Skip to main content

Convex Functions and Taylor’s Theorem

  • Chapter
  • First Online:
More Calculus of a Single Variable

Part of the book series: Undergraduate Texts in Mathematics ((UTM))

  • 7323 Accesses

Abstract

In this chapter we consider the higher derivatives of a function f. These are \(f^{{\prime\prime}} = (f^{{\prime}})^{{\prime}},\) \(f^{(3)} = (f^{{\prime\prime}})^{{\prime}},\) etc. We extend the Mean Value Theorem to an analogous statement about the second derivative, and this takes us naturally to the notion of convexity. Once there, we meet the very important Jensen’s Inequality. Then we extend the Mean Value Theorem to the (n+1)st derivative—this is Taylor’s Theorem. We prove that \(\mathrm{e}\) is irrational and we take a brief look at Taylor series.

A smile is a curve that sets everything straight.

– Phyllis Diller

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 19.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 29.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 29.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andreescu, T., Enescu, B.: Mathematical Olympiad Treasures. Birkhauser, Boston (2003)

    Google Scholar 

  2. Aull, C.E.: The first symmetric derivative. Am. Math. Mon. 74, 708–711 (1967)

    Article  MathSciNet  Google Scholar 

  3. Ayoub, A.B., Amdeberhan, T.: Problem 705. Coll. Math. J. 33, 246 (2002)

    Google Scholar 

  4. Bailey, D.F.: A historical survey of solution by functional iteration. Math. Mag. 62, 155–166 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bartle, R.G., Sherbert, D.R.: Introduction to Real Analysis, 2nd edn. Wiley, New York (1992)

    MATH  Google Scholar 

  6. Bateman, H.: Halley’s methods for solving equations. Am. Math. Mon. 45, 11–17 (1938)

    Article  MathSciNet  Google Scholar 

  7. Belfi, V.A.: Convexity in elementary calculus: some geometric equivalences. Am. Math. Mon. 15, 37–41 (1984)

    Google Scholar 

  8. Brenner, J.L.: An elementary approach to \(y^{{\prime\prime}} = -y\). Am. Math. Mon. 95, 344 (1988)

    Article  Google Scholar 

  9. Brown, G.H., Jr.: On Halley’s variation of Newton’s method. Am. Math. Mon. 84, 726–728 (1977)

    Article  MATH  Google Scholar 

  10. Bullen, P.S.: Handbook of Means and Their Inequalities. Kluwer Academic, Dordrecht/Boston (2003)

    Book  MATH  Google Scholar 

  11. Callahan, F.P., Coen, R.: Problem E1803. Am. Math. Mon. 74, 82 (1967)

    Article  MathSciNet  Google Scholar 

  12. Carlson, R.: A Concrete Approach to Real Analysis. Chapman & Hall/CRC, Boca Raton (2006)

    Google Scholar 

  13. Chico Problem Group, Cal. State – Chico and Weiner, J.: Problem 213. Coll. Math. J. 14, 356–357 (1983)

    Google Scholar 

  14. Clark, J.: Derivative sign patterns. Coll. Math. J. 42, 379–382 (2011)

    Article  MATH  Google Scholar 

  15. Daykin, D.E., Eliezer, C.J.: Generalizations of the A.M. and G.M. inequality. Math. Mag. 40, 247–250 (1967)

    Google Scholar 

  16. Daykin, D.E., Eliezer, C.J.: Elementary proofs of basic inequalities. Am. Math. Mon. 76, 543–546 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  17. Díaz-Barrero, J.J., Brase, R.: Problem 11385. Am. Math. Mon. 117, 285 (2010)

    Google Scholar 

  18. Eggleton, R., Kustov, V.: The product and quotient rules revisited. Coll. Math. J. 42, 323–326 (2011)

    Article  Google Scholar 

  19. Friedberg, S.H.: The power rule and the binomial formula. Coll. Math. J. 20, 322 (1989)

    Article  Google Scholar 

  20. Geist, R.: Response to Query 4. Coll. Math. J. 11, 126 (1980)

    Google Scholar 

  21. Klamkin, M.S.: Problem Q913. Math. Mag. 74, 325, 330 (2001)

    Google Scholar 

  22. Klamkin, M.S., Beesing, M.: Problem E2480. Am. Math. Mon. 82, 670–671 (1975)

    Article  MathSciNet  Google Scholar 

  23. Kroopnick, A.J.: A lower bound for sin(x). Math. Gazette 81, 88–89 (1997)

    Article  Google Scholar 

  24. Littlejohn, L., Ahuja, M., Girardeau, C.: Problem 122. Coll. Math. J. 11, 63 (1980)

    Google Scholar 

  25. Laforgia, A., Weston, S.R.: Problem 1215. Math. Mag. 59, 119 (1986)

    MathSciNet  Google Scholar 

  26. Levinson, N.: Generalization of an inequality of Ky Fan. J. Math. Anal. Appl. 8, 133–134 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  27. Love, J.B., Blundon, W.J., Philipp, S.: Problem E1532. Am. Math. Mon. 70, 443 (1963)

    Article  MathSciNet  Google Scholar 

  28. Magnotta, F., Gerber, L.: Problem E2280. Am. Math. Mon. 79, 181 (1972)

    Article  MathSciNet  Google Scholar 

  29. Mascioni, V.: An area approach to the second derivative. Coll. Math. J. 38, 378–380 (2007)

    Google Scholar 

  30. Mercer, A.Mc.D.: Short proofs of Jensen’s and Levinson’s inequalities. Math. Gazette 94, 492–494 (2010)

    Google Scholar 

  31. Mitrinovic, D.S.: Elementary Inequalities Noordhoff Ltd., Groningen (1964)

    Google Scholar 

  32. Moakes, A.J.: The mean value theorems. Math. Gazette 45, 141–142 (1961)

    Article  Google Scholar 

  33. Natanson, I.P.: Theory of Functions of a Real Variable, vol. 2. Frederick Ungar Pub. Co., New York (1961)

    Google Scholar 

  34. Nievergelt, Y., Nakhash, A.: Problem 10940. Am. Math. Mon. 110, 546–547 (2003)

    Article  Google Scholar 

  35. Needham, T.: A visual explanation of Jensen’s inequality. Am. Math. Mon. 100, 768–771 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  36. Parker, F.D.: Taylor’s theorem and Newton’s method. Am. Math. Mon. 66, 51 (1959)

    Article  Google Scholar 

  37. Patruno, G., Vowe, M.: Problem 359. Coll. Math. J. 20, 344–345 (1989)

    Google Scholar 

  38. Rolland, P., Jr., Van de Vyle, C.: Problem E1087. Am. Math. Mon. 74, 84–85 (1967)

    Article  MathSciNet  Google Scholar 

  39. Reich, S.: On mean value theorems. Am. Math. Mon. 76, 70–73 (1969)

    Article  MATH  Google Scholar 

  40. Roy, R.: Sources in the Development of Mathematics. Cambridge University Press, Cambridge/New York (2011)

    Book  MATH  Google Scholar 

  41. Sadoveanu, I., Vowe, M., Wagner, R.J.: Problem 458. Coll. Math. J. 23, 344–345 (1992)

    Google Scholar 

  42. Sahoo, P.K., Riedel, T.: Mean Value Theorems and Functional Equations. World Scientific, Singapore/River Edge (1998)

    Book  MATH  Google Scholar 

  43. Schaumberger, N.: Another proof of Jensen’s inequality. Coll. Math. J. 20, 57–58 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  44. Schaumberger, N.: The AM-GM inequality via x 1∕x. Coll. Math. J. 20, 320 (1989)

    Article  MathSciNet  Google Scholar 

  45. Schaumberger, N.: Problem Q806. Math. Mag. 66, 193, 201 (1993)

    Google Scholar 

  46. Schaumberger, N., Kabak, B.: Proof of Jensen’s inequality. Coll. Math. J. 20, 57–58 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  47. Schaumberger, N., Farnsworth, D., Levine, E.: Problem 289. Coll. Math. J. 17, 362–364 (1986)

    Google Scholar 

  48. Senum, G.I., Bang, S.J.: Problem E3352. Am. Math. Mon. 98, 369–370 (1991)

    Article  MathSciNet  Google Scholar 

  49. Simic, S.: On an upper bound for Jensen’s inequality. J. Ineq. Pure Appl. Math. 10, article 60 (2009)

    Google Scholar 

  50. Sondow, J.: A geometric proof that \(\mathrm{e}\) is irrational and a new measure of its irrationality. Am. Math. Mon. 113, 637–641 (2003)

    Article  MathSciNet  Google Scholar 

  51. Witkowski, A.: Another proof of Levinson inequality. ajmaa.org/RGMIA/papers/v12n2/ (2009)

  52. Zhang, G.Q., Roberts, B.: Problem E3214. Am. Math. Mon. 96, 739–740 (1980)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mercer, P.R. (2014). Convex Functions and Taylor’s Theorem. In: More Calculus of a Single Variable. Undergraduate Texts in Mathematics. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1926-0_8

Download citation

Publish with us

Policies and ethics