme: micro-modulators in the mesenchymal mode of migration and invasion. Mol. Neurobiol. 47(1), 131–44 (2013)

    Article  Google Scholar 

  60. Nan, Y., Han, L., Zhang, A., Wang, G., Jia, Z., Yang, Y., Yue, X., Pu, P., Zhong, Y., Kang, C.: Mirna-451 plays a role as tumor suppressor in human glioma cells. Brain Res. 1359, 14–21 (2010)

    Article  Google Scholar 

  61. Platten, M., Wick, W., Weller, M.: Malignant glioma biology: role for TGF-beta in growth, motility, angiogenesis, and immune escape. Microsc. Res. Tech. 52(4), 401–410 (2001)

    Article  Google Scholar 

  62. Ragan, C., Zuker amd, M., Ragan, M.A.: Quantitative prediction of mirna-mrna interaction based on equilibrium concentrations. PLoS Comput. Biol. 7(2), e1001090. doi:10.1371/journal.pcbi.1001090 (2011)

  63. Rejniak, K.A., Anderson, A.R.A.: Hybrid models of tumor growth. WIRES Syst. Biol. Med. 3, 115–125 (2011)

    Article  Google Scholar 

  64. Rong, Z., Cheema, U., Vadgama, P.: Needle enzyme electrode based glucose diffusive transport measurement in a collagen gel and validation of a simulation model. Analyst 131(7), 816–821 (2006)

    Article  Google Scholar 

  65. Rozental, J.M., Levine, R.L., Nickles, R.J.: Changes in glucose uptake by malignant gliomas: preliminary study of prognostic significance. J. Neurooncol. 10(1), 75–83 (1991)

    Article  Google Scholar 

  66. Saffarian, S., Collier, I.E., Marmer, B.L., Elson, E.L., Goldberg, G.: Interstitial collagenase is a brownian ratchet driven by proteolysis of collagen. Science 306(5693), 108–111 (2004)

    Article  Google Scholar 

  67. Sander, L.M., Deisboeck, T.S.: Growth patterns of microscopic brain tumors. Phys. Rev. E 66, 051901 (2002)

    Article  Google Scholar 

  68. Schattler, H., Kim, Y., Ledzewicz, U., de los Reyes V.A.A., Jung, E.: On the control of cell migration and proliferation in glioblastoma. In: Proceeding of the IEEE Conference on Decision and Control, 978-1-4673-5716-6, vol. 13, pp. 1810–1815 (2013)

    Google Scholar 

  69. Scianna, M., Merks, R.M., Preziosi, L., Medico, E.: Individual cell-based models of cell scatter of ARO and MLP-29 cells in response to hepatocyte growth factor. J. Theor. Biol. 260(1), 151–60 (2009)

    Article  Google Scholar 

  70. Sen, S., Dong, M., Kumar, S.: Isoform-specific contributions of a-actinin to glioma cell mechanobiology. PLoS One 4(12), e8427 (2009)

    Article  Google Scholar 

  71. Sherratt, J.A., Murray, J.D.: Models of epidermal wound healing. Proc. R. Soc. Lond. B 241, 29–36 (1990)

    Article  Google Scholar 

  72. Silbergeld, D.L., Chicoine, M.R.: Isolation and characterization of human malignant glioma cells from histologically normal brain. J. Neurosurg. 86(3), 525–531 (1997)

    Article  Google Scholar 

  73. Singh, P.K., Mehla, K., Hollingsworth, M.A., Johnson, K.R.: Regulation of aerobic glycolysis by micrornas in cancer. Mol. Cell Pharmacol. 3(3), 125–134 (2011)

    Google Scholar 

  74. Stein, A.M., Demuth, T., Mobley, D., Berens, M., Sander, L.M.: A mathematical model of glioblastoma tumor spheroid invasion in a three-dimensional in vitro experiment. Biophys. J. 92(1), 356–365 (2007)

    Article  Google Scholar 

  75. Stella, M.C., Comoglio, P.M.: HGF: a multifunctional growth factor controlling cell scattering. Int. J. Biochem. Cell Biol. 31(12), 1357–1362 (1999)

    Article  Google Scholar 

  76. Stokes, P.M., Lauffenburger, D.A.: Analysis of the roles of microvessel endothelial cell random motility and chemotaxis in angiogenesis. J. Theor. Biol. 152, 377–403 (1991)

    Article  Google Scholar 

  77. Stylli, S.S., Kaye, A.H., MacGregor, L., Howes, M., Rajendra, P.: Photodynamic therapy of high grade glioma - long term survival. J. Clin. Neurosci. 12(4), 389–398 (2005)

    Article  Google Scholar 

  78. Swanson, K.R., Alvord, E.C., Murray, J.D.: Virtual resection of gliomas: effect of extent of resection on recurrence. Math. Comput. Model. 37, 1177–1190 (2003)

    Article  MATH  Google Scholar 

  79. Tamagnone, L., Comoglio, P.M.: Control of invasive growth by hepatocyte growth factor (HGF) and related scatter factors. Cytokine Growth Factor Rev. 8(2), 129–142 (1997)

    Article  Google Scholar 

  80. Thorne, R.G., Hrabetova, S., Nicholson, C.: Diffusion of epidermal growth factor in rat brain extracellular space measured by integrative optical imaging. J. Neurophysiol. 92(6), 3471–3481 (2004)

    Article  Google Scholar 

  81. Trusolino, L., Comoglio, P.M.: Scatter-factor and semaphorin receptors: cell signalling for invasive growth. Nat. Rev. Cancer 2(4), 289–300 (2002)

    Article  Google Scholar 

  82. Valle-Casuso, J.C., Gonzalez-Sanchez, A., Medina, J.M., Tabernero, A.: HIF-1 and c-Src mediate increased glucose uptake induced by endothelin-1 and connexin43 in astrocytes. PLoS One 7(2), e32448 (2012)

    Article  Google Scholar 

  83. Vander Heiden, M.G., Cantley, L.C., Thompson, C.B.: Understanding the warburg effect: the metabolic requirements of cell proliferation. Science 324(5930), 1029–1033 (2009)

    Article  Google Scholar 

  84. Warburg, O.: On the origin of cancer cells. Science 123(3191), 309–314 (1956)

    Article  Google Scholar 

  85. Watters, J.J., Schartner, J.M., Badie, B.: Microglia function in brain tumors. J. Neurosci. Res. 81(3), 447–455 (2005)

    Article  Google Scholar 

  86. Xu, R.H., Pelicano, H., Zhou, Y., Carew, J.S., Feng, L., Bhalla, K.N., Keating, M.J., Huang, P.: Inhibition of glycolysis in cancer cells: a novel strategy to overcome drug resistance associated with mitochondrial respiratory defect and hypoxia. Cancer Res. 65(2), 613–621 (2005)

    Google Scholar 

  87. Yao, G., Lee, T.J., Mori, S., Nevins, J.R., You, L.: A bistable Rb-E2F switch underlies the restriction point. Nat. Cell Biol. 10(4), 476–482 (2008)

    Article  Google Scholar 

  88. Young, N., Brocklyn, J.R.: Roles of sphingosine-1-phosphate (S1P) receptors in malignant behavior of glioma cells. differential effects of S1P2 on cell migration and invasiveness. Exp. Cell Res. 313(8), 1615–1627 (2007)

    Google Scholar 

  89. Zhang, B.B., Zhou, G., Li, C.: AMPK: an emerging drug target for diabetes and the metabolic syndrome. Cell Metab. 9(5), 407–416 (2009)

    Article  Google Scholar 

  90. Zhou, X., Ren, Y., Moore, L., Mei, M., You, Y., Xu, P., Wang, B., Wang, G., Jia, Z., Pu, P., Zhang, W., Kang, C.: Downregulation of miR-21 inhibits EGFR pathway and suppresses the growth of human glioblastoma cells independent of PTEN status. Lab. Invest. 90(2), 144–155 (2010)

    Article  Google Scholar 

  91. Zhou, Y., Larsen, P.H., Hao, C., Yong, V.W.: CXCR4 is a major chemokine receptor on glioma cells and mediates their survival. J. Biol. Chem. 277(51), 49481–49487 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

YJK and HJK were supported by the Basic Science Research Program through the National Research Foundation of Korea by the Ministry of Education and Technology (2012R1A1A1043340).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yangjin Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this paper

Cite this paper

Kim, Y., Kang, H., Lawler, S. (2014). The Role of the miR-451-AMPK Signaling Pathway in Regulation of Cell Migration and Proliferation in Glioblastoma. In: Eladdadi, A., Kim, P., Mallet, D. (eds) Mathematical Models of Tumor-Immune System Dynamics. Springer Proceedings in Mathematics & Statistics, vol 107. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1793-8_6

Download citation

Publish with us

Policies and ethics